第一讲:数与式的运算
数与式的运算

解法一:原式=
解法二:原式=
你能评价一下解法一、二的差异吗?
第一讲 习题 A 组 1.二次根式 a 2 a 成立的条件是( ) A. a 0 B. a 0 D. a 是任意实数 2.若 x 3 ,则 9 6 x x 2 | x 6 | 的值是( A.-3 D.9 3.计算: (1) ( x 3 y 4 z ) 2 (2a 1 b) 2 (a b)(a 2b) B.3 ) C.-9 C. a 0
a a( a b) a a( a b) 1 a b 1 a b
( a b) ( a b) ( a b )( a b )
2 a ab
试对本例的解题技巧做一评价: 【例6】设 x
2 3 2 3 ,y 2 3 2 3
,求 x3 y 3 的值.
思考:此题中让你眼前一亮的技巧是?
3abc 3 abc
引申:同学可以探求并证明: a 3 b 3 c 3 3abc (a b c)(a 2 b 2 c 2 ab bc ca) 二、根式 式子 a (a 0) 叫做二次根式,其性质如下: 第一讲
2 (1) ( a ) a (a 0)
原式= a
bc ac ab b c bc ac ab
①
a ( a ) b(b) c(c) a2 b2 c2 bc ac ab abc
a 3 b 3 (a b)[(a b) 2 3ab] c(c 2 3ab) c 3 3abc a 3 b 3 c 3 3abc ②,把②代入①得原式=
(2)
(3) (a b)(a 2 ab b 2 ) (a b)3
§1.1 数与式的运算(1.2.3)

大良总校:0757-2222 2203 大良北区:0757-2809 9568 大良新桂:0757-2226 7223 大良嘉信:0757-2232 3900 容桂分校:0757-2327 9177 容桂体育:0757-2361 0393 容桂文华:0757-2692 8831 龙江分校:0757-2338 6968 北滘分校:0757-2239 5188 乐从分校:0757-2886 6441 勒流分校:0757-2566 8686 伦教分校:0757-2879 9900 均安分校:0757-2550 6122 南海桂城:0757-8633 8928 南海黄岐:0757-8599 0018 金色家园:0757-8630 6193 禅城玫瑰:0757-8290 0090 南海大沥:0757-8118 0218 南海丽雅:0757-8626 3368 佛山高明:0757-8828 2262 中山小榄:0760-2225 9911 石岐北区:0760-8885 2255 石岐东区:0760-8888 0277 §1.1 数与式的运算(1. 绝对值、2.二次根式、3.乘法公式)【要点回顾】 1.绝对值[1]绝对值的代数意义:1. __________________.2. ___________________.3. ___________________.即⎪⎩⎪⎨⎧=) (___) (___)(___||a[2]绝对值的几何意义:_________________________________________________________的距离. [3]两个数的差的绝对值的几何意义: a b -表示__________________________的距离.[4]两个绝对值不等式:(1)||(0)x a a <>⇔;(2)||(0)x a a >>⇔.[5]两个负数比较大小: 。
初高衔接第一课时数与式的运算

Hale Waihona Puke 典例题例4.1 简化:1 4 24 − 6 54 + 3 96 − 2 150;
2
30 ×
3
2
2
3
2 ÷ −2 2
1
2
.
解:
1 4 24 − 6 54 + 3 96 − 2 150 = 8 6 − 18 6 + 12 6 − 10 6 = −8 6.
2
30 ×
8
3
3
2
2
5
2
2
3
÷ −2
30 × × = −
所以 −
+
2 2 − 2.
=
+ − 2
+ − 2 −2+ −2
+ −
= 2 + 1.
= 2 − 2 + −2 = 2 + 1 − 2 + 2 − 1 =
初高衔接
行,运算中要运用公式 = ≥ 0, ≥ 0 .而对于二次根式的除法,
通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法
与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式。
2 二次根式 2 的意义:
, ≥ 0
2
= =
−, < 0
初高衔接
2 完全平方 ± 2 = 2 ± 2 + 2 .
通过证明得到的乘法公式:
1 立方和公式 + 2 − + 2 = 3 + 3 ;
2 立方差公式 − 2 + + 2 = 3 − 3 ;
3 三数和平方公式 + + 2 = 2 + 2 + ��2 + 2 + + ;
初高中衔接专题讲义一、数与式的运算(4课时)(可编辑修改word版)

