浅析中性点接地2012.12.30

浅析中性点接地2012.12.30
浅析中性点接地2012.12.30

浅谈10kV配电网中性点接地方式及其选择

摘要:本文通过对三种不同接地方式的比较,阐述了不同接地方式的特点,提出了应结合实际电网结构和发展来选择合理中性点的接地方式。

关键词:10kV配电网;中性点;接地方式

一、引言

10kV配电网中性点接地方式是一个涉及电力系统各个方面的综合性问题,它与供电可靠性、人身安全、设备安全、继电保护、绝缘水平,过电压保护、电磁兼容、经济性等问题有密切关系,对电力系统的设计与运行有着重大影响。10kV配电网安全可靠供电要求高,其供电电缆化程度不断提高,电容电流不断增大,这都需要我们对其中性点接地方式进一步进行分析探讨。

10kV配电网的中性点接地方式存在多种形式,各有利弊,所以需要寻求适合电网特点的安全可靠、经济合理的中性点接地方式。

二、三种不同接地方式

10kV配电系统中,中性点的接地方式基本上有三种:中性点绝缘接地方式、中性点经小电阻接地方式和中性点经消弧线圈接地方式。这三种接地方式各有优缺点,特别对于小电阻接地和消弧线圈接地方式孰优孰劣问题,一直存在不同的观点。

(一)中性点不接地方式

中性点不接地方式是我国10kV配电网采用得比较多的一种方式。该接地方式在运行中,若发生单相接地故障,流过故障点的电流仅为电网对地的电容电流,其值很小,若是瞬时故障,一般能自动消弧,对于永久性故障,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,避免故障发展为两相短路,而造成停电事故。

因此, 中性点不接地属于小电流接地, 其优点有:

( 1)结构简单,运行方便,不需任何附加设备,投资省。

( 2) 在运行当中如发生了单相接地故障,此时虽然健全相电压升高,但系统还是对称的,故可允许带故障连续供电一段时间(规程规定为2小时),相对地提高了供电可靠性。

但其缺点有:

( 1) 由于中性点不接地方式中性点对地是绝缘的,当发生弧光接地时,电弧反复熄灭与重燃,由于对地电容中的能量不能释放,因此会产生弧光接地过电压,其值一般可达2~3.5Uxg,会对设备绝缘造成威胁。

( 2) 由于目前普遍使用的小电流接地系统选线装置的选线准确率比较低,还未能够准确地检测出发生接地故障的线路。发生单相接地故障后,一般采用人工试拉的方法寻找接地点,因此会造成非故障线路的不必要停电。

( 3) 同时系统存在电容和电感元件, 在一定的条件下, 由于倒闸操作或故障, 很容易引发线性谐振或铁磁谐振。

(二)中性点经小电阻接地

中性点经小电阻接地方式,即在中性点与大地之间接入一定阻值的电阻,该方式可认为是介于中性点不接地和中性点直接接地之间的一种接地方式,世界上以美国为主的部分国家采用中性点经小电阻接地方式,原因是美国在历史上过高的估计了弧光接地过电压的危害性,而采用此种方式,用以泄放线路上的过剩电荷,来限制此种过电压。中性点经小电阻接地方式中,一

般选择电阻的值较小(工程上一般选取10~20Ω)。在系统单相接地时,控制流过接地点的电流在10~500A之间,通过流过接地点的电流来启动零序保护动作,因此可快速切除线路单相故障。

因此, 中性点经小电阻接地属于大电流接地, 其优点有:

(1)中性点经小电阻接地系统可以配置零序过流或限流速断保护。当系统发生单相接地故障时,由于流过故障线路的电流较大,零序过流保护有较好的灵敏度,可以比较容易检出接地故障线路,故障接地线路的零序保护可在(0.5~2.0)sec切除故障。根据电网的运行经验,零序保护动作准确率在95%以上,可及时切除故障线路,可以有效防止非瞬时性单相接地故障发展成相间短路故障;能把双重接地( 异相故障) 的概率降至最低限度。

