数与式计算题
中考数学数与式专题训练50题(含答案)

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。
初三数学数与式试题

初三数学数与式试题1.有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.8B.C.D.【答案】B【解析】由题意,得:x=64时,=8,8是有理数,将8的值代入x中;当x=8时,,是无理数,故y的值是故选B2.若则.【答案】3【解析】由题意得:a=2,b=3,c=4∴a-b+c=2-3+4=33.(1)计算:(2)给出三个多项式:请你选择其中两个进行加法运算,并把结果因式分解。
【答案】(1)解:原式=(2)解:如选择多项式:则:【解析】(1)根据算术平方根、幂得性质计算。
(2)先选择其中两个多项式相加.然后进行合并同类项,最后进行因式分解得到结果4.计算:【答案】【解析】==5.⑴计算:;⑵解方程:.【答案】(1)-√3+1,(2)x=-7【解析】(1)熟练掌握有理数运算和根式运算,得 -√3+1;(2)解分式方程时,首先求公因式去分母,然后接得x=-76.下列各数中,无理数是()A.0B.C.D.-3.14【答案】B【解析】分析:根据无理数的定义(无理数是指无限不循环小数)进行判断即可.解答:解:A、0不是无理数,是有理数,故本选项错误;B、是无理数,故本选项正确;C、是有理数,不是无理数,故本选项错误;D、-3.14不是无理数,故本选项错误;故选B.点评:本题考查了对无理数定义的理解和运用,无理数含有①含π的,②开方开不尽的根式,③一些有规律的数.7.计算:.【答案】.;【解析】此题考查向量的加法法则思路分析:根据向量的加法法则直接计算解:原式=答案:8.长度单位1纳米米,目前发现一种新型病毒直径为23150纳米,用科学记数法表示该病毒直径是米(保留两个有效数字)【答案】2.3×【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,23150科学记数法可表示为2.3×104,然后把纳米转化成米2.3×104×10-9化简得结果.解答:解:23150科学记数法可表示为2.315×104,然后把纳米转化成米,即2.315×104×10-9=2.3×10-5.故答案为:2.3×10-5.9. 4的平方根是()A.2B.±2C.D.±【答案】B【解析】正数的平方根有两个且互为相反数.零的平方根是零,负数没有平方根.选B.10.(本题满分16分)(1)计算(2)解方程:;(3)若,求的值。
数与式的计算100题(真题专练)备战2023年中考数学考点微专题

考向1.9 数与式的计算100题(真题专练)1.(2019·四川遂宁·中考真题)计算:201920(1)(2)(3.14)4cos30|212|π-︒-+-+--+- 2.(2019·四川乐山·中考真题)如图,点A 、B 在数轴上,它们对应的数分别为2-,1xx +,且点A 、B 到原点的距离相等.求x 的值.3.(2021·湖南张家界·中考真题)计算:2021(1)222cos608-+-︒4.(2021·广东深圳·中考真题)先化简再求值:2169123x x x x ++⎛⎫+÷ ⎪++⎝⎭,其中1x =-. 5.(2021·湖南湘潭·中考真题)计算:011|2|(2)()4tan 453π----+-︒6.(2021·内蒙古呼伦贝尔·中考真题)计算:2122sin 60133---︒+7.(2021·广西柳州·中考真题)计算:391-8.(2021·黑龙江大庆·()2222sin 451+︒-- 9.(2021·上海·中考真题)计算: 1129|1228-+- 10.(2021·青海西宁·中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭.11.(2020·新疆·中考真题)计算:()()2012π34-++-12.(2020·青海·中考真题)计算:10311345( 3.14)273π-⎛⎫+︒+- ⎪⎝⎭13.(2020·甘肃天水·中考真题)(1)计算:114sin 6032|2020124-︒⎛⎫-+ ⎪⎝⎭.(2)先化简,再求值:21111211a a a a a a ---÷-+++,其中3a = 14.(2020·北京·中考真题)计算:11()18|2|6sin 453---︒15.(2020·山东菏泽·中考真题)计算:20201202012|63|2345(2)2-⎛⎫++︒--⋅ ⎪⎝⎭.16.(2020·四川乐山·中考真题)计算:022cos60(2020)π--︒+-.17.(2020·浙江·﹣1|.18.(2020·浙江嘉兴·中考真题)(1)计算:(2020)0﹣3|; (2)化简:(a +2)(a ﹣2)﹣a (a +1).19.(2020·浙江台州·中考真题)计算:3-20.(2019·山东东营·中考真题)(1)计算:()101 3.142019π-⎛⎫+- ⎪⎝⎭2sin 4512+-;(2)化简求值:22222a b a ab b a b a ab a ⎛⎫++-÷⎪--⎝⎭,当1a =-时,请你选择一个适当的数作为b 的值,代入求值.21.(2021·甘肃兰州·中考真题)先化简,再求值:22611931m m m m m --÷--+-,其中4m =.22.(2021·河南·中考真题)(1)计算:013(3--; (2)化简:21221x x x -⎫⎛-÷⎪⎝⎭. 23.(2021·湖北鄂州·中考真题)先化简,再求值:2293411x x x x x x -+÷+--,其中2x =.24.(2021·广西玉林·()()01416sin30π--+--°.25.(2021·广西玉林·中考真题)先化简再求值:()2112a a a a -⎛⎫-+÷ ⎪⎝⎭,其中a 使反比例函数ay x=的图象分别位于第二、四象限. 26.(2021·北京·中考真题)已知22210a b +-=,求代数式()()22-++a b b a b 的值.27.(2021·北京·中考真题)计算:02sin60(5π--.28.(2021·江苏宿迁·中考真题)计算:()0π1-4sin45°29.(2021·湖北荆州·中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =30.(2021·浙江衢州·中考真题)先化简,再求值:2933x x x +--,其中1x =.31.(2021·浙江衢州·01()|3|2cos602--+︒.32.(2021·湖北随州·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 33.(2021·山东菏泽·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n满足32m n =-. 34.(2021·湖北十堰·中考真题)化简:22214244a a a a a a a a +--⎛⎫-÷⎪--+⎝⎭.35.(2021·湖北十堰·1133-⎛⎫︒+-- ⎪⎝⎭.36.(2021·湖南常德·中考真题)化简:2593111aa a a a a ++⎛⎫+÷⎪---⎝⎭37.(2021·湖南常德·中考真题)计算:012021345-+︒.38.(2021·湖南郴州·中考真题)先化简,再求值:2213111a a a a a a --⎛⎫-÷⎪+--⎝⎭,其中a =39.(2021·湖南郴州·中考真题)计算:11(2021)|2tan 602π-⎛⎫--+⋅︒ ⎪⎝⎭.40.(2021·湖南怀化·中考真题)计算:021(3)()4sin 60(1)3π--+︒--41.(2021·湖北黄冈·中考真题)计算:0|12sin 60(1)π-︒+-.42.(2021·新疆·中考真题)先化简,再求值:22414421x x x x x x ⎛⎫-+⋅⎪+++-⎝⎭,其中3x =.43.(2021·湖南长沙·中考真题)计算:(02sin 451-+°44.(2021·四川广安·中考真题)先化简:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭,再从-1,0,1,2中选择一个适合的数代入求值.45.(2021·四川广安·中考真题)计算:()03.1414sin 60π-︒.46.(2021·湖南邵阳·中考真题)先化简,再从1-,0,1,21中选择一个合适的x 的值代入求值.2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭.47.(2021·四川眉山·中考真题)计算:(1143tan 602-⎛⎫-︒-- ⎪⎝⎭48.(2021·江苏苏州·中考真题)先化简再求值:21111x x x-⎛⎫+⋅⎪-⎝⎭,其中1x =.49.(2021·江苏苏州·223--.50.(2021·江苏扬州·中考真题)计算或化简:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭.51.(2021·湖南邵阳·中考真题)计算:()020212tan 60π--︒.52.(2021·甘肃武威·中考真题)先化简,再求值:2224(2)244x x x x x --÷--+,其中4x =. 53.(2021·甘肃武威·中考真题)计算:011(2021)()2cos 452π--+-︒.54.(2021·云南·中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 55.(2021·浙江金华·中考真题)已知16x =,求()()()2311313x x x -++-的值.56.(2021·浙江金华·中考真题)计算:()202114sin 45+2-︒-.57.(2021·浙江温州·中考真题)(1)计算:()0438⨯-+-.(2)化简:()()215282a a a -++.58.(2021·四川南充·中考真题)先化简,再求值:2(21)(21)(23)x x x +---,其中1x =-. 59.(2021·四川凉山·中考真题)已知112,1x y x y-=-=,求22x y xy -的值.60.(2021·四川泸州·中考真题)计算:120211423cos304.61.(2021·重庆·中考真题)计算:(1)2(23)()a a b a b ++-;(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭.62.(2021·四川自贡·0|7|(2-+.63.(2021·浙江丽水·中考真题)计算:0|2021|(3)-+-64.(2020·广西贺州·中考真题)计算:()24π345+-︒--+︒.65.(2020·福建·中考真题)先化简,再求值:211(1)22x x x --÷++,其中1x =.66.(2020·四川广安·中考真题)计算:202011(1)12cos 45()2--+-.67.(2020·四川广安·中考真题)先化简,再求值:221(1)11x x x -÷+-,其中x=2020.68.(2020·广西柳州·中考真题)计算:11682⨯-+.69.(2020·广西·中考真题)计算:(0+(﹣2)2+|﹣12|﹣sin30°.70.(2020·贵州黔南·中考真题)(1)计算()1013tan602cos6020202-⎛⎫--︒+-︒- ⎪⎝⎭;(2)解不等式组:312324xx -⎧⎪⎨⎪+⎩.71.