专题一、数与式的运算课时一:乘法公式一、初中知识1.实数运算满足如下运算律:加法交换律,加法结合律,乘法交换律,乘法结合律,乘法对加法的分配律。
2.乘法公式平方差公式: (a +b)(a -b) =a 2-b 2完全平方公式: (a ±b)2=a 2± 2ab +b 2二、目标要求1.理解字母可以表示数,代数式也可以表示数,并掌握数与式的运算。
2.掌握平方差公式和完全平方公式的灵活运用,理解立方和与差公式,两数和与差的立方公式以及三数和的完全平方公式。
三、必要补充根据多项式乘法法则推导出如下乘法公式(1)(x +a)(x +b) =x 2+ (a +b)x +ab(2)(ax +b)(cx +d ) =acx2+ (ad +bc)x +bd(3)立方和公式: (a +b)(a 2-ab +b 2 ) =a3+b3(4)立方差公式: (a -b)(a 2+ab +b 2 ) =a 3-b3(5)两数和的立方公式:(a +b)3=a3+ 3a 2b + 3ab2+b3(6)两数差的立方公式:(a -b)3=a3- 3a 2b + 3ab 2-b3(7)三数和的平方公式:(a +b +c)2=a 2+b 2+c 2+ 2ab + 2bc + 2ac四、典型例题例1、计算:(1)(x + 2)(x - 5) (3)(2x -1)3(2)(2x + 3)(3x - 2) (4)(2a +b -c)2例2:已知x +y = 3 ,xy = 8 ,求下列各式的值(1)x 2y 2;(2)x 2xy y 2;(3)( x y)2;(4)x 3y 3分析:(1)x 2y 2( x y)2 2 xy(2)x 2xy y 2( x y)2 3 xy(3)( x y)2( x y)2 4 xy(4)x 3y 3( x y)( x 2xy y 2 ) ( x y)[( x y)2 3 xy] 例3:已知a +b +c = 4 ab +bc +ac = 4 求a 2+b 2+c 2的值分析: a2+b2+c2= (a +b +c)2- 2(ab +bc +ac) = 8变式:已知:x2- 3x +1= 0 ,求x3+1x3的值。
高一数学单元知识点专题讲解1---数与式的运算

【例 8】计算:
(1) ( a + b + 1)(1 − a + b ) − ( a + b )2
(2)
a
a
+
a − ab a + ab
解: 原式 (1) = (1 + b)2 − ( a )2 − (a + 2 ab + b) = −2a − 2 ab + 2 b + 1
【例 7】计算(没有特殊说明,本节中出现的字母均为正数):
3 (1)
2+ 3
11 (2) +
ab
(3) 2
x −
x3 +
8x
2
解: 原式 (1)
=
3(2 − 3)
3(2 − =
3) = 6 − 3 3
(2 + 3)(2 − 3) 22 − 3
原式 a + b a2b + ab2
(2) =
=
ab
ab
3/7
解:( )原式 1
= 43 + m3 = 64 + m3
( )原式 2
= (1 m)3 − (1 n)3 = 1 m3 − 1 n3
5
2 125 8
( )原式 3
= (a 2 − 4)(a 4 + 4a 2 + 42 ) = (a 2 )3 − 43 = a 6 − 64
( )原式 4
= (x + y)2 (x 2 − xy + y 2 )2 = [(x + y)(x 2 − xy + y 2 )]2
三、分式
4/7
初升高衔接课程 数与式的运算因式分解一元二次方程