(2)由于电阻是耗能元件同时也是阻尼元件,相当于在谐振回路中串接一个阻尼电阻,由于电阻的阻尼作用,可以限制谐振过电压的形成。试验表明,当接地电阻值R≤1500Ω,基本上可以消除系统内的各种谐振过电压,电阻值越小,消除谐振的效果越好。

(3)有利于降低操作过电压,中性点经小电阻接地的配电网发生单相故障时,零序保护动作,可准确并迅速地切除线路的故障。如果发生接地故障的线路是电缆线路,由于电缆线路故障一般是永久性故障,可对电缆线路不投线路重合闸,不会引起操作过电压;如果发生单相接地故障的线路是架空线路,由于架空线路发生单相接地故障较多,在故障跳闸后,线路还将重合一次,根据运行经验和实测表明,无论重合闸是否成功,线路重合过程中不会引起明显的操作过电压。

(4)可以降低工频过电压,单相接地故障时非故障相电压小于3倍相电压,且持续时间很短。

(5)有效地限制弧光接地过电压,在中性点经电阻接地的配网中,当接地电弧第一次自动熄灭后,系统对地电容中的残荷将通过中性点小电阻及时泄放掉,在下一次燃弧时其过电压幅值和从正常运行情况发生单相接地故障时的情况相同,因此过电压幅值不高,不会产生很高的过电压。中性点电阻阻值越小,泄放残荷越快。适当选择中性点电阻值,可以将过电压倍数限制在2.8倍相电压以下。

(6)在中性点不接地和经消弧线圈接地的系统中,健全相的过电压水平可超过3倍相电压,对设备的的绝缘水平造成一定的危害。在小电阻接地系统中,健全相的过电压低于3倍相电压,因此一般不会危及设备的绝缘。

(7)系统单相接地时,健全相电压不升高或升幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择,能降低设备绝缘水平, 节省投资。

(8)有利于提高系统安全可靠运行水平。由于系统的工频电压升高和暂态过电压倍数较低,对采用常规标准的设备则安全可靠性和设备使用寿命有所提高。

(9)在低电阻接地系统发生接地故障时,当故障电流达到零序保护动作值时可以在很短时间内动作,将电源切除,这就大大降低了人员接触带电故障设备的机会。

(10)电网运行方式灵活, 不受电容电流变化的影响。

(11)能便于在系统中使用无间隙氧化锌避雷器, 从而降低雷电过电压幅值。

(12)能限制系统中性点电位偏移。

但其缺点有:

(1)采用中性点经小电阻接地,当系统发生单相接地故障时,无论是永久性的还是非永久性的,均作用与跳闸,使线路的跳闸次数大大增加,严重影响了用户的正常供电,使其供电的可靠性下降。

(2)当架空绝缘导线断线,裸导线断线接触的是沙砾、沥青、混凝土等干燥地面时,由于接地电流小,零序保护由于灵敏度原因可能不动作,会导致一定程度的安全事故。

(3)当发生金属性接地时,由于接地点的电流较大,当零序保护动作不及时或拒动时,将使接地点及附近的电气设备将受到动、热稳定的考验,绝缘受到更大的危害,导致相间故障发生。

(4)接地故障电压由过去的百伏左右剧增到2 000~ 3 000 V, 该电压经变电站或配电

间共用的接地系统沿低压线传导到用户的电气设备上,低压设备的绝缘, 将因承受不了如此高的电压而很容易被击穿短路。

(5)中性点经低电阻接地系统,在发生单相接地故障时,故障点流过的电流远大于谐振接地和不接地系统,故障点的高温电弧、跨步电压和接触电压对人和动物构成较大威胁。当故障电流达不到零序保护动作值时,则对人身安全更加不利。

(6)中性点经低电阻接地系统,对通信、电子设备干扰大,综合投资相对较高。

(三)中性点经消弧线圈接地

采用中性点经消弧线圈接地方式,即在中性点和大地之间接入一个消弧线圈,消弧线圈是一种铁心带有空气间隙的可调电感线圈,当电网发生单相接地故障时,其作用是提供一个感性电流,用来补偿单相接地的容性电流。采用中性点经消弧线圈接地方式,在系统发生单相接地时,利用消弧线圈的电感电流对接地电容电流进行补偿,使流过接地点的电流减小到能自行熄弧范围,因接地电流电容电流得到补偿,单相接地故障并不发展为相间故障,按规程规定系统可带单相接地故障运行2h。因此中性点经消弧线圈接地方式的供电可靠性,高于中性点经小电阻接地方式。消弧线圈是由德国人Petersen在1916年提出的,运行经验表明,其广泛适用于中压电网,在