(2020·辽宁鞍山·中考真题)先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中2x =. 72.(2020·内蒙古呼伦贝尔·中考真题)计算:1012cos60-(-1)2π-⎛⎫- ⎪⎝⎭.73.(2020·内蒙古呼伦贝尔·中考真题)先化简,再求值:222442342x x x x x x -+-÷+-+,其中4x =-. 74.(2020·江苏宿迁·中考真题)先化简,再求值:2x x -÷(x ﹣4x),其中x﹣2. 75.(2020·四川眉山·中考真题)先化简,再求值:229222a a a -⎛⎫-÷⎪--⎝⎭,其中3=a . 76.(2020·四川眉山·中考真题)计算:(2122sin 452-⎛⎫+-+︒ ⎪⎝⎭77.(2020·云南昆明·中考真题)计算:12021(π﹣3.14)0﹣(﹣15)-1.78.(2020·江苏南通·中考真题)计算: (1)(2m +3n )2﹣(2m +n )(2m ﹣n );(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x 79.(2021·福建·1133-⎛⎫- ⎪⎝⎭.80.(2021·四川达州·中考真题)计算:()02120212sin 601π-+-+︒-.81.(2020·江苏徐州·中考真题)计算:(1)120201(1)2|2-⎛⎫-+- ⎪⎝⎭;(2)2121122a a a a -+⎛⎫-÷⎪-⎝⎭82.(2020·湖南邵阳·中考真题)已知:|1|0m -=, (1)求m ,n 的值;(2)先化简,再求值:22(3)(2)4m m n m n n -++-.83.(2020·湖南怀化·222cos 45|2-︒-+ 84.(2020·湖南张家界·中考真题)阅读下面的材料:对于实数,a b ,我们定义符号min{,}a b 的意义为:当a b <时,min{,}a b a =;当a b 时,min{,}a b b =,如:min{4,2}2,min{5,5}5-=-=.根据上面的材料回答下列问题: (1)min{1,3}-=______;(2)当2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭时,求x 的取值范围. 85.(2020·四川自贡·中考真题)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与1-所对应的点之间的距离. ⑴. 发现问题:代数式12x x ++-的最小值是多少?⑵. 探究问题:如图,点,,A B P 分别表示的是-1,2,x ,3AB =.∵12x x ++-的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时 +>PA PB 3 ∴12x x ++-的最小值是3. ⑶.解决问题:①.-++x 4x 2的最小值是 ;②.利用上述思想方法解不等式:314x x ++->③.当a 为何值时,代数式++-x a x 3的最小值是2.86.(2021·四川内江·中考真题)计算:0216sin 45|128(2021)()2π-︒----. 87.(2021·青海西宁·中考真题)计算:2(53)(53)(31)-.88.(2021·辽宁盘锦·中考真题)先化简,再求值:2233816164x x xx x x x --÷--+--,其中24x =89.(2021·青海·中考真题)先化简,再求值:2121a a a a a -+⎛⎫-÷ ⎪⎝⎭,其中21a =.90.(2021·江苏南京·中考真题)计算222ab a b b ab a b a ab ab-⎛⎫-+÷⎪+++⎝⎭. 91.(2021·四川成都·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .92.(2021·四川资阳·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 93.(2021·重庆·中考真题)计算(1)()()22x y x x y -++; (2)2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭. 94.(2021·浙江嘉兴·中考真题)(1)计算:12sin 30-︒; (2)化简并求值:11a a -+,其中12a =-. 95.(2021·四川遂宁·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 96.(2021·四川泸州·中考真题)化简:141()22a a a a a --+÷++.97.(2021·山东枣庄·中考真题)先化简,再求值:21(1)11x x x ÷+--,其中1x =.98.(2020·广西贵港·中考真题)(1()0236cos30π+-︒; (2)先化简再求值:221239m m m ÷--,其中5m =-.99.(2020·内蒙古赤峰·中考真题)先化简,再求值:221121m m m m m m ---÷++,其中m 满足:210m m --=.100.(2021·重庆·中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”.例如6092129=⨯,21和29的十位数字相同,个位数字之和为10, 609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10, 234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .1.74-【分析】先根据整数指数幂、负指数幂、零指数幂、三角函数和绝对值进行化简,再进行加减运算.解:原式131142324=-++-+ 111232324=-++- 74=-.【点拨】本题考查指数幂、三角函数和绝对值,解题的关键是掌握指数幂、三角函数和绝对值.2.2x =-【分析】根据点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数,即21xx =+,解分式方程即可.解:∵点A 、B 到原点的距离相等 ∴A 、B 表示的数值互为相反数 即21xx =+,去分母,得2(1)x x =+, 去括号,得22x x =+, 解得2x =-经检验,2x =-是原方程的解.【点拨】本题考查了相反数,绝对值的定义,解分式方程,解本题的关键是读懂题意,根据题中点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数3【分析】先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.解:2021(1)22cos60-+︒+11222=-+⨯+=【点拨】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键.4.12x +;1 【分析】先把分式化简后,再把x 的值代入求出分式的值即可. 解:原式212331122(3)232x x x x x x x x x +++⎛⎫=+⋅=⋅= ⎪++++++⎝⎭ 当1x =-时,原式1112==-+. 【点拨】本题考查了分式的化简求值,熟练分解因式是解题的关键. 5.0【分析】根据绝对值的性质、零指数幂、负整指数幂的性质及45°角的正切值计算解题即可.解:011|2|(2)()4tan 453π----+-︒21341=-+-⨯0=.【点拨】本题考查实数的混合运算,涉及绝对值、零指数幂、负整指数幂、正切等知识,是基础考点,难度较易,掌握相关知识是解题关键.6. 【分析】分别进行负整数指数幂运算、特殊角的三角函数值运算、绝对值运算、二次根式运算即可解答解:222sin 601---︒+=1214--=54-=. 【点拨】本题考查负整数指数幂、特殊角的三角函数值、绝对值、二次根式,熟记特殊角的三角函数值,掌握运算法则是解答的关键.7.1【分析】根据绝对值的定义及算术平方根的定义即可解决. 解:原式331=-+1=【点拨】本题考查了绝对值的定义、算术平方根的定义及实数的运算,关键是掌握绝对值和算术平方根的定义.8.1【分析】直接利用去绝对值符号、特殊角度的三角函数值、负整数的平方运算计算出结果即可.()222sin 451+︒--221= 1=故答案是:1.【点拨】本题考查了去绝对值符号、特殊角度的三角函数值、负整数的平方运算法则,解题的关键是:掌握相关的运算法则.9.2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.解:1129|12-+-,(112-⨯=31 =2.【点拨】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.10.3【分析】由乘方、负整数指数幂、绝对值的意义进行化简,即可得到答案.解:原式423=+-3=.【点拨】本题考查了乘方、负整数指数幂、绝对值的意义,解题的关键是掌握运算法则,正确的进行化简.11【分析】按照绝对值的性质、乘方、零指数幂、二次根式的运算法则计算.解:原式112=-=【点拨】本题考查绝对值的性质、乘方、零指数幂、二次根式的运算法则,比较基础.12【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可解:101145( 3.14)3π-⎛⎫+︒+- ⎪⎝⎭3|11|13=++-3113=+-=【点拨】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.13.(13;(2)221a -,1. 【分析】(1)先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.解:(1)原式4(214=-+-,214=-,3;(2)原式21111(1)1a a a a a -+=-⨯-+-, 1111a a =--+, 11(1)(1)a a a a +-+=-+, 221a =-,当a ==()222213121===--. 【点拨】本题主要考查实数的混合运算与分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.14.5【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.解:原式=3262+-⨯32=+-5.= 【点拨】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.15.52【分析】根据负整数指数幂,绝对值,特殊角的三角函数值,积的乘方公式的逆向应用进行计算即可.解:202012020123|45(2)2-⎛⎫++︒--⋅ ⎪⎝⎭202011(3(2)22=++-⨯ 1312=+ 52=. 【点拨】本题考查了负整数指数幂,绝对值,特殊角的三角函数值,积的乘方公式的逆向应用,熟知以上运算是解题的关键.16.2【分析】根据绝对值,特殊三角函数值,零指数幂对原式进行化简计算即可.解:原式=12212-⨯+ =2.【点拨】本题考查了绝对值,特殊三角函数值,零指数幂,掌握运算法则是解题关键.17. 1【分析】根据算术平方根定义和绝对值的性质计算,再合并同类二次根式即可.解:原式1.【点拨】本题考查了算术平方根和绝对值以及同类二次根式的合并,解题的关键是正确理解定义.18.