第一讲数与式的运算第二讲因式分解知识篇数与式的运算1、实数;2、代数式;3、乘法公式;4、分式;5、二次根式因式分解1、提取公因式;2、运用公因式;3、分组分解法;4、十字相乘法;5、配方法笔记:归纳小结:数与式的运算1 、已知 的公式表示试写出用21121,,111R ,R R R R R R R ≠+=2、设X=,3232-+ Y=,3232+- 求33Y X +的值3、化简下列各式1)221-32-3)()(+ 2)22x -2x -1)()(+ (X ≥1)4、已知a+b+c=4,ab+bc+ac=4,求a2+b2+c2的值。
分解因式1、提公因式法,运用公因式法(1)3a3b-81b4(2)a7-ab62、分组分解法(3)2ax-10ay+5by-bx (4)ab(c2-d2)-(a2-b2)cd (5)x2-y2+ax+ay (6)2x2+4xy+2y2-8z23、十字相乘(7)x2-7x+6 (8)x2+13x+36(9)x2+xy-6y2(10)(x2+x)2-8(x2+x)+12 (11)12x2-5x-2 (12)5x2+6xy-8y24、配方法(13)x2+12x+16 (14)a4+a2b2+b45、其他方法添项、拆项法、分解因式(15)x 3-3x 2+4 (16)(x 2-5x+2)(x 2-5x+4)-8二、因式分解的应用 1、已知a+b=32,ab=2,求代数式 a 2b+2a 2b 2+ab 2的值2、计算12345678921234567890-123456789112345678902)(ab o作业篇一选择1、二次根式,a -=2a 成立的条件是 ( )A 、a >0,B 、a <0,C 、a ≤0,D 、a 是任意实数2、若x <3,则6x 6x -92--+x 的值是 ( ) A 、-3, B 、3, C 、-9, D 、93、数轴上有两点A ,B 分别表示实数a ,b ,则线段AB 的长度是 ( ) A 、a-b , B 、a+b , C 、b -a ,D 、b +a4、实数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( ) A 、a+b >a >b >a-b , B 、a >a+b >b >a-b C 、a-b >a >b >a+b , D 、a-b >a >a+b >b5、若等于,则yy x y x322x =+- ( ) A 、1, B 、45, C 、54, D 、56二化简1、19183-232)()(+ 2、313-1+3、1-32-23121++4、38a -5、aa 1-⨯三、已知x+y=1,求x 3+y 3+3xy四、若2)1()1(22=++-a a ,求a 的取值范围。
第一讲 数与式的运算

第一讲数与式的运算一、乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式(ab)(ab)a2b2;(2)完全平方公式(ab)2a22abb2.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式(ab)(a2abb2)a3b3;(2)立方差公式(ab)(a2abb2)a3b3;(3)三数和平方公式(abc)2a2b2c22(abbcac);二、因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形。
在分式运算、解方程及各种恒等变形中起着重要的作用。
是一种重要的基本技能。
因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等。
十字相乘法:x(pq)xpq型的因式分解这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和。
x2(pq)xpqx2pxqxpqx(xp)q(xp)(xp)(xq)因此,x2(pq)xpq(xp)(xq)运用这个公式,可以把某些二次项系数为1的二次三项式分解因式。
巩固练习:1.把下列各式分解因式(1)x2x6________________(2)x25x6_________________ (3)x25x6_______________(4)x211x18________________ (5)6x27x2______________(6)4m212m9________________ (7)x2(a1)xa____________(8)2y24y6_________________2.若x2axb(x2)(x4),则a_______,b________。
初三升高一数学衔接教学教案——初三知识汇总,高一数学提前预习(教师版教案)

