过程设备设计第二章【压力容器应力分析】2.2【厚壁圆筒应力分析】
压力容器应力分析_厚壁圆筒弹性应力分析

工程上一般将设计压力在10≤p≤100MPa之间的压力容器称为高压容器,而将100MPa压力以上的称为超高压容器。
高压容器不但压力高,而且同时伴有高温,例如合成氨就是在15~32MPa压力和500℃高温下进行合成反应。
一般来说,高压和超高压容器的径比K > 1.2,称此类容器为“厚壁容器”。
本章讨论的对象,是厚壁圆筒型容器。
承受压力载荷或者温差载荷的厚壁圆筒容器,其上任意点的应力,是三向应力状态。
即存在经向应力(又称轴向应力)、周向应力和径向应力。
针对厚壁筒的应力求解,将在平衡方程、几何方程、物理方程三个方面进行分析。
2.2.1 弹性应力-压力载荷引起的弹性应力(1)轴向(经向)应力ϭz222200002200002220()1i z i i i i i i i z i iP P FP P p R p R F R R p R p R p p KR K R R K R σππππσ−=−=⋅−⋅=−−−⋅===−−径比(2) 周向应力ϭ和径向应力ϭrθ三对截面:一对圆柱面,相距dr一对纵截面,相差dθ一对横截面,长度为1Ϭz作用在横截面上Ϭr作用在圆柱面上Ϭθ作用在纵截面上平衡方程(沿径向列平衡方程)()()112sin 102r r r d d r dr d rd dr θθσσθσθσ++⋅−⋅−⋅=sin 22d d θθ≈略去高阶无穷小,并使得到平衡方程r r d r drθσσσ−=几何方程()r w dw wdwdr drε+−==径向应变周向应变()r w d rd wrd r θθθεθ+−==上述表达式是Lame 在1833年推得的,又称为Lame 公式。
当仅有内压时,p o =0,有()222222211111112i o i o r z i z r p R K r p R K r p K θθσσσσσσ⎧⎛⎞=⋅−⎪⎜⎟−⎝⎠⎪⎪⎛⎞⎪=⋅+⎜⎟⎪−⎝⎠⎨⎪⎛⎞=⋅⎪⎜⎟−⎝⎠⎪⎪=+⎪⎩246810010********σθ R i / σθ R oK可见,当K 越大时,应力的分布就越不均匀。
压力容器厚壁圆筒的弹塑性应力分析

未来发展方向和前景展望
THANK YOU
汇报人:XX
有限元法的优缺点及其在 工程实践中的应用案例
厚壁圆筒的弹塑性应力分析中的材料模型
理想弹塑性模型:假设材料在受力过程中遵循胡克定律,忽略材料的应变率效应 和温度效应。
弹塑性有限元法:将厚壁圆筒离散化为有限个单元,每个单元的应力应变关系通 过弹塑性本构方程描述。
增量理论:基于增量形式的本构方程,考虑了前一次加载时残留在材料中的应力 场对当前加载的影响。
厚壁圆筒的弹塑性应力 分析的未来发展
PART 01 添加章节标题
PART 02
压力容器厚壁圆 筒的弹塑性应力
分析概述
压力容器厚壁圆筒的结构特点
厚壁圆筒由金属材料制成,具有高强度和耐腐蚀性能。 厚壁圆筒的结构设计应满足压力容器的工艺要求和使用条件。 厚壁圆筒的厚度通常较大,以承受内压和其他附加载荷。 厚壁圆筒的制造过程中需要进行焊接、热处理、无损检测等质量控制措施。
PART 06
厚壁圆筒的弹塑 性应力分析的未
来发展
新型材料对厚壁圆筒弹塑性应力分析的影响
新型材料的出现将改变厚壁圆筒的弹塑性应力分析的边界条件和载荷条件。 新型材料的力学性能对厚壁圆筒的弹塑性应力分析的精度和可靠性提出了更高的要求。 新型材料的加工制造技术将促进厚壁圆筒的弹塑性应力分析方法的改进和发展。 未来将有更多的新型材料应用于厚壁圆筒的制造,需要进一步研究这些材料对弹塑性应力分析的影响。
提高压力容器的安裂而引起的安全事故 为压力容器的设计、制造和使用提供科学依据
PART 03
厚壁圆筒的弹塑 性应力分析方法
有限元法在厚壁圆筒弹塑性应力分析中的应用
有限元法的定义和原理
厚壁圆筒的弹塑性应力分 析的数学模型
厚壁容器

1、一承受内压Pi作用的厚壁圆筒,其内直径为
200mm,外直径为400mm,材料为16Mn。
屈服点 s ( R eL ) 265M P a ,
极限强度 b ( R m ) 450M Pa 。试求:
(1)内壁开始屈服的压力; (2)当器壁一半达到屈服时的压力; (3)器壁全部进入屈服的压力; (4)爆破压力。
260M Pa
试计算筒体外径Do=?