世界范围有德国、中国、前苏联和瑞典等国的中压电网均长期采用此种方式,显著提高了中压电网的安全经济运行水平。

因此, 中性点经消弧线圈接地属于小电流接地, 其优点有:

(1)可以减少间隙性弧光接地过电压的发生概率,单相接地时不破坏系统对称性,可以

带故障运行一段时间,以便查找故障线路。

(2)可以根除电压互感器铁芯饱和过电压,操作过电压一般能抑制在2.8倍相电压以下。

(3)利用消弧线圈的感性电流对电网的对地电容电流进行过补偿,使单相接地故障电流限制在10安培以内,对人身安全有利。

(4)接地故障电流小, 降低了电网绝缘闪络的建弧率, 减少了线路跳闸率;

(5)瞬时性单相接地故障点电弧可以自熄,熄弧后故障点绝缘可以自行恢复避免重燃,提高了供电可靠性。

(6)降低接地工频电流(即残流),降低了地电位,可以减小跨步电位差和接地电位差,故障点耗散功率小,电磁兼容性好, 减少了对低压设备的反击以及对通讯等信息系统的干扰,运行管理比较简单,适应现代城市的发展等。

(7)传统的消弧线圈需要人工进行调谐,不仅会使电网短时失去补偿,而且不能有效地控制单相接地的故障电流。微机控制自动跟踪补偿技术的应用, 使得消弧线圈装置在技术上更

加完善合理, 能实时监测电容电流、残流、位移电压等, 随电网运行方式的变化及时、快速调整消弧线圈分接头, 当系统发生单相接地时,消弧线圈的电感电流能有效地补偿接地点的电容电流, 对减少相间短路故障, 稳定电网运行, 提高供电可靠性更有利。

(8)限制电缆故障的发生和扩大。根据美国统计,电缆故障的66%是由外皮向内部发展的。电缆本体对地绝缘能力的丧失是一个逐渐发展的过程。采用自动跟踪消弧线圈接地方式对三相对地导纳的不平衡十分敏感,可以在故障起始阶段便能被反映出来。如果处理及时,就可防止绝缘被击穿。万一击穿,由于故障点的残余电流很小,很难形成相间短路事故。

但其缺点有:

(1)由于消弧线圈伏安特性非线性所带来的附加接地残流, 再考虑到其它因素( 级

差、测量准确性和零序有功分量) 的影响, 偏差可能较大;

(2)由于主变压器10 kV 侧一般采用v 接法, 如果采用消弧线圈, 一般都要加装接地变压器。一般来讲, 消弧线圈容量越大, 要求接地变压器的零序阻抗越小, 然而接地变压器零序阻抗越小, 其造价越高;

(3)不能补偿谐波电流, 特别是5 次谐波;

(4)用正弦波的电容电流去抵消非正弦波的电弧电流时, 无法抵消其高频分量部分, 且随着配电网的电容电流增大, 消弧线圈的容量也须增大,采用跟踪范围有限的自动调谐, 在机械寿命、响应时间、调节限位等方面都难以满足这种频繁、适时的大范围调节的需求;

(5)电力电缆不能自恢复绝缘, 单相接地故障为永久性故障, 消弧线圈对此不能充分发挥作用。经消弧线圈接地仅能降低弧光接地过电压出现的概率, 不能消除也不能降低其幅值, 这样就可能将系统中绝缘薄弱设备的绝缘击穿甚至导致设备爆炸。因此, 需要另加装过电压保护装置, 将其改造成消弧及过电压保护接地方式。而其过电压保护动作值须针对弧光接地过电压和谐振过电压的幅值而设置。

(6)单相接地故障时,非故障相工频电压最高升到3相电压。对于电容电流很大的配电网,如果通过补偿要使单相接地故障电流残流小于10安培,就必须使系统保持较小的脱谐度,系统的脱谐度过小,对由于三相电容不对称引起的中性点位移电压会产生较强的放大作用,容易使中性点电压偏移超过规程允许值。