第二讲 函数与方程——一元二次方程练习题
(4)已知a,b,c是ΔABC的三边长,那么方程cx2+(a+b)x+=0的根的情况 是( ) (A)没有实数根 (B)有两个不相等的实数根 (C)有两个相等的实数根 (D)有两个异号实数根
第二讲 函数与方程
2.1 一元二次方程 2.1.1根的判别式 例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程 的实数根. (1)x2-3x+3=0; (2)x2-ax-1=0; (3) x2-ax+(a-1)=0; (4)x2-2x+a=0.
第二讲 函数与方程
2.1 一元二次方程 2.1.2 根与系数的关系(韦达定理)
第一讲 数与式
1.2 分解因式
初中升高中数学衔接
初中数学知识汇总,高一数学提前预习
第一讲 数与式
1.2 分解因式
第一讲 数与式
1.2 分解因式
第一讲 数与式
1.2 分解因式
初中升高中数学衔接
初中数学知识汇总,高一数学提前预习
第二讲 函数与方程
2.1 一元二次方程 2.1.1根的判别式 我们知道,对于一元二次方程ax2+bx+c=0(a≠0),用配方法可以将其变形为
第二讲 函数与方程
2.1 一元二次方程 2.1.2 根与系数的关系(韦达定理) 例4 已知两个数的和为4,积为-12,求这两个数.
第二讲 函数与方程
2.1 一元二次方程 2.1.2 根与系数的关系(韦达定理)
第二讲 函数与方程
2.1 一元二次方程 2.1.2 根与系数的关系(韦达定理)
第二讲 函数与方程
第一讲 数与式
1.1.3.二次根式第源自讲 数与式1.1.3.二次根式
第一讲 数与式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初高中数学衔接教材第一讲 数与式的运算教师版
导语:高中数学五本必修教材(必修一~必修五),选修教材因文理不同,高一上期一般学必修一、四;下期学必修五、
三、二的直线和圆部分;高二上期学必修二,下期学习选修系列。
高一以代数为主,高二以几何为主,但高中数学有四大思想方法,做题始终贯穿:①数形结合;②分类讨论;③转化与化归;④函数与方程。
必修一共两章:集合和函数。
集合很抽象,而函数又需要用到初中许多基础知识,所以需要先复习2课时的初中知识,13课时预计上到函数中高一的特殊函数:指数函数
一、绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即
,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩
绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.
例1(1)若5=x ,则x =_________;若4-=x ,则x =_________.
(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 练习1下列叙述(命题)正确的是.
①若a b =,则a b =②若a b >,则a b > ③若a b <,则a b <④若a b =,则a b =± /*命题:可以判断对错的陈述句。
对的命题称为:真命题;错的命题称为:假命题。
*/
例2 解不等式:13x x -+->4.
练习2化简:|x -5|-|2x -13|(x >5).
二、二次根式
10)a ≥的代数式叫做二次根式.其中,根号下含有字母、且不能够开得尽方的式子称为无
理式. 例如32a b
.
212
x ++,22x
y +等是有理式. 2、分母(子)有理化
把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,
等等.
一般地,
b 与b 互为有理化因式.
在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公
式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.
分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程.比如,
=-512 ; =-+11n n ;=++12x
x . 3
a ==,0,,0.a a a a ≥⎧⎨-<⎩
例3 将下列式子化为最简二次根式:
(1(20)a ≥ (30)x <
例4 (3.
例5试比较下列各组数的大小:
(1 (2
【点评】高中阶段的“比大小”方法:①比较法:⎩⎨⎧)(符号确号确定的前比1与:作商比
0与:作差;②假设法(但不能写在试
卷上,只能帮助得到答案):实质分析法/反证法;③构造函数(第二章中学习)
例6 化简:20042005⋅.
例7化简:(1 (21)x <<.
练习3
1.填空:
(1
(2(x -x 的取值范围是;
(3)若
x ==.
2
=成立的条件是. (A )2x ≠ (B )0x > (C )2x > (D )02x <<
3.若b =,则a b +的值为. 4.比较大小:2-35-4(填“>”,或“<”).
三、因式分解
例8将下列代数式因式分解:
(1)=-162x 、=++1442x x ;
(2)=+13x 、=1-3x ;
(3)=-2
32x x 、=-----))(())((a b x y y b a y x x ;
(4)=-+652x x 、=+-652x x 、=++652x x ; =--652x x 、=+-1322x x 、=+-91242m m ;
(5)()=++-a x a x 12 、=--2
22a ax x ; =-+22612y xy x 、22()x a b xy aby -++= ;
(6)=++142x x 、=++1422
x x ;
(7)=++-1323x x x 、=+-2-7523x x x .
【点评】常用的化简方法:
①公式法:我们在初中已经学习过了下列一些乘法公式
(1)平方差公式
(2)完全平方公式
(3)立方和公式 2233()()a b a ab b a b +-+=+;
(4)立方差公式 2233()()a b a ab b a b -++=-;
(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;
(6)两数和立方公式 33223()33a b a a b ab b +=+++;
(7)两数差立方公式 33223()33a b a a b ab b -=-+-. /*师生交流:哪些需要证明*/
②提取公因式;
③十字相乘——适用二次式;
④求根公式法——适用二次式;
⑤待定系数法——适用高次式;
⑥竖式除法(短除法):先猜根,再用竖式除法——适用高次式.
例9 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.
【点评】①目标意识;②联想;③配凑
练习4
1.填空:
(1)221111()9423
a b b a -=+( ); (2)(4m +22)164(m m =++);
(3)2222
(2)4(a b c a b c +-=+++). 2. 若()()422
-+=++x x b ax x 则 =a , =b . 3. 把下列各式因式分解:
(1)=++1072
x x 、=--6422y y 、
(2)=+14-2x x 、=-+1322x x 、 (3)=-+22338b ab a 、=+-2
2365ab b a a 、
(4)()()=-+++2082b a b a 、()()=+---3211262
p q q p 、
8224--b b = 、=----3)54(2)54(222x x x x .
【反思收获】。