2
第二节应掌握的问题 1、单层厚壁圆筒的应力分析方法(单元体取法)、 拉美公式、应力分布图。 2、温差应力及特点,应力分布图,什么时候不考 虑温差应力? 3、三个失效准则、两个屈服条件、初始屈服压力、 全屈服压力、爆破压力计算。 4、全屈服压力的推导过程。 5、什么是自增强?为什么自增强能提高筒体的弹 性承载能力?分布图。 6、双层热套容器的应力分析过程,为什么双层热 套容器能提高筒体的弹性承载能力?应力分布图。 3
第二章 压力容器应力分析
CHAPTER Ⅱ STRESS ANALYSIS OF PRESSURE VESSELS
第三节
厚壁圆筒应力分析
1
1.一厚壁圆筒,内半径为100mm,外半径为
150mm,受60MPa内压和30MPa外压作用,求该
圆筒内,外壁的径向应力,周向应力和轴向应力。
2.一厚壁圆筒,内径Di=800mm,在内压Pi作用下 实验测得筒体内壁的环向应力 轴向应力 z 80 M P a
4
2、一自增强厚壁圆筒,承受内压 Pi 2 5 0 M P a
D 圆筒内外直径分别为: i 3 0 0 m m
ቤተ መጻሕፍቲ ባይዱD0 500m m
材料为Ni—Cr—Mo高强钢 s ( R eL ) 7 5 0 M P a b ( R m ) 900 M P a 试求:
2压力容器应力分析.

将R1、R2代入混合方程得:σθ=2σφ
代入区域方程得:
pr , 2t cos
则
pr
t cos
可见:① 平行圆半径 r 越小,应力σφ、σθ也越小,锥顶处应力
为零
② 倾角α越小,应力σφ、σθ也越小,α=0时,与圆筒应
力相同,α=90°时,与平板应力相同
18
压力容器应力分析
(圆柱壳的边缘应力σx、σθ) 一般回转壳受边缘功和边缘功矩作用的弯曲解 (一般回转壳的边缘应力) 组合壳不连续应力的计算举例
一般了解
(组合壳边缘应力的计算举例)
30
边缘应力的特性
压力容器应力分析
1、局部性——边缘应力只存在于不同几何形状壳体的连 接处附近,影响范围很小。
当x 2.5 R(R、δ为壳
Ri 2 pi R02 p0 (R02 Ri 2 )
薄壁圆筒 厚壁圆筒
Do/Di≤1.1 Do/Di>1.1
压力容器应力分析 t——壳体厚度 R——中间面曲率半径
Do——圆筒外径 Di——圆筒内径
3
2.1.1 薄壁圆筒的应力
压力容器应力分析
σφ ——经向应力(轴向应力);σθ——环向应力(周向应力)σr— —径向应力,很小、忽略
4
压力容器应力分析
厚壁圆筒应力分析方法:无矩理论不再适用,属超静定问题,
应该从平衡、几何、物理等三个方面
列方程求解
33
2.2.1 弹性应力
压力容器应力分析
Pi——内压;p0——外压;D0——外径;Di——内径; 令 k = D0/Di —— 径比
34
压力载荷引起的弹性应力
压力容器应力分析
第2章 压力容器应力分析

郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
图2-12 组合壳
图2-13 连接边缘的变形
郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
w1 w2
1 2
Q M 0 w1p w1 0 w1M 0 w2p wQ2 w2 0 Q M 1p 1Q 1M 2p 2 2
图2-11 储存液体的球壳
郑州大学化工与能源学院
过程设备设计
2.2.4 无力矩理论的应用
三、无力矩理论的 应用条件 为保证回转薄壳处于薄膜状态,壳体形状、 加载方式及支承一般应满足如下条件: 1、几何形状、载荷、材料连续; 2、壳体的边界处不受横向剪力、弯矩和扭 矩作用。 3、壳体的边界处的约束沿经线的切线方向, 不得限制边界处的扭角与挠度。
第2章 压力容器应力分析
第2.2节
回转薄壳应力分析
过程设备设计
第2-2节 回转薄壳应力分析
压力容器的各种壳体,多属于回转薄壳。 壳体—以两个曲面为界,且曲面之间的距 离远比其他方向尺寸小得多的构件。 壳体的厚度—两曲面之间的距离,用“t或 δ”表示。 壳体的中面—与壳体内、外两个曲面等距 离的曲面。
过程设备设计
第2章