三、中性点不同接地方式的选择

到目前为止,如何确定10kV配电网中性点接地方式尚没有统一标准。普遍的共识是中性点接地方式的选择必须同时兼顾电网的过电压现象、电气设备的绝缘水平、电网运行的连续行和可靠性、继电保护装置的灵敏性以及对通信系统的干扰等因素,因经过综合分析、全面权衡而后取舍。

以架空线路为主的辐射型配电网,应继续保持中性点不接地的运行方式;当单相电容电流增大超过10A时,再改为经消弧线圈(可自动调谐)接地的运行方式。

以架空线路和电缆线路混合组成的城市配电网,目前仍应选用经消弧线圈(可自动调谐)接地的运行方式;当电容电流过大无法补偿时再改为中性点经低电阻接地方式;或采用将配电网分区运行提高消弧线圈的适应性。由于中性点经低电阻接地方式对电容电流的变化及电网发展的适应范围很大,接地电流水平变化与电网电容电流的变化反应不明显,而经消弧线圈接地系统随着线路的不断增加需增加相应的消弧线圈容量,否则因处于欠补状态易发生谐振。

市中心以电缆为主的配电网,由于电容电流大,运行方式多变,消弧线圈很难调整,发生单相接地故障的时间长,可能发展为两相短路,所以宜选用中性点经低电阻接地的方式。由于目前城市配电网网架结构已得到加强,已逐步形成手拉手、环网供电网络,一些重要用户大都采用两路或多路供电;不少市区中心已实现配网自动化,可自动判断找出故障点位置并自动切除故障区;另外,城市配电线路电缆化和架空线路绝缘导线化使得线路瞬时接地故障率大大降低。

四、结语

10kV配电网中性点接地方式是一个涉及到可靠供电、人身和设备安全、通讯干扰和过电压等方面的问题,配电网中性点接地方式的选择是具有综合性的技术问题。应结合当地配电网的发展水平、电网结构特点,从长远的发展观点,因地制宜地选择配电网中性点接地方式。

参考文献

[1]程天宇.浅谈10kV系统中性点接地方式[ J],云南电力技术, 2011年第2期(2011年4月)

[2]要焕年,曹梅月.电力系统谐振接地(第2版)[M].中国电力出版社,2009

[3]李润先.中压电网系统接地实用技术[M].中国电力出版社, 2002

中性点接地

中性点接地 在三相电路中,三相电压源一般连接成星形或三角形两种特定的方式。 当三相电源(变压器或发电机,或三相负载)各相的同极端都联接到一个共同节点时,称为三相电压源(或三相负载)的星形接线。该共同节点称为中性点,简称中或零点。中性点分电源中性点和负载中性点。由中性点引出的导线称为中性线,简称中线。当中性点接地时,中线又称为地线或零线。在三相电流对称时,中线电流为零。 三相电压源星形联接且引出中线时,形成三相四线制,它可以供给线电压和相电压两种等级电压,方便用户用电。若将中线接地,则电路中各处对地电压不会超过相电压,在单相接地时,非故障相的对地电压接近相电压,因而可降低电路元件的绝缘要求,也有利于带电区域地表的人畜安全。当三相负载不对称时,有利于消除中性点位移,保持负载相电压对称而正常工作。为防止运行时中线断开,不允许在中线上安装保险丝或开关,必要时选用强度较高的导线作为中线。 中性点接地系统(earthed neutral system) 三相交流电力系统的中性点与大地之间的电气连接方式,称为电网中性点接地方式。中性点接地方式涉及电网的安全性、可靠性和经济性;同时直接影响电气系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。 由于电力系统中变压器的接地方式决定了系统的接地方式,所以一般也将电力系统中变压器中性点的接地方式理解为对应的电力系统的中性点接地。 电力系统的中性点接地有多种方式,各种接地方式都有一定的适用范围和使用条件,接地方式可以划分为两大类:大接地电流系统和小接地电流系统。 我国电力系统中性点的运行方式有:中性点不接地(绝缘)、中性点经消弧线圈接地、中性点直接接地。 大、小接地电流系统指的是当发生单相接地时,流过接地点电流的大小。 如果把变压器的中性点直接接地,当发生单相接地时,将构成回路,在接地点流过很大的短路电流,故称大电流接地系统,其单相接地时电弧不能自行熄灭,需要断路器来遮断。 如变压器中性点不接地,当发生单相接地时,不构成故障回路,在接地点只流过系统对地的电容电流,数值较小,故称小电流接地系统,其单相接地故障时电弧能够自行熄灭。 中性点小接地电流系统,又称非直接接地、非有效接地,包括中性点不接地、中性点经消弧线圈接地、经电阻接地。