(1)2;(2)﹣4﹣a【分析】(1)直接利用零指数幂的性质和二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用平方差公式以及单项式乘以多项式计算得出答案.解:(1)(2020)0﹣3|=1﹣2+3=2;(2)(a +2)(a ﹣2)﹣a (a +1)=a 2﹣4﹣a 2﹣a=﹣4﹣a .【点拨】本题主要考查了实数的运算,准确运用零指数幂、二次根式的性质和绝对值的性质是解题的关键.19.3【分析】按照绝对值的概念、平方根的概念逐个求解,然后再用二次根式加减运算即可.解:原式=3=故答案为:3.【点拨】本题考查了绝对值的概念、平方根的概念、二次根式的加减运算等,熟练掌握运算公式及法则是解决此类题的关键.20.(1)2020;(2)1【分析】(1)根据负指数幂、零指数幂、绝对值和三角函数、二次根式,即可得到答案;(2)根据分式的性质进行化简,再代入1a =-,即可得到答案.解:1()原式201912++=2020+=2020=;2()原式()()222a b a a a b a b -=-+ ()()()()2a b a b aa ab a b -+=-+ 1a b =+, 当1a =-时,取2b =,原式1112==-+. 【点拨】本题负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简,解题的关键是掌握负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简.21.11m -,13【分析】先将除法转化为乘法,因式分解,约分,分式的减法运算,再将字母的值代入求解即可. 解:22611931m m m m m --÷--+- 2(3)31(3)(3)11m m m m m m -+=⋅-+--- 2111m m =--- 11m =-. 当4m =时, 原式11413==-. 【点拨】本题考查了分式的化简求值,掌握因式分解是解题的关键.22.(1)1;(2)2x . 【分析】(1)实数的计算,根据实数的运算法则求解即可;(2)分式的化简,根据分式的运算法则计算求解.解:(1)013(3-- 11133=-+ 1=.(2)21221x x x -⎫⎛-÷ ⎪⎝⎭212(1)x x x x -=⨯- 2x =. 【点拨】本题考查了实数的混合运算,负指数幂,二次根式的化简,零次幂的计算,分式的化简等知识,牢记公式与定义,熟练分解因式是解题的关键.23.1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可.解:原式()()()313341x x x x x x x -=⨯++--+ 1x x+=, 当2x =时,原式32=. 【点拨】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.24.1【分析】先算算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,再算加减法,即可求解.解:原式=141162+--⨯ =1【点拨】本题主要考查实数的混合运算,掌握算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,是解题的关键.25.1-【分析】由题意易得0a <,然后对分式进化简,然后再求解即可.解:∵a 使反比例函数a y x=的图象分别位于第二、四象限, ∴0a <, ∴()2112a a a a -⎛⎫-+÷ ⎪⎝⎭ =()22211a a a a a -+-⨯- =1-.【点拨】本题主要考查反比例函数的图象与性质及分式的化简求值,熟练掌握反比例函数的图象与性质及分式的运算是解题的关键.26.1【分析】先对代数式进行化简,然后再利用整体思想进行求解即可.解:()()22-++a b b a b=22222a ab b ab b -+++=222a b +,∵22210a b +-=,∴2221a b +=,代入原式得:原式=1.【点拨】本题主要考查整式的乘法运算及完全平方公式,熟练掌握利用整体思想进行整式的化简求值是解题的关键.27.4【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.解:原式=2514-=. 【点拨】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.28.1【分析】结合实数的运算法则即可求解.解:原式=1411+=+. 【点拨】本题考察非0底数的0次幂等于1、二次根式的化简、特殊三角函数值等知识点,属于基础题型,难度不大.解题的关键是掌握实数的运算法则.29.1a a +【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把a =即可.解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a +当a =【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.30.3x +;4【分析】先将这两个分式转化为同分母的分式,再将分母不变,分子相加减,最后化简即可. 解:原式29(3)(3)333x x x x x x +-=-=--- 3x =+当1x =时,原式4=.【点拨】本题考查了分式的化简求值问题,涉及到了分式的通分和约分,解决本题的关键是牢记相关概念与法则,并灵活运用,最后的结果记得化简即可.31.2.【分析】由特殊的三角函数值得到1cos602︒=,由零指数幂公式算出01()=12,,最后算出结果即可. 解:原式13+1322 2=【点拨】本题考查了实数的混合运算,关键注意零指数幂的运算和特殊的三角函数值.32.22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可.解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点拨】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.33.3n m n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32n m =-代入求值即可 解:∵22221244m n n m m n m mn n --+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+ =21m n n m --+ =3n m n+, ∵32m n =-, ∴32n m =-, ∴原式=332nn n -+= -6. 【点拨】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键.34.21(2)a - 【分析】先算分式的减法,再把除法化为乘法运算,进行约分,即可求解.解:原式=221(2)(2)4a a a a a a a ⎛⎫+--⋅ ⎪---⎝⎭=()()()22221(2)(2)4a a a a a a a a a a +--⎛⎫-⋅ ⎪---⎝⎭=2224(2)4a a a a a a a --+⋅-- =24(2)4a a a a a -⋅-- =21(2)a - 【点拨】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键. 35.1【分析】利用特殊角的三角函数值、负整数指数幂、绝对值的性质逐项计算,即可求解.解:原式33=- 1=.【点拨】本题考查实数的运算,掌握特殊角的三角函数值、负整数指数幂、绝对值的性质是解题的关键.36.31a a ++【分析】直接将括号里面的分式,通分运算进而结合分式的混合运算法则,计算得出答案. 解:2593111a a a a a a ++⎛⎫+÷ ⎪---⎝⎭ 222591=113a a a a a a a ++-⨯--+(+) 2691=(1)(1)3a a a a a a ++-⨯+-+ 2(3)1=(1)(1)3a a a a a +-⨯+-+ 31a a +=+ 故答案为:31a a ++. 【点拨】本题考查了分式的化简,分式的通分,因式分解,平方差公式,完全平方公式,分式的混合运算,熟练运用公式和分式的计算法则是解题关键.37.1.【分析】直接利用零次幂的运算法则,负次幂的运算法则、二次根式及特殊角的三角函数值进行计算即可.解:012021345-+︒3132=+ 111=+-1=故答案是:1.【点拨】本题考查了零次幂的运算法则,负次幂的运算法则、二次根式及特殊角的三角函数值,解题的关键是:熟练掌握相关运算法则.38 【分析】先算分式的减法运算,再把除法化为乘法,进行约分化简,最后代入求值,即可.解:原式=2213111a a a a a a --⎛⎫-÷ ⎪+--⎝⎭=131(1)(1)(1)1a a a a a a a ⎛⎫----⋅ ⎪++-⎝⎭=()()2131(1)(1)(1)(1)1a a a aa a a a a a⎛⎫----⋅⎪⎪+-+-⎝⎭=()()2131(1)(1)1a a a aa a a----⋅+-=222131(1)(1)1a a a a aa a a-+-+-⋅+-=11(1)(1)1a aa a a+-⋅+-=1a,原式.【点拨】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.39.3【分析】先算零指数幂,绝对值,负整数指数幂以及锐角三角函数,再算加减法,即可求解.解:原式=12+-=3.【点拨】本题主要考查实数的混合运算,熟练掌握零指数幂,绝对值,负整数指数幂以及锐角三角函数,是解题的关键.40.11【分析】根据非零实数0二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则计算即可.解:原式=191=11-+.【点拨】本题主要考查非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则,正确掌握每个知识点是解决本题的关键.41.0.【分析】先化简绝对值、计算特殊角的正弦值、零指数幂,再计算实数的混合运算即可得.解:原式121-=,==.【点拨】本题考查了化简绝对值、特殊角的正弦值、零指数幂等知识点,熟练掌握各运算法则是解题关键.42.22x ;25【分析】根据分式混合运算的法则进行化简计算,然后代入条件求值即可.解:原式()()()2221212x x x x x x ⎡⎤+-=+⎢⎥+-+⎢⎥⎣⎦ 21221x x x x x -⎛⎫=+ ⎪++-⎝⎭ 22121x x x -=+- ()21121x x x -=+- 22x =+ 将3x =代入得:原式22325==+. 【点拨】本题考查分式的化简求值问题,掌握分式混合运算法则是解题关键. 43.5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.解:原式21=++14=+, 5=. 【点拨】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.44.1a ,12【分析】先根据分式的混合运算法则化简,再取使得分式有意义的a 的值代入计算即可.解:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭ =()()()()21112111a a a a a a a a -+⎡⎤÷-+-⎢+⎣+⎥⎦ =()()()()211111a a a a a a +-+⨯-- =1a由原式可知,a 不能取1,0,-1,∴a =2时,原式=12.【点拨】此题考查了分式的化简求值,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.45.0【分析】分别化简各数,再作加减法.解:()03.1414sin 60π-+︒=114-+=11-+=0【点拨】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.46.1;11x --(答案不唯一) 【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简,再结合分式有意义的条件和除数不为0,即可代值计算. 解:原式()()()()()()2211111=1111111x x x x x x x x x x x +++-⨯=⨯=++-++-- 代数式有意义,分母和除数不为0∴()()110x x +-≠即1x ≠±∴当0x =时,原式=111101x ==---(答案不唯一). 【点拨】本题考察分式的化简求值、分式有意义的条件、因式分解和分母有理化,属于基础题,难度不大.解题的关键是掌握分式的运算法则和分式有意义的条件.47.3【分析】依次计算“0次方”、tan 60︒等,再进行合并同类项即可.解:原式=()132123--+=-+=【点拨】本题综合考查了非零数的零次幂、特殊角的三角函数、负整数指数幂以及二次根式的化简等内容,解决本题的关键是牢记相关计算公式等,本题易错点为对112-⎛⎫-- ⎪⎝⎭的化简,该项出现的“ -”较多,因此符号易出错,因此要注意.48.1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解. 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式【点拨】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.49.-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.223--229=+-5=-.【点拨】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键. 50.(1)4;(2)ab【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭ =()a b a b ab ++÷=()ab a b a b+⨯+ =ab 【点拨】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.51.﹣1.【分析】根据零指数幂运算法则、绝对值符号化简、特殊角的三角函数值代入计算,然后根据同类二次根式合并求解即可.解:()020212tan 60π--︒=(12-=12-+=﹣1.【点拨】本题主要考查了实数的综合运算能力,是中考题中常见的计算题型.熟练掌握零指数幂、特殊角的三角函数值、绝对值化简方法,同类二次根式是解题关键.52.42,23x --+ 【分析】小括号内先通分计算,将除法变成乘法并因式分解,根据乘法法则即可化简,再代值计算即可. 解:原式2242(2)()22(2)(2)x x x x x x x --=-⨯--+- 4222x x x --=⨯-+ 42x =-+ 当4x =时,原式42423=-=-+. 【点拨】本题考察分式的化简求值,难度不大,属于基础题型.解题的关键在于熟悉运算法则和因式分解.53.3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可. 解:011(2021)()2cos 452π--+-︒,122=+-3=【点拨】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.54.6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.解:201tan 452(3)1)2(6)23-︒-++-+⨯- =1191422++-- =6【点拨】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.55.1【分析】直接利用完全平方差公式展开及平方差公式展开后,合并同类项化简,再将16x =代入进去计算. 解:原式229611962x x x x =-++-=-+ 当16x =时,原式16216=-⨯+=. 故答案是:1.【点拨】本题考查了代数式的化简求值,解题的关键是:先利用完全平方差公式,平方差公式,合并同类项运算法则化简,然后代值计算.56.1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可解:原式142=-+12=-+ 1=.【点拨】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.57.(1)-6;(2)22625a a -+.【分析】(1)直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;(2解:(1)()0438⨯-+- 12831=-+-+6=-;(2)()()215282a a a -++ 2210254a a a a =-+++22625a a =-+.【点拨】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.58.1210x -,-22【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解. 解:原式=2241(4129)x x x ---+=22414129x x x --+-=1210x -,当x =-1时,原式=()12110⨯--=-22.【点拨】本题主要考查整式的化简求值,熟练掌握完全平方公式和平方差公式,是解题的关键.59.-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 解:∵2x y -=, ∴1121y x x y xy xy---===, ∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点拨】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.60.12.【分析】根据零指数幂,负整指数幂,去括号法则,特殊角的三角函数值化简,然后再计算即可.解:0120211423cos3043144232144312=.【点拨】本题考查了零指数幂,负整指数幂,去括号法则,特殊角的三角函数值等知识点,熟悉相关知识点是解题的关键61.(1)223++a ab b ;(2)-31x x + 【分析】(1)根据单项式乘以多项式以及完全平方公式计算即可;(2)利用分式的混合运算法则进行计算即可.解:(1)2(23)()a a b a b ++-2222+3+2+=a ab a ab b -22=3++a ab b(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭()()()222+3-3+3=11+x x x x x x x ⎛⎫-÷ ⎪++⎝⎭()()()2+3-31=31x x x x x +++ -3=1x x + 【点拨】本题考查了整式的混合运算和分式的混合运算,熟练掌握运算法则是解题的关键.62.1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解. 解:原式5711=-+=-.【点拨】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.63.2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;解:0|2021|(3)-+-202112=+-,2020=.【点拨】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.64.2.【分析】直接利用零指幂的性质、绝对值的性质、特殊角的三角函数值分别化简得出答案.解:()24π345+-︒--︒313=+-+ 3131=+-+2=.【点拨】此题主要考查了实数运算,正确化简各数是解题关键.65.11x - 【分析】先将括号内的项进行通分化简,再分式的除法法则,结合平方差公式因式分解,化简,最后代入数值解题即可.解:原式=2122(1)(1)x x x x x +-+⋅++- 1(1)(1)x x x +=+-。
初一数学数与式试题

初一数学数与式试题1. 4的算术平方根是___,的倒数是.【答案】2,【解析】∵22=4,∴4算术平方根为2.-3的倒数是-.【考点】算术平方根.倒数.点评:此题要求分清算术平方根与平方根的概念和倒数的概念.2.根据如图所示的程序计算,若输入的x的值为1,则输出的y值为________。
【答案】4【解析】解:12×2-4=2-4=-2<0,(-2)2×2-4=8-4=4>0.故输出的数为4.3.国家体育场“鸟巢”的建筑面积达258000m2,它用科学记数法表示应为m2.【答案】【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数。
所以258000=。
4.下列说法:①∵,∴-0.6是0.36的平方根;②∵0.8=0.64,∴0.64的平方根是0.8;③∵,∴;④∵,∴。
其中正确的个数是A.4个B.3个C.2个D.1个【答案】C【解析】①∵,∴-0.6是0.36的平方根;正确②∵0.8=0.64,∴0.64的平方根是0.8;故错误③∵,∴=;故错误④∵,∴,正确故选C5.下列运算正确的是A.B.C.D.【答案】D【解析】考查计算能力。
选D6.数据260000用科学记数法表示为2.6×10n,则n的值是()A.2B.3C.4D.5【答案】D【解析】数据绝对值>10或<1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解答:解:26 0000=2.6×105,则n的值是5.故选D.7.在的积中,项的系数为,项的系数为,求的值。
2022年初中七年级数学作业100题(数与式)

A. B. C. D.
11.下列运算正确的是( )
A.x3•x2=x5B.x3+x2=x5C.(x3)3=x6D.x6÷x2=x3
12.下列运算正确的是()
A. B.
C. D.
13.a<0ab<0则|b-a+3|-|a-b-9|的值为()
A.6B.-6C.12D.
14.下列根式中,最简二次根式是()
(1)将最后一位乘客送到目的地,出租车离钟楼多远?在钟楼的什么方向?
(2)若每千米的价格是2.4元,该出租车周日下午的营业额是多少?
2.用科学记数法表示: 是
A. B. C. D.
3.化简 的结果为()
A. B. C. D.
4.在括号内填上适当的单项式,使 成为完全平方式,应填()
A.± B. C. D. a
5.下列四个数中,最大的数是( )
A.﹣2B.﹣1C.0D.|﹣3|
6.如果 ,则 的值为()