压力容器应力分析
第2章 压力容器应力分析
第2.1节 载荷分析
过程设备设计
第2-1节 载荷分析
载荷:能够在压力容器上产生应力、 应变的 因素,如:压力、风载荷、地震载荷等。 2.1.1 载荷分类:压力载荷和非压力载荷。 1、压力载荷:它是压力容器承受的基本载荷。 一般采用表压。 压力容器中的压力载荷主要来源有: ①泵或压缩机; ②液体膨胀或汽化; ③饱和蒸汽压。 (另外,液体重量产生液体静压力) 压力容器上的压力,可能是内压、外压或两 者都有。
第二章压力容器应力分析

《过程设备设计基础》教案2—压力容器应力分析课程名称:过程设备设计基础专业:过程装备与控制工程任课教师:第2章 压力容器应力分析§2-1 回转薄壳应力分析一、回转薄壳的概念薄壳:(t/R )≤0.1 R----中间面曲率半径 薄壁圆筒:(D 0/D i )max ≤1.1~1.2 二、薄壁圆筒的应力图2-1、图2-2 材料力学的“截面法”三、回转薄壳的无力矩理论1、回转薄壳的几何要素(1)回转曲面、回转壳体、中间面、壳体厚度 * 对于薄壳,可用中间面表示壳体的几何特性。
tpD td pR tpD Dt D p i 22sin 24422====⨯⎰θπθϕϕσσαασπσπ(2)母线、经线、法线、纬线、平行圆(3)第一曲率半径R1、第二曲率半径R2、平行圆半径r(4)周向坐标和经向坐标2、无力矩理论和有力矩理论(1)轴对称问题轴对称几何形状----回转壳体载荷----气压或液压应力和变形----对称于回转轴(2)无力矩理论和有力矩理论a、外力(载荷)----主要指沿壳体表面连续分布的、垂直于壳体表面的压力,如气压、液压等。
P Z= P Z(φ)b、内力薄膜内力----Nφ、Nθ(沿壳体厚度均匀分布)弯曲内力---- Qφ、Mφ、Mθ(沿壳体厚度非均匀分布)c、无力矩理论和有力矩理论有力矩理论(弯曲理论)----考虑上述全部内力无力矩理论(薄膜理论)----略去弯曲内力,只考虑薄膜内力●在壳体很薄,形状和载荷连续的情况下,弯曲应力和薄膜应力相比很小,可以忽略,即可采用无力矩理论。
●无力矩理论是一种近似理论,采用无力矩理论可是壳地应力分析大为简化,薄壁容器的应力分析和计算均以无力矩理论为基础。
在无力矩状态下,应力沿厚度均匀分布,壳体材料强度可以得到合理的利用,是最理想的应力状态。
(3)无力矩理论的基本方程a、无力矩理论的基本假设小位移假设----壳体受载后,壳体中各点的位移远小于壁厚。
考虑变形后的平衡状态时壳用变形前的尺寸代替变形后的尺寸直法线假设----变形前垂直于中面的直线变形后仍为直线,且垂直于变形后的中面。
05_压力容器应力分析_厚壁圆筒弹性应力分析

05_压力容器应力分析_厚壁圆筒弹性应力分析压力容器是广泛应用于石油、化工、冶金、医药等行业的重要设备,用于存储和运输气体或液体。
在使用过程中,由于内外压差的存在,压力容器的壁会产生应力,如果超过了材料的极限承载能力,就会发生破裂事故。
因此,对压力容器的应力分析非常重要,通过分析容器内壁的应力分布情况,可以判断容器的安全性能,从而采取相应的措施保证其安全运行。
厚壁圆筒作为一种常见的压力容器结构,其应力分析是非常有代表性的。
在进行弹性应力分析时,首先需要确定内压力和外压力的大小。
通常情况下,我们假设容器的内部和外部都是完全承受压力的,即容器内部压力和外部压力均匀分布。
其次,我们需要了解容器的内径、外径、壁厚等几何参数,以及容器所使用的材料的弹性模量和泊松比等弹性性质参数。
在厚壁圆筒的弹性应力分析中,一般采用极限状态设计方法进行计算。
首先,可以根据容器内外压力差的大小,计算容器内部的径向应力和环向应力,这两个应力分量是产生破裂的主要因素。
然后,通过应力的叠加原理,将径向应力和环向应力合成为合成应力,进一步计算合成应力与容器材料的屈服强度之间的比值,根据这个比值可以评估容器的安全性能。
在实际应用中,为了保证压力容器的安全性能,通常会将容器的设计和制造有一定的安全裕量。
在计算容器的弹性应力时,需要将其与容器材料的屈服强度进行比较,以确保应力值处于安全范围内。
如果计算得到的应力值超过了材料的屈服强度,就需要重新设计容器的结构或者更换更高强度的材料,以满足安全性能的要求。