中性点接地方式

中性点接地方式 1.前言:1、集中电网系统规划、电气主接线、厂用电和设备选择等单元中有关中性点接地方式内容,统一讲解,建立系统概念; 2.内容包括中压、高压、超高压特高压系统,重点是中压。 一、概述 1、中性点接地的意义 三相交流电流系统的三相交汇处与参考地之间多种多样的关系。称之谓中性点接地方式。它是工作接地、安全接地和保护接地。选择不同的接地方式,对电力系统建设和运行的安全性、可靠性、先进性和经济性意义重大。 2、中性点接地方式的种类 序号接地方式 中压电网高压电网超高压电网特高压电网 3—66KV 110—220KV 330—500KV 750—1000KV 1 中性点不接地★ 2 中性点直接接地★★ 3 中性点选择性直接接地★★ 4 中性点经电抗接地★★★ 5 中性点经电阻接地★★ 6 中性点经阻抗接地★ 3、中性点接地方式的性质 有效接地和非有效接地的零序阻抗范围: X O/X1<3 R O/X1<1 基于对电网绝缘配合的考量,对工频过电压和短路电流的限制是其出发点。

4、选择接地方式要考虑的因素 电压等级 网络结构 安全性 供电可靠性和连续性 环境保护 过电压水平 绝缘配合和避雷器选择 设备耐压水平 短路电流的控制 导体和设备选择 继电保护及其配合 高海拔地区 经济性 二、3—66KV中压电网的接地方式 1、沿革 2、中性点不接地方式 1)特点及适用范围 ——单相接地不跳闸、连续运行; ——接地点电流为容性,易发生间歇性弧光接地过电压;——工频过电压高,内部过电压高; ——架空网络多为瞬时性可恢复;

——避雷器选择100%。 适用于单相接地电容电流小于7~10A的场合。 2)单相接地故障 流过的是电容电流 3)间歇性弧光接地过电压 ——接地点多次重燃引起; U,稳态电压为线电压。——非故障相的最大过电压3.5 xg ——波及整个电网; ——时间持续很长; ——没有有效的保护设备,避雷器要避免动作,消弧柜的动作时间跟不上; ——接地点位置不易确定; ——易使P.T饱和引发谐振。 4)电容电流的限值 6~66KV电网:10A 6~10KV厂网:7A 5)电容电流计算 近似计算:6KV架空C I=0.015~0.017A∕Km 10KV 0.025~0.029A∕Km 35KV 0.1A∕Km 另一种估算通式:

中性点经电阻接地方式的适用范围及优缺点正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 中性点经电阻接地方式的适用范围及优缺点正式版

中性点经电阻接地方式的适用范围及 优缺点正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的

电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地 高电阻接地多用于电容电流为10A或稍大的系统内。接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

中性点接地方式及其影响(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 中性点接地方式及其影响(通用 版)

中性点接地方式及其影响(通用版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 关键词:中性点接地方式 1中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理 (2007-01-07 22:41:40) 转载▼ 分类:工作 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。这两种保护的原理接线如图23所示 中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。 中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。 零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。一次启动电流通常取100A 左右,时间取0.5s。110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。 零序电压保护由过电压继电器16、时间继电器17、信号继电器18及压板19组成,电压定植按躲过接地故障母线上出现的最高零序电压整定,110kV系统一般取150V;当接地点的选择有困难、接地故障母线3Uo电压较高时,也可整定为180V,动作时间取0.5s。