A. B. C. D.
7.下列运算正确的是()
A.(m+n)(﹣m+n)=n2﹣m2B.(a﹣b)2=a2﹣b2
C.(a+m)(b+n)=ab+mnD.(x﹣1)2=x2﹣2x﹣1
8.实数 在数轴上的对应点的位置如图所示,下列结论正确的是()
A. B. C. D. >
9.下列计算正确的是()
A.4x3•2x2=8x6B.a4+a3=a7
C.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣b2
A.(3k2+4k﹣1)﹣(3k2﹣4k+1)
B.2(p3+p2﹣1)﹣2(p3+p﹣1)
(完整版)专题一-数与式-方程与不等式--自主练习题

专题一 数与式 方程与不等式自主练习题1.规定用符号[m ]表示一个实数m 的整数部分,例如:[]=0,[3.14]=3.按此规定 []的值为 . 2.设,,则=( )A .2 3B . 3C . 6D .33.若,则= .4.如果关于x 的一元二次方程22110kx k x -++=有两个不相等的实数根,那么k 的取值范围是( )A .k <B .k <且k ≠0C .﹣≤k <D .﹣≤k <且k ≠05.如图,将矩形沿图中虚线(其中x >y )剪成四块图形,用这四块图形恰能拼一个正方形.若y =2,则x 的值等于( )A .3B .25-1C .1+5D .1+2 6.若x 1,x 2是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( )A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 2 7.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEF H 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEF H 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.8.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽分别为2和1的长方形.如果现有甲类纸片1张,乙类纸片4张,那么应至少取丙类纸片 张,才能用它们拼成一个新的正方形.9.按如下程序进行运算:并规定,程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止。
则可输入的整数x 的个数是 .10.若多项式x 4+mx 3+nx -16含有因式(x -2)和(x -1),则mn 的值是( ) A .100 B .0 C .-100 D .5011.设201421,...,,a a a 是从1,0,1-这三个数中取值的一列数,若69...201421=+++a a a ,4001)1(...)1()1(220142221=++++++a a a ,则201421,...,,a a a 中为0的个数____________。
初一数学数与式试题

初一数学数与式试题1.在实数-,0.,,,0.80108,中,无理数的个数为( )A.1个B.2个C.3个D.4个【答案】B【解析】-,0.,,,0.80108,中,无理数有-,共两个。
故选B.2.将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是()【答案】D【解析】略3.的算术平方根是()A.B.C.D.【答案】B【解析】根据算术平方根的定义求解即可求得答案.解:∵2=,∴的算术平方根是.故选B.此题考查了算术平方根的定义.题目很简单,解题要细心.4. 2003年10月15日,中国“神舟”五号载人飞船成功发射,圆了中国人千年的飞天梦,航天员杨利伟乘飞船在约21小时内环绕地球14圈,其长度约为591000000千米,用科学记数法表示为()A.5.91×107千米B.5.91×108千米C.5.91×109千米D.5.91×1010千米【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:591 000 000千米=5.91×108千米.故选B.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.5.数轴上与表示—3的点的距离等于的点表示的有理数是_______【答案】【解析】首先在数轴上表示出-3,根据数轴即可求解.解:根据数轴可以得到:数轴上与表示-3的点的距离等于3的点表示的有理数是或-6.故答案是:或-6.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.计算或化简:(本小题6分)【答案】【解析】解:原式……4分……6分7.(本题6分)计算:【答案】-20【解析】解:原式= ……………………………4分= -20 …………………………………………2分(因第一等号后面是四个运算的结果,只要正确一个就给1分)8.如果单项式与是同类项,那么-的值分别为【答案】-1【解析】根据同类项是含有的字母相同,相同字母的指数相同的单项式,因此可知m=2,n=3,因此m-n-1.【考点】同类项9.下列各组的两个数中,运算后结果相等的是()A.和B.和C.和D.-︱-2︱和-(-2)【答案】B.【解析】选项A.,故本选项错误;选项B.,故本选项正确;选项C.,故本选项错误;选项D.-︱-2︱=—2,-(-2)=2,故本选项错误.故答案选B.【考点】有理数的运算.10.观察下列各式:请你找出其中规律,并将第n(n≥1)个等式写出来.【答案】.【解析】由观察得知:根号里的第二个加数的分母等于第一个加数加2,第二个加数的分子都是1,等号右边根号外的数等于根号里第一个加数加1,等号右边根号里的数是前面根号里第二个加数,于是得到第n(n≥1)个等式为:.【考点】探索一组式子的规律.11.(每小题6分,共18分)计算:(1);(2);(3).【答案】(1);(2)-3;(3)3.【解析】(1)应用幂的运算性质进行计算;(2)应用乘法分配律去括号,然后进行合并;(3)应用零指数幂,负整数指数幂,逆用积的乘方以及取绝对值的法则进行计算.试题解析:解:(1).(2)==-3.(3)=1+4-1-1=3.【考点】幂的运算性质;整式乘法.12.已知x+y=5,xy=3.(1)求(x﹣2)(y﹣2)的值;(2)求+4xy+的值.【答案】-3;31.【解析】原式利用多项式乘以多项式法则计算,把已知等式代入计算即可求出值;原式利用完全平方公式变形,将已知等式代入计算即可求出值.试题解析:(1)∵x+y=5,xy=3,∴原式=xy﹣2(x+y)+4=3﹣10+4=﹣3;(2)∵x+y=5,xy=3,∴原式=+2xy=25+6=31.【考点】整式的混合运算—化简求值13.一个周长是l的半圆,它的半径是()A.l÷2B.L I÷C.l÷(+2)D.l÷(+1)【答案】C【解析】根据圆的周长公式C=2πr,则半圆的周长为πr+2r,因此可知圆的半径为r=l÷(π+2).【考点】圆的周长14.若规定a*b=2a+b-1,则(-4)*6的值为 .【答案】-3【解析】根据新定义可得:原式=2×(-4)+6-1=-8+6-1=-3.【考点】有理数的计算.15.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2015,y=.【答案】1【解析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.试题解析:原式=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2015,y=时,原式=1.【考点】整式的混合运算—化简求值.16.一个数与()相加,仍得本身A.正数B.负数C.零D.整数【答案】C.【解析】根据有理数的加法法则可得任何数与零相加都得任何数,故答案选C.【考点】有理数的加法法则.17.用一块长是10厘米,宽是8厘米的长方形厚纸板,剪出一个最大的正方形,这个正方形的面积是()平方厘米.A、80B、40C、64【答案】C.【解析】由题意可知,剪出一个最大的正方形,也就是正方形的边长等于长方形的宽,根据正方形的面积公式s=a2,可得8×8=64平方厘米.即这个正方形的面积是64平方厘米.故答案选C.【考点】长方形、正方形的面积、图形的拆拼(切拼).18.大家知道,它在数轴上的意义是表示的点与原点(即表示的点)之间的距离.又如式子,它在数轴上的意义是表示的点与表示的点之间的距离.类似地,式子在数轴上的意义是.【答案】表示4的点与表示-5的点之间的距离【解析】因为,而,它在数轴上的意义是表示的点与表示的点之间的距离,所以在数轴上的意义是表示4的点与表示-5的点之间的距离.【考点】绝对值19.“十一”黄金周刚过,攀枝花市政府统计:在7天长假期间,每天前来我市旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):单位:万人日期 10月1日 10月2日 10月3日 10月4日 10月5日 10月6日 10月7日人数变化 +1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2每天人数(1)若9月30日的旅游人数记为a,请用a的代数式表示10月2日的旅游人数.(2)请判断这7天中游客人数最多的是哪天?最少的是哪天?各有多少万人?【答案】(1)2.4(万人)(2)10月3日人数最多,为(a+2.8)万人,10月7日人数最少,为(a+0.6)万人.【解析】(1)由10月1日比9月30日多1.6万人,表示出10月1日的人数,再由10月2日比10月1日多0.8万人,即可表示出10月2日的旅游人数;(2)由题意将表格补全,即可得到10月3日人数最多,求出人数;10月7日人数最少,求出即可.试题解析:解:(1)根据题意,10月2日的旅游人数为:a+1.6+0.8=a+2.4(万人);(2)根据题意列得:日期 10月1日 10月2日 10月3日 10月4日 10月5日 10月6日 10月7日人数变化 +1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2每天人数 a+1.6 a+2.4 a+2.8 a+2.4 a+1.6 a+1.8 a+0.6由表格得到:10月3日人数最多,为(a+2.8)万人,10月7日人数最少,为(a+0.6)万人.【考点】有理数的加减混合运算;正数和负数;有理数大小比较;列代数式20.