总之,压力容器的应力分析是确保容器安全运行的重要手段之一、通过对容器内壁的应力分布进行分析,可以评估容器的安全性能,并采取相应的措施保证其安全运行。
在进行压力容器的设计和制造过程中,应该遵循相应的规范和标准,确保容器的结构和材料能够承受内外压力的作用,从而保证容器在工作过程中不会发生破裂事故,保障工业生产和人身安全。
厚壁圆筒应力分析

=A
(2-25)
6
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
过程设备设计
2. 周向应力与径向应力 由于应力分布的不均匀性,进行应力分析时,必须从微元体着 手,分析其应力和变形及它们之间的相互关系。 a. 微元体
b. 平衡方程
c. 几何方程 :微元体位移与应变之间的关系。(用位移法求解) d. 物理方程:弹性范围内,微元体的应变与应力的关系 e. 平衡、几何和物理方程综合—求解应力的微分方程 (求解微分方程,积分,边界条件定常数)
(2)厚壁圆筒中的弹塑性区的应力分布;
(3)提高屈服承载能力的措施。
教学难点:
厚壁圆筒中三向应力公式推导。
4
2.3 厚壁圆筒应力分析
2.3.1 弹性应力
p0
过程设备设计
po pi
pi
Di
Do
a. po m1 n1 m pi n
b.
r
m1 m
d r + dr dr
n1
dr
r
n
r
θ
Ri c.
Ro d.
应力
7
2.3 厚壁圆筒应力分析
过程设备设计
a. 微元体
2.3.1 弹性应力(续)
如图2-15(c)、(d)所示,由圆柱面mn、m1n1和纵截面mm1、nn1 组成,微元在轴线方向的长度为1单位。 b. 平衡方程
sin(d /2) d / 2
图2-15
d r d r r dr d r rd 2 dr sin 0 2
(详细推导见文献[11]附录)
26
2.3 厚壁圆筒应力分析
2.3.1 弹性应力(续)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受 力 情况 位
应
置
力
分
析
r
仅受内压
po=0 任意半径 r 内壁处
处
K
pi 2 1
1
Ro2 r2
r=Ri
pi
外壁处 r=Ro
0
仅受外压
任意半径 r
处
poK 2 K 2 1
1
Ri2 r2
pi=0 内壁处
r=Ri
0
外壁处 r=Ro
po
K
pi 2 1
1
Ro2 r2
Pi
K K
2 2
1 1
pi
K
2 2
1
poK 2 K 2 1
1
Ri2 r2
po
2K 2 K 2 1
po
K K
2 2
1 1
z
pi
K
1 2
1
po
K K2
2 1
2.3 厚壁圆筒应力分析
z
z
z
pi K2 1
r min 0
r max pi
max
pi
K2 1 K2 1
min
pi
2 K2 1
因此筒体材料强度不能得到充分的利用。
2.3 厚壁圆筒应力分析
二、温度变化引起的弹性热应力
1、热应力概念 2、厚壁圆筒的热应力 3、内压与温差同时作用引起的弹性应力 4、热应力的特点
2.3 厚壁圆筒应力分析
1、热应力概念 因温度变化引起的自由膨胀或收缩受到约束,在弹性体内
所引起的应力,称为热应力。
pi p0 Ri2 R02 1 R02 Ri2 r 2
径向应力
r
pi Ri2 R02
p0 R02 Ri2
pi p0 Ri2 R02 1
R02 Ri2
r2
(2-34)
轴向应力
z
pi Ri2 p0 R02 R02 Ri2
称Lamè(拉美)公式
2.3 厚壁圆筒应力分析
表2-1 厚壁圆筒的筒壁应力值
z
1 E
r
z
(2-29)
2.3 厚壁圆筒应力分析
e. 平衡、几何和物理方程综合—求解应力的微分方程
将式(2-28)中的应变换成应力 并整理得到:
r d 2 r 3 d r 0
dr 2
dr
解该微分方程,可得 r 的通解。将 r 再代入式(2-26) 得 。
r
A
B r2
;
A
B r2
单向约束:
rr min 0
r max p0
r z
p0
K2 K2 1
min
p0
K2 1 K2 1
max
p0