中性点经电阻接地方式

中性点经电阻接地方式 ——适宜于以电缆线路为主配电网的中性点接地方式 一、前言 三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。 中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。在选择电网中性点接地方式时必须进行具体分析、全面考虑。 我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。 配电网中性点的接地方式主要可分为以下三种: ●不接地 ●经消弧线圈接地 ●经电阻接地 自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开

中性点接地方式的选择

中性点接地方式的选择 三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。中性点接地方式涉及电网的安全可靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。一般来说,电网中性点接地方式也就是变电所中变压器的各级电压中性点接地方式。因此,在变电所的规划设计时选择变压器中性点接地方式中应进行具体分析、全面考虑。 我国110kV及以上电网一般采用大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采用不接地方式),这样中性点电位固定为地电位,发生单相接地故障时,非故障相电压升高不会超过1.4倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。 6~35kV配电网一般采用小电流接地方式,即中性点非有效接地方式。近几年来两网改造,使中、小城市6~35kV配电网电容电流有很大的增加,如不采取有效措施,将危及配电网的安全运行。 中性点非有效接地方式主要可分为以下三种:不接地、经消弧线圈接地及经电阻接地。 1中性点不接地方式 适用于单相接地故障电容电流IC10A时,接地点电弧难以自熄,可能产生过电压等级相当高的间歇性弧光接地过电压,且持续时间较长,危及网内绝缘薄弱设备,继而引发两相接地故障,引起停电事故;

·系统内谐振过电压引起电压互感器熔断器熔断,烧毁TV,甚至烧坏主设备的事故时有发生。 2中性点经消弧线圈接地 适用于单相接地故障电容电流IC>10A,瞬间性单相接地故障较多的架空线路为主的配电网。 其特点为: ·利用消弧线圈的感性电流补偿接地点流过的电网容性电流,使故障电流

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不接地的利弊 北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。 缺点:

电力系统中性点接地方式

电力系统中性点接地方式简述 电力系统中性点是指星形连接的变压器或发电机的中性点。 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。 电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。 电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。 简言之,电力系统的中性点接地方式是一个系统工程问题。 接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。 根据接地的目的不同,分为工作接地和保护接地。 工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。 保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。 接地方式主要有2种,即直接接地系统和不接地系统。 1.中性点直接接地系统

中性点直接接地系统——又称大电流系统;适于110kV以上的供电系统,380V以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。 随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV及以上系统均采用中性点直接接地方式。对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。 对于高压系统,如110kV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√ 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV以上供电系统,多采用中性点直接接地系统。 在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。 1kV以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。

发电机中性点接地方式及作用 综合2

发电机中性点接地方式及作用 发电机中性点接地一般有以下几类: 1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。发电机中性点不接地方式,一般适用于小容量的发电机。 (中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。这种接地方式能实现无死区的定子接地保护) 2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。 3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。这种方式也可以实现高灵敏度既无死区的定子接地保护。

4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。 发电机中性点经单相变压器高阻接地接地装置设计及选型 1.发电机中性点接地电阻的计算原则 1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线 电压1.5U N=2.6U X) 2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求; 3)10kv 10MW发电机最大容性电流<4A C<2.1 uF 2.电容及电容电流计算: =0.7242uF(发电机厂家提供); 1)发电机定子绕组三相对地电容C of 2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排) =0.06829uF 0.05×2.6=0.13A即三相对地电容 C ol =0.2uF(经验值); 3)发电机出口至升压主变低压绕组间单相对地等值电容为C 02 4)主变低压侧三相对地电容20470PF即0.02047 uF 5)阻容参数:单相电容0.1 uF,三相为0.3 uF 发电机的三相对地总电容:C=0.7242+0.06829+0.6+0.02047+0.3=1.71296uF 发电机系统电容电流为: I C=ω CU X×103=2πf CU X×103=314×1.71296×106 ×10.5/3×103=3.26A