(10分)如图,数轴的单位长度为1,点P,A,B,Q是数轴上的四个点,其中点A,B表示的数是互为相反数.(1)点P表示的数是,点Q表示的数是.(2)若点P向数轴的正方向运动到点B右侧,且以线段BP的长度为边长做正方形,当该正方形的面积为5时,点P在数轴上表示的数是.(3)若点A以1单位/秒的速度向数轴的正方向运动,点B以2单位/秒的速度向数轴的负方向运动,且两点同时开始运动.那么当运动时间为秒时,A,B两点之间的距离恰好为1.【答案】(1)-4,5;(2);(3)或.【解析】(1)根据点A,B表示的数是互为相反数,可求点A,B表示的数,进一步得到点P表示的数,点Q表示的数;(2)先根据正方形的面积公式得到正方形的边长,进一步得到点P在数轴上表示的数;(3)分相遇前距离为1和相遇后距离为1两种情况讨论.可设当运动时间为x秒时,A,B两点之间的距离恰好为1,根据等量关系:速度和×时间=路程和,列出方程求解即可.试题解析:(1)∵点A,B表示的数是互为相反数,∴点A表示的数是﹣3,点B表示的数是3,∴点P表示的数是﹣3﹣1=﹣4,点Q表示的数是3+2=+5;(2)正方形的边长是,∴点P在数轴上表示的数是;(3)①A,B相遇前距离为1,设当运动时间为x秒时,A,B两点之间的距离恰好为1,依题意有:(1+2)x=6﹣1,解得x=.②A,B相遇后距离为1,设当运动时间为x秒时,则依题意有:(1+2)x=6+1,解得x=.故当运动时间为秒或秒时,A,B两点之间的距离恰好为1.【考点】1.一元一次方程的应用;2.数轴;3.分类讨论.21.计算:(每题3分,共计12分)(1);(2)(3)(4)【答案】(1)-7(2)1(3)5(4)2【解析】根据有理数的混合运算的运算顺序,先算乘方,再算乘除,最后算加减,如有括号先算括号里面的,能用简便方法的用简便方法.试题解析:(1)=–7(2)=1(3)=-×24+×24=6-4+3=5(4)=1-×=1+1=2【考点】有理数的混合运算22.据邵阳市统计局2013年公布的数据显示,邵阳市总人口为801.34万人,那么用科学记数法表示为()人.A.8.01346B.8.0134×106C.8.0134×107D.8.0134×108【答案】B.【解析】801.34万=8.0134×106,故选C.【考点】科学记数法—表示较大的数.23.某商场打出了促销广告如下表,对顾客实行优惠.(1)某人在此商场两次购物分别付款168元和423元,则他第一次付款168元,可购标价总值是元的货物;第二次付款423元,可购标价总值是元的货物.请列式计算:若他把两次购得的货物合在一次买,需要付多少钱?(2)如果字母(x>200)表示某顾客在此商场一次购物的货物标价总值,那么所付款数该如何用的代数式表示呢?【答案】(1)168;470;560.4元;(2)当时,付款数为0.9x;当x>500时,付款数为0.8x+50.【解析】(1)他第一次付款168元,没超过200,不予优惠,则可购标价总值是168元的货物;第二次付款423元,可按物价给予九折优惠可购标价总值是423÷0.9;他把两次购得的货物合在一次买,货物的价格为168+470=638元,则按照500元按九折优惠,超过500元部分按八折优惠进行计算,即500×90%+(638-500)×80%=450+110.4=560.4元;(2)分类讨论:当200<x≤500时,按物价给予九折优惠得到付款数为90%•x;当x>500时,500元按九折优惠,超过500元部分按八折优惠,可得到付款数为500×90%+80%(x-500).试题解析:解:(1)168;423÷0.9=470;168+470=638元,500×90%+(638-500)×80%=450+110.4=560.4元;故答案为168;470;(2)当200<x≤500时,付款数为90%•x;当x>500时,付款数为500×90%+80%(x-500)=0.8x+50.【考点】列代数式.24.化简:【答案】.【解析】根据合并同类项法则合并同类项即可.试题解析:解:原式=.【考点】整式的加减.25.从2开始,连续的偶数相加,它们和的情况如下表:(1)若n=8时,则S的值为_____________.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=__________________.(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.【答案】(1)72;(2)n(n+1)(3)2550【解析】(1)根据表中的式子可知当n=8,可知2+4+6+8+10+12+14+16=72=8×9;(2)首先确定加数的个数n=最后一个加数÷2,代入n(n+1)即可;(3)根据规律计算即可.试题解析:(1)若n=8时,则S的值为72(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=n(n+1)(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.解:原式=50×(50+1)=2550【考点】规律探索26.若m2+3n—1的值为5,则代数式2m2+6n+5的值为.【答案】17.【解析】根据m2+3n—1=5得:m2+3n=6,代数式2m2+6n+5=2(m2+3n)+5=2×6+5=12+5=17.【考点】求代数式的值.27.下面各组数中,相等的一组是().A.与B.与C.与D.与【答案】D.【解析】对各式进行化简得,A.=-4,=4,-4≠4,故此选项错误;B.=,=,≠,故此选项错误;C.=-2,=2,故此选项错误;D.=-27,=-27,所以=故本选项正确.故选:D.【考点】有理数的乘方;绝对值.28.在数轴上到-2所表示的点的距离为3个单位长度的点表示的数是.【答案】-5或1【解析】在数轴上,两点之间的距离是指两点所表示的数的差的绝对值,设这个点表示的数是x,根据题意可得:=3,解得:x=-5或x=1.【考点】数轴、距离29.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.【答案】12【解析】根据题意可得:51÷4=12(辆)……3(个),即最多能装配12辆汽车.【考点】有理数的除法30.计算(1)-9+12-3+8(2)(-1)+(-)+(+)-(+)(3)(-3)÷2÷(-3)×(-0.75)(4)-16-(1-0.5)××[2-(-3)2]【答案】(1)8;(2);(3);(4).【解析】根据有理数的运算顺序依次计算即可.试题解析:(1)原式=-12+20=8;原式=-1+--=;原式=;原式=-1-=.【考点】有理数的混合运算.31.(每小题5分,本题满分20分)计算:(1)(2);(3)(4)【答案】(1)8;(2)-156;(3)19;(4)-【解析】(1)首先根据有理数的加减法计算法则将括号去掉,然后再进行计算;(2)首先根据乘除法分别进行计算,然后再进行有理数减法计算;(3)首先根据幂的计算法则求出各式的幂,然后再进行有理数的加减法计算;(4)首先计算小括号,然后计算中括号,最后根据有理数的乘法计算法则进行计算.试题解析:(1)原式=12+18-7-15=30-22=8(2)厡式=-6-150=-156(3)厡式=-4+31-(-20)=-4+3+20=19(4)厡式=== =【考点】有理数的计算32.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则翻转2012次后,点B所对应的数是()A.2013 B.2010 C.2011 D.2012【答案】B.【解析】试题解析:结合数轴发现根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第二次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这一规律:因为2011=670×3+1=2010+1,所以翻转2011次后,点B所对应的数2011.故选B.【考点】规律型:图形的变化类.33.(2015秋•成都校级月考)观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出:=﹣;(2)计算:= ;(3)探究并计算:= ;(4)若|ab﹣3|与|b﹣1|互为相反数,求:+++…+的值.【答案】(1)﹣;(2);(3);(4).【解析】(1)类比给出的方法得出=﹣;(2)利用给出的方法拆分计算即可;(3)提取,进一步利用(1)中的拆分计算得出答案即可;(4)由非负数的性质得出a、b的数值,进一步代入计算拆分得出答案即可.解:(1)=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=;(4)∵|ab﹣3|与|b﹣1|互为相反数,∴|ab﹣3|+|b﹣1|=0,解得:a=3,b=1,∴原式=++++…+=×(1﹣+﹣+﹣+﹣+…+﹣)=×(1﹣)=×=.故答案为:﹣;;.【考点】规律型:数字的变化类;代数式求值.34.(2015秋•徐闻县期中)去括号:2a﹣(b+c)= .【答案】2a﹣b﹣c.【解析】根据去括号法则如果括号前是“﹣”,去括号后,括号里的各项都变号,即可得出答案.解:2a﹣(b+c)=2a﹣b﹣c;故答案为:2a﹣b﹣c.【考点】去括号与添括号.35.(2014•衡阳二模)下列四个运算中,结果最小的是()A.﹣1+(﹣2)B.1﹣(﹣2)C.1×(﹣2)D.1÷(﹣2)【答案】A【解析】本题是对有理数的大小比较和混合运算的法则的综合考查,减去一个数等于加上这个数的相反数.除以一个数等于乘以一个数的倒数.解:A、原式=﹣1﹣2=﹣3;B、原式=1+2=3;C、原式=﹣2;D、原式=1×(﹣)=﹣;∵﹣3<﹣2<﹣<3,∴在上面四个数中,最小的数是﹣3;故选A.【考点】有理数大小比较;有理数的混合运算.36.数轴上大于-4且小于5的正整数有()A.7个B.6个C.5个D.4个【答案】D.【解析】试题解析:根据有理数比较大小的方法,可得数轴上大于-4且小于5的正整数有4个:1、2、3、4.故选D.【考点】1.有理数大小比较;2.数轴.37.小明妈妈有记账的习惯,如收入300元记作+300元,则支出200元记作 .【答案】-200元.【解析】收入记作“+”,则支出记作“-”,则支出200元记作-200元【考点】表示相反意义的量.38.单项式-a2bc的系数是__________;次数是_________.【答案】,4.【解析】单项式的系数是;次数是4.故答案为:,4.【考点】单项式.39.