2K 2 K2 1
(a)仅受内压
(b)仅受外压
图2-17 厚壁圆筒中各应力分量分布
2.3 厚壁圆筒应力分析
从图2-17中可见, 仅在内压作用下,筒壁中的应力分布规律: ①周向应力 及轴向应力 z 均为拉应力(正值),
2.3 厚壁圆筒应力分析
主要内容
2.3.1 弹性应力 2.3.2 弹塑性应力 2.3.3 屈服压力和爆破压力 2.3.4 提高屈服承载能力的措施
2.3 厚壁圆筒应力分析
厚壁容器:
Do / Di 1.11.2
应力
径向应力不能忽略,处于三向应力状态;应力 仅是半径的函数。
位移
周向位移为零,只有径向位移和轴向位移
(2-33)
2.3 厚壁圆筒应力分析
边界条件为:当 r Ri 时, r pi ; 当 r R0 时, r p0 。
由此得积分常数A和B为:
A pi Ri2 p0 R02 R02 Ri2
B pi p0 Ri2 R02
R02 Ri2
2.3 厚壁圆筒应力分析
周向应力
pi Ri2 p0 R02 R02 Ri2
应力
2.3 厚壁圆筒应力分析
a. 微元体 如图2-15(c)、(d)所示,由圆柱面mn、m1n1和纵截面mm1、nn1组 成,微元在轴线方向的长度为1单位。
b. 平衡方程
r
d
r
r
drd
r rd
2
dr
sin
2
0
r
r
d r
dr
(2-26)
2.3 厚壁圆筒应力分析
c. 几何方程 (应力-应变)
m'1
Ri Ro
c.
d.
图2-15 厚壁圆筒中的应力
2.3 厚壁圆筒应力分析
2.3.1 弹性应力 有一两端封闭的厚壁圆筒(图2-15),受到内压和外压
的作用,圆筒的内半径和外半径分别为Ri、Ro,任意点的半 径为r。以轴线为z轴建立圆柱坐标。求解远离两端处筒壁中 的三向应力。
一、压力载荷引起的弹性应力
二、温度变化引起的弹性热应力
轴向应力为一常量,沿壁厚均匀分布,且为周向应力与径向应力
和的一半,即
z
1 2
r
2.3 厚壁圆筒应力分析
③除 z 外,其它应力沿壁厚的不均匀程度与径比K值有关。
以 为例,外壁与内壁处的 周向应力 之比为:
K值愈大不均匀程度愈严重,
rR0
2
rRi K 2 1
当内壁材料开始出现屈服时, 外壁材料则没有达到屈服,
2、周向应力与径向应力 由于应力分布的不均匀性,进行应力分析时,必须从微元体着 手,分析其应力和变形及它们之间的相互关系。 a. 微元体 b. 平衡方程 c. 几何方程 (位移-应变) d. 物理方程(应变-应力) e. 平衡、几何和物理方程综合—求解应力的微分方程 (求解微分方程,积分,边界条件定常数)
径向应力 r 为压应力(负值)。
2.3 厚壁圆筒应力分析
②在数值上有如下规律:
内壁周向应力
有最大值,其值为: max
pi
K2 K2
1 1
外壁处减至最小,其值为:
min
pi
2 K2 1
内外壁 之差为 pi ;
径向应力内壁处为 pi ,随着 r 增加, 径向应力绝对值
逐渐减小,在外壁处 r =0;
2.3 厚壁圆筒应力分析
一、压力载荷引起的弹性应力 1、轴向(经向)应力 对两端封闭的圆筒,横截面在变形后仍保持平面。所以, 假设轴向应力沿壁厚方向均匀分布,得:
z
Ri2 pi R02 p0 R02 Ri2
pi Ri2 R02
p0 R02 Ri2
=A
(2-25)
2.3 厚壁圆筒应力分析
应变
径向应变、轴向应变和周向应变
分析方法
8个未知数,只有2个平衡方程,属静不定问 题,需平衡、几何、物理等方程联立求解。
2.3 厚壁圆筒应力分析
2.3.1 弹性应力
研究在内压、 外压作用下, 厚壁圆筒中的 应力。
p0
po
pi
pi
a.
po
m1 n1
m n
pi
b.
m1
m
dr
r+
dr dr
dr
n1
r
n
r
n' 1
w+dw
m1
n1
m'
n'
w
m
n
d
r
图2-16 厚壁圆筒中微元体的位移
2.3 厚壁圆筒应力分析
c. 几何方程(续)
径向应变
r
w
dw
dr
w
dw dr
周向应变
r wd rd
rd
w r
变形协调方程
d
dr
1 r
r
(2-27) (2-28)
2.3 厚壁圆筒应力分析
d. 物理方程
r
1 E
r