配电网中性点接地方式比较分析

1配电网中性点接地方式比较分析 1.1概述 配电网中性点的接地方式主要有三种:中性点不接地运行方式,中性点经消弧线圈接地方式和中性点经电阻接地方式,三种中性点接地方式具有各自的优缺点及不同的适用范围。 1.2配电网各种中性点接地方式的特点 (1)中性点不接地运行方式 总体上来说,中性点不接地方式具有结构简单、单相接地故障还能继续供电的优点;但由于其容易产生幅值较高的电弧接地过电压(3.5 p.u.),并由此可能引发危害整个配电网的铁磁谐振过电压,对设备的绝缘水平要求高,这势必增加设备绝缘方面的投资。 该中性点接地方式仅适用于电容电流小于10A的农村架空配电网。因为当架空线路不长时, 对地电容电流不大, 单相接地故障电流数值较小,不易形成稳定的接地电弧, 一般均能迅速自动灭弧而无需跳闸,能保证连续供电。但当线路较长、对地电容电流相对较大, 对地故障电弧不可能自动熄灭,此时可能会出现由于持续电弧引发严重过电压而烧毁设备的情况,严重影响正常供电。 (2)中性点经消弧线圈接地运行方式 在发生单相接地故障时,中性点经消弧线圈接地的方式可以有效的减少单相接地时的接地故障电流。,形成一个与对地电容电流的大小接近但方向相反的电感电流,它们之间相互补偿,可以使接地处的电流变的很小,这样可以使电弧在电流过零后自动熄灭,从而消除电弧接地过电压及其由此引发危害配电网的铁磁谐振过电压的危害,保证正常供电。 优点:可以消除间歇性电弧过电压,保证故障迅速消失,恢复正常供电。 缺点: 1、消弧线圈要增加额外投资,而且电容电流越大,投资也越大; 2、消弧线圈在谐波分量严重的情况下并不能根除接地电弧的产生,因为

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不 接地的利弊 This model paper was revised by the Standardization Office on December 10, 2020

低压电网中性点接地与不接地的利弊北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。

中性点接地方式的选择详细版

文件编号:GD/FS-4457 (安全管理范本系列) 中性点接地方式的选择详 细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

中性点接地方式的选择详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。中性点接地方式涉及电网的安全可靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。一般来说,电网中性点接地方式也就是变电所中变压器的各级电压中性点接地方式。因此,在变电所的规划设计时选择变压器中性点接地方式中应进行具体分析、全面考虑。 我国110kV及以上电网一般采用大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采用不接地方式),这样中性点电位固定为地电位,发生单相接地故障

时,非故障相电压升高不会超过1.4倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。 6~35kV配电网一般采用小电流接地方式,即中性点非有效接地方式。近几年来两网改造,使中、小城市6~35kV配电网电容电流有很大的增加,如不采取有效措施,将危及配电网的安全运行。 中性点非有效接地方式主要可分为以下三种:不接地、经消弧线圈接地及经电阻接地。 1 中性点不接地方式 适用于单相接地故障电容电流IC 10A,瞬间性单相接地故障较多的架空线路为主的配电网。 其特点为:

配电网中性点不同接地方式的优缺点

编号:SM-ZD-71752 配电网中性点不同接地方 式的优缺点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

配电网中性点不同接地方式的优缺 点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 配电网中性点与参考地的电气连接方式,按运行需要可将中性点不接地、经消弧线圈接地、经(高、中、低值)电阻器接地、经低值电抗器接地及直接接地等。这些中性点接地方式各具独有的优缺点。 1 配电网中性点不接地的优缺点 配电网中性点不接地是指中性点没有人为与大地连接。事实上,这样的配电网是通过电网对地电容接地。 中性点不接地系统主要优点: 电网发生单相接地故障时稳态工频电流小。这样

·如雷击绝缘闪络瞬时故障可自动清除,无需跳闸。 ·如金属性接地故障,可单相接地运行,改善了电网不间断供电,提高了供电可靠性。 ·接地电流小,降低了地电位升高。减小了跨步电压和接触电压。减小了对信息系统的干扰。减小了对低压网的反击等。 经济方面:节省了接地设备,接地系统投资少。 中性点不接地系统的缺点: a与中性点电阻器接地系统相比,产生的过电压高(弧光过电压和铁磁谐振过电压等),对弱绝缘击穿概率大。 b在间歇性电弧接地故障时产生的高频振荡电流大,达