下列代数式中多项式的个数是()(1)a;(2)2x2+2xy+y2;(3);(4)a2-;(5)-(x+y)A.1B.2C.3D.4【答案】C.【解析】试题解析:(2)2x2+2xy+y2;(3);(5)-(x+y)是多项式,故选C.【考点】多项式.40.有理数在数轴上的对应点的位置如图所示,则()A.B.C.D.【答案】C【解析】根据数轴可知a<0<b,且,因此可知a+b<0,a-b<0.故选C【考点】数轴与绝对值41.表示的意义是()A.6个—5相乘的积B.-5乘以6的积C.5个—6相乘的积D.6个—5相加的和【答案】A.【解析】根据乘方的意义可知,就是表示6个-5相乘的积.故选A.【考点】有理数的乘方.42.若﹣5x2y m与x n y是同类项,则m+n的值为()A.1B.2C.3D.4【答案】C【解析】根据同类项的性质:含有相同的字母,相同字母的指数相同,因此可知n=2,m=1,由此可得m+n=3.故选C【考点】同类项43.计算:【答案】-2【解析】根据有理数的运算顺序,运算律,运算法则,可逐步求解.试题解析:=-1-×(3-9)-2=-1-×(-6)-2=-1-(-1)-2=-1+1+(-2)=-2【考点】有理数的混合运算44.比较大小:______(填“<”、“=”或“>”).【答案】>【解析】两个负数之间比较大小,绝对值越大的数本身就越小【考点】数的大小比较45.(2015秋•鞍山期末)已知a和b互为相反数,m、n互为倒数,c=﹣2,那么a+b+的值等于.【答案】﹣.【解析】根据互为相反数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得mn=1,然后代入代数式进行计算即可得解.解:∵a和b互为相反数,∴a+b=0,∵m、n互为倒数,∴mn=1,∴a+b+=0+,=﹣.故答案为:﹣.【考点】代数式求值;相反数;倒数.46.(2015秋•绍兴校级期中)把一个长、宽、高分别为50cm,8cm,20cm的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的棱长是多少厘米?表面积是多少平方厘米?【答案】20cm.【解析】根据题意列出算式,求出即可.解:棱长为:=20(cm),表面积为:202×6=2400(平方厘米).答:锻造成的立方体铁块的棱长是20cm.【考点】立方根.47.某市近期公布的居民用天然气阶梯价格听证会方案如下:例:若某户2015年使用天气然400立方米,按该方案计算,则需缴纳天然气费为:2.53×360+2.78×(400﹣360)=1022(元);依此方案请回答:(1)若小明家2015年使用天然气500立方米,则需缴纳天然气费为元(直接写出结果);(2)若小红家2015年使用天然气650立方米,则小红家2015年需缴纳的天然气费为多少元?(3)依此方案计算,若某户2015年实际缴纳天然气费2286元,求该户2015年使用天然气多少立方米?【答案】(1)1300元;(2)1755元;(3)800立方米.【解析】(1)依题意可知,小明家天然气用量在第二档,列算式计算可得;(2)依题意可知,小红家天然气用量在第三档,列算式计算可得;(3)根据(2)计算结果可知,该户天然气用量属第三档,列方程求解可得.解:(1)根据题意可知,若小明家2015年使用天然气500立方米,则需缴纳天然气费为:2.53×360+2.78×(500﹣360)=1300(元);(2)若小红家2015年使用天然气650立方米,则小红家2015年需缴纳的天然气费为:2.53×360+2.78×(600﹣360)+3.54×(650﹣600)=1755(元);答:小红家2015年需缴纳的天然气费为1755元.(3)∵2286元>1755元,该用户2015年使用天然气超过600立方米,设该用户2015年使用天然气x立方米,依题意得:2.53×360+240×2.78+3.54×(x﹣600)=2286,解得x="800"答:该户2015年使用天然气800立方米.故答案为:(1)1300.【考点】一元一次方程的应用;有理数的混合运算.48.(2006•常德)的相反数是.【答案】.【解析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:的相反数是,故答案为:.【考点】相反数.49.(2015秋•利川市期末)下列说法中正确的是()A.有理数分为正数和负数B.有理数都有相反数C.有理数的绝对值都是正数D.﹣a表示负数【答案】B【解析】根据有理数的分类,绝对值的性质,相反数的意义,可得答案.解:A、有理数分为正数、零和负数,故A错误;B、有理数都有相反数,故B正确;C、有理数的绝对值都是非负数,故C错误;D、﹣a可能表示负数、零、正数,故D错误;故选:B.【考点】有理数.50.在下列各式中,正确的是()A.B.C.D.【答案】B.【解析】根据平方根和立方根的定义逐一进行计算得出结论.A.,故A错误;B.,故B正确;C.,故C错误;D.,故D错误,只有B是正确的.故选:B.【考点】平方根的定义;立方根的定义.51.化简求值:已知:(x﹣3)2=0,求3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2的值.【答案】2【解析】首先根据(x﹣3)2=0,可得x﹣3=0,|y|=0,据此分别求出x、y的值各是多少;然后化简3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2,再把求出的x、y的值代入化简后的算式,求出3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2的值是多少即可.解:∵(x﹣3)2=0,∴x﹣3=0,|y|=0,解得x=3,y=﹣;3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2=3x2y﹣2xy2+2xy﹣2×﹣3xy+5xy2=3x2y﹣2xy2+2xy﹣3x2y﹣3xy+5xy2=3xy2﹣xy=3×3×﹣3×(﹣)=1+1=2∴3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2的值是2.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.52.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A.1个B.2个C.3个D.4个【答案】A【解析】因为+(-2.1)=-2.1,-=-9,所以在数:+3、+(-2.1)、-、-π、0、-、中,正数只有+3一个,故选:A.【考点】正负数.53.化简或计算:﹣[﹣(﹣5)]= ,(﹣1)99= ,(﹣2)+3= .【答案】﹣1;﹣1;1【解析】原式去括号即可得到结果;原式利用乘方的意义计算即可得到结果;原式利用异号两数相加的法则计算即可得到结果.解:原式=﹣1;原式=﹣1;原式=1,故答案为:﹣1;﹣1;1【考点】有理数的混合运算.54.(1)(2)(3).【答案】(1)-4;(2)﹣;(3)-19【解析】(1)先算乘除,然后算加减即可;(2)先算乘方,再运用乘法的分配律计算即可;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解:(1)=﹣18÷3+2=﹣6+2=﹣4;(2)=(﹣+﹣)×4=﹣2+3﹣=﹣;(3)=﹣25×+×(﹣6)=﹣10﹣9=﹣19.【考点】有理数的混合运算.55.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1.试根据以上材料探索使等式(2x+3)x+2015=1成立的x的值.【答案】﹣1或﹣2015【解析】试题分析:根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.解:①当2x+3=1时,x=﹣1;②当2x+3=﹣1时,x=﹣2,但是指数x+2015=2013为奇数,所以舍去;③当x+2015=0时,x=﹣2015,且2×(﹣2015)+3≠0,所以符合题意;综上所述:x的值为﹣1或﹣2015.【考点】零指数幂;有理数的乘方.56.有理数a,b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0.一定成立的是()A.①②③B.③④C.②③④D.①③④【解析】根据数轴可得a>0,b<0,|b|>|a|,从而可作出判断.解:由数轴可得,a>0,b<0,|b|>|a|,故可得:a﹣b>0,|b|>a,ab<0;即②③④正确.故选C.【考点】数轴.57.下边给出的是某月的日历表,任意圈出一竖列上、相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能()A.27B.40C.54D.69【答案】C.【解析】试题解析:设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是(x-7)+x+(x+7)=3x,因而这三个数的和一定是3的倍数.则,这三个数的和不可能是40.故选C.【考点】列代数式.58.在数轴上与2的距离等于3个单位的点表示的数是【答案】5或-1.【解析】试题解析:若该数在2的左边,则这个数为:2-3=-1;若该数在2的右边,则这个数为:2+3=5.因此答案为:5或-1.【考点】数轴.59.(1)解方程(2)计算:+—(3)解方程(2x-1)2=36【答案】(1);(2)2-;(3)或【解析】(1)首先将②变形得出y=2x-9,然后代入①求出x的值,然后代入求出y的值,从而得出方程组的解;(2)首先根据绝对值、二次根式和立方根的计算法则求出各式的值,然后进行求和,得出答案;(3)首先根据平方根的性质得出(2x-1)的值,然后根据一元一次方程的解法得出答案.试题解析:(1)由②得y="2x-9" ③把③代入①得:3x+4(2x-9)=19解得:x=5把x=5代入③得,y=1∴原方程组的解为:(2)原式=5-4-=5-4-+1=2-(3)2x-1=±62x-1= 6或2x-1= -6∴或【考点】(1)解二元一次方程组;(2)实数的计算;(3)解一元二次方程.60.(﹣0.125)2012•(﹣8)2013= .【答案】﹣8【解析】由(﹣0.125)2012•(﹣8)2013=(﹣0.125)2012•(﹣8)2012•(﹣8),根据幂的乘方与积的乘方的运算法则求解即可.解:原式=(﹣0.125)2012•(﹣8)2012•(﹣8)=[(﹣0.125)×(﹣8)]2012×(﹣8)=12012×(﹣8)=﹣8故答案为:﹣8.。
初一数学数与式试题

初一数学数与式试题1.数a、b、c在数轴上的位置如图所示,且.(1)若;(2)用“<”从小到大把.【答案】解:(1)b为负数,c为正数,且,得b+c = 0,又,即,,因为,所以,(2)【解析】(1)根据题意可得b+c = 0,且从数轴上可知a是以个负数,从而得到a的值;(2)-a是a的相反数,互为相反数的两个数的绝对值相等,从而得到结果。
2.识图理解:请认真观察如图给出的未来一周某市的每天的最高气温和最低气温,直接回答后面提出的问题:(1)这一周该市的最高气温和最低气温分别是多少?(2)这一周中,星期几的温差最大?是多少?【答案】最高气温为9℃,最低气温为-4℃,这一周中星期四的温差最大,最大温差为8℃【解析】(1)根据图形即得结果;(2)先算出每一天的温差,再比较即可。
3..化简:,则_________.【答案】.【解析】本题考查绝对值的概念数绝对值的因为,所以,解得。
4.一个两位数,个位上的数字是,十位上的数字是,则这个两位数是____【答案】【解析】两位数=10×十位数字+个位数字.解:这个两位数是10a+b.用到的知识点为:两位数=10×十位数字+个位数字.5. (1)(2)【答案】(1)10(2)-16【解析】计算:解:原式…2分解:原式…1分…………4分…2分……………………3分……………4分6.百位数字是a,十位数字是b,个位数字是c的三位数是A.abc B.a+b+c C.100a+10b+c D.100c+10b+a【答案】C【解析】三位数的表示方法为:百位数字×100+十位数字×10+个位数字.解:依题意得:这个三位数是100a+10b+c.故选C.7.①计算:②计算:③化简:④化简:-[(-)+4]-⑤解方程:⑥解方程:【答案】略【解析】①②③化简:④化简:-[(-)+4]-⑤解方程:解:去括号得:移项得:并项得:化系数为1得:⑥解方程:解:去分母(两边同乘12)得:去括号得:移项得:并项得:化系数为1得:8.据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有℃【答案】310【解析】根据减去一个数等于加上这个数的相反数,可得计算:127-(-183)=127+183=310℃.【考点】正负数的意义9.请将数字0.000 012用科学记数法表示为.【答案】.【解析】根据科学记数法的定义可知,0.000 012=.故答案为:.【考点】科学记数法.10.(本题8分)因式分解:(1)(2)【答案】(1)(2)【解析】因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),据此可完成.试题解析:(1)===(2)==【考点】因式分解11.(10分)计算:(1)1+(﹣4)÷2﹣(+5)(2)﹣32×|﹣4|﹣4÷(﹣2)2.【答案】(1)﹣6;(2)﹣37.【解析】(1)先计算除法运算,再计算加减运算即可得到结果;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.试题解析:解:(1)原式=1﹣2﹣5=﹣6;(2)原式=﹣9×4﹣4÷4=﹣36﹣1=﹣37.【考点】有理数的混合运算.12.计算或化简:(1)﹣14+(﹣+﹣)×36;(2)﹣99×34;(3)2x+(5x﹣3y)﹣2(3x+y);(4)a2﹣2[a2﹣(2a2﹣b)].【答案】(1)-16;(2)﹣3496;(3)x﹣5y;(4)3a2﹣2b.【解析】(1)(2)直接利用有理数的运算法则和运算顺序进行解题;(3)(4)先去括号,再合并同类项,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.试题解析:(1)﹣14+(﹣+﹣)×36=﹣1﹣×36+×36﹣×36=﹣1﹣18+12﹣9=﹣16;(2)﹣99×34=(﹣100+)×34=﹣3400+4=﹣3496;(3)2x+(5x﹣3y)﹣2(3x+y)=2x+5x﹣3y﹣6x﹣2y=x﹣5y;(4)a2﹣2[a2﹣(2a2﹣b)]=a2﹣2a2+2(2a2﹣b)=a2﹣2a2+4a2﹣2b=3a2﹣2b.【考点】1.整式的加减;2.有理数的混合运算.13.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第个图案需根火柴,第个图案需根火柴,…,依此规律,第个图案需()根火柴.A.B.C.D.【答案】B【解析】观察图形可得:第1个图案需7=1×(1+3)+3根火柴,第2个图案需13=2×(2+3)+3根火柴,第3个图案需21=3×(3+3)+3,根火柴,…,所以第n个图案需n(n+3)+3根火柴,当n=11时,n(n+3)+3=11×(11+3)+3=157(根),故选B.【考点】探寻规律.14.比较大小:;(填“>”、“<”、或“=”符号).【答案】=,>【解析】根据相反数,绝对值,及两负数的大小比较,由题意可得:-(+9)=-9,-=-9,故=;根据两负数相比较,绝对值大的反而小,因此可知>.【考点】相反数,绝对值,两负数的大小比较15.下列各式中结果为正数的是()A.-(-5)2B.-︱-5︱C.-52D.︱-5︱【答案】D【解析】A、表示(-5)的平方的相反数,原式=-25;B、表示-5的绝对值的相反数,原式=-5;C、表示5的平方的相反数;原式=-25;D、表示-5的绝对值,原式=5.【考点】实数的计算16.多项式按字母的降幂排列为.【答案】-a3+a2b+a-b2【解析】a的降幂就是根据a的指数从大到小进行排列.【考点】幂17.已知a、b在数轴上的位置如图所示,那么下面结论正确的是()A.B.C.D.【答案】C.【解析】由点在数轴的位置,知:a>0,b<0,|a|<|b|,A.∵a>0,b<0,|a|<|b|,∴a﹣b>0,故本选项错误;B.∵a>0,b<0,|a|<|b|,∴a+b<0,故本选项错误;C.∵a>0,b<0,∴ab<0,故本选项正确;D.∵a>0,b<0,∴,故本选项错误.故选C.【考点】1.数轴;2.数形结合;3.分类讨论.18.如图,按此规律,第行最后一个数是2017.【答案】673【解析】根据数表可得:每一行的最后一个数分别是1,4,7,10…,所以第n行的最后一个数字为1+3(n-1)=3n-2,当 3n-2=2017时,解得n=673.【考点】数字规律.19.甲乙丙三地海拔高度分别为20米,-l5米,-10米,那么最高的地方比最低的地方高()A.10米B.25米C.35米D.5米【答案】C【解析】因为甲乙丙三地海拔高度分别为20米,-l5米,-10米,所以最高的地方的海拔高度为20米,最低的地方的海拔高度-l5米,那么最高的地方比最低的地方高=20-(-15)=20+15=35米,故选:C.【考点】有理数的加减.20.如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.【答案】D.【解析】A没有原点,故此选项错误;B.单位长度不统一,故此选项错误;C.没有正方向,故此选项错误;D.符合数轴的概念,故此选项正确.故选D.【考点】1.数轴;2.数形结合.21.多项式的次数及最高次项的系数分别是()A.B.C.D.【答案】A【解析】多项式中各单项式的最高次数作为多项式的次数.则本题中多项式的次数为3次,最高次项的系数为-3.【考点】多项式的次数22.单项式的系数是.【答案】-【解析】单项式的系数是指单项式前面的常数,则本题单项式的系数为-.【考点】单项式的系数23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续正偶数相加时,它们的和S与n之间的关系,用公式表示为_________________;(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值.【答案】(1)S=n(n+1);(2)22650;33720.【解析】根据给出的几个式子得出规律,然后根据规律进行计算试题解析:(1)S=n(n+1)(2)原式=300÷2×(300÷2+1)=150×151=22650原式=1+2+4+……+160+162+164+……+400-(1+2+4+……+160)=200×201+80×81=40200-6480=33720【考点】规律题24.奶奶提一篮子玉米到集贸市场去兑换大米,每2kg玉米兑换1kg大米,商贩用秤称得连篮子带玉米恰好20kg,于是商贩连篮子带大米给奶奶共10kg,在这个过程中谁吃亏?吃亏有多大?(设合适的字母,然后用字母表示)【答案】商贩吃亏,吃亏千克.【解析】首先设篮子的重量为x千克,然后求出商贩应给的大米的千克数,然后与实际给的数量进行比较.试题解析:设篮子重x千克,则玉米重(20-x)千克,则应换取的大米的重量为(10-)千克,实际得到的大米的重量为10千克则10-(10-)=千克∴商贩吃亏了,多给了千克,即篮子重量的一半.【考点】代数式的应用25.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是().A.4n+1B.4n+2C.4n+3D.4n+5【答案】A.【解析】由题意得,剪一次得到5段,即5=4×1+1;剪两次得到9段,即9=4×2+1;剪三次得到13段,即13=4×3+1,所以这样一共剪n次时绳子的段数是4n+1.故选:A.【考点】数字的变化规律类问题.26.如果m、n互为相反数,,互为倒数,等于()A.0B.2C.1D.-1【答案】C.【解析】试题解析:根据题意,得m+n=0,ab=1,∴|m+n-ab|=|0-1|=1.故选C.【考点】1.倒数;2.相反数;3.绝对值.27.(2015秋•南郑县校级月考)计算(1)﹣5﹣(﹣9)+13;(2)|﹣15|﹣(﹣2)﹣(﹣5);(3)9.9﹣(﹣1)+(﹣9.9)+(﹣10);(4)﹣24×(﹣+﹣).【答案】(1)原式=﹣5+9+13=﹣5+22=17;(2)原式=15+2+5=22;(3)原式=9.9﹣9.9+1﹣10=﹣9;(4)原式=20﹣9+2=13.【解析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用绝对值的代数意义及减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式利用乘法分配律计算即可得到结果.解:(1)原式=﹣5+9+13=﹣5+22=17;(2)原式=15+2+5=22;(3)原式=9.9﹣9.9+1﹣10=﹣9;(4)原式=20﹣9+2=13