中性点接地方式及其影响(2021版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 中性点接地方式及其影响(2021 版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

中性点接地方式及其影响(2021版) 摘要:中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 关键词:中性点接地方式 1中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地

中性点接地方式

中性点接地方式 三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。中性点接地方式涉及电网的安全可靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。一般来说,电网中性点接地方式也就是变电所中变压器的各级电压中性点接地方式。 我国110kV及以上电网一般采用大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采用不接地方式),这样中性点电位固定为地电位,发生单相接地故障时,非故障相电压升高不会超过1.4倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。 6~35kV配电网一般采用小电流接地方式,即中性点非有效接地方式。近几年来两网改造,使中、小城市6~35kV配电网电容电流有很大的增加,如不采取有效措施,将危及配电网的安全运行。 中性点非有效接地方式主要可分为以下三种:不接地、经消弧线圈接地及经电阻接地。 中性点接地保护装置 一、概述 1、ENR-JXB型变压器中性点接地保护装置专用于电力变压器中性点,以实现变压器中性点接地运行或不接地运行两种不同的运行方式;从而避免由于系统故障,引发变压器中性点电压升高造成对变压器的损害。本产品广泛应用于电力、冶金、石化、建筑、环保等领域。 2、一般来说,棒间隙为极不均匀电场,放电电压不稳定分散性大从而决定了其保护性能差。球间隙为均匀电场放电电压稳定,分散性小保护性能好。球间隙现场调试比较容易,用户可根据自己地区情况现场调试;而棒间隙尖顶特别难对准,所以现场调试难度大。球间隙采用不锈钢球表面镀银、成本高并且固定要求高,所以许多厂家为降低成本而采用棒间隙,但是并没有考虑使用效果。 3、中性点接地保护装置中电流互感器选用:采用环氧树脂浇注的干式电流互感器。电流互感器装在不锈钢箱体里,不受环境气候影响,使用寿命长。使保护不会出现误动或拒动且稳定可靠。 二、产品特点 1、符合标准,专业制造

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不接地的利弊北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。 缺点:

中性点接地和中性点不接地的区别

中性点接地和中性点不接地的区别 电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。小电阻接地系统在国外应用较为广泛,我国开始部分应用。 1、中性点不接地(绝缘)的三相系统 各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。 在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最长不得超过2h。三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。 2、中性点经消弧线圈接地的三相系统 上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV系统大于10A,10kV系统大于30A时,就无法继续供电。为了克服这个缺陷,便出现了经消弧线圈接地的方式。目前在35kV电网系统中,就广泛采用了这种中性点经消弧线圈接地的方式。 消弧线圈是一个具有铁芯的可调电感线圈,装设在变压器或发电机的中性点。当发生单相接地故障时,可形成一个与接地电容电流大小接近相等而方向相反的电感电流,这个滞后电压90°的电感电流与超前电压90°的电容电流相互补偿,最后使流经接地处的电流变得很小以至等于零,从而消除了接地处的电弧以及由它可能产生的危害。消弧线圈的名称也是这么得来的。当电容电流等于电感电流的时候称为全补偿;当电容电流大于电感电流的时候称为欠补偿;当电容电流小于电感的电流的时候称为过补偿。一般都采用过补偿,这样消弧线圈有一定的裕度,不至于发生谐振而产生过电压。 3、中性点直接接地 中性点直接接地的系统属于较大电流接地系统,一般通过接地点的电流较大,可能会烧坏电气设备。发生故障后,继电保护会立即动作,使开关跳闸,消除故障。目前我国110kV 以上系统大都采用中性点直接接地。 对于不通等级的电力系统中性点接地方式也不一样,一般按下述原则选择:220kV以上电力网,采用中性点直接接地方式;110kV接地网,大都采用中性点直接接地方式,少部分采用消弧线圈接地方式;20~60kV的电力网,从供电可靠性出发,采用经消弧线圈接地或不接地的方式。但当单相接地电流大于10A时,可采用经消弧线圈接地的方式;3~10kV电力网,供电可靠性与故障后果是其最主要的考虑因素,多采用中性点不接地方式。但当电网

相关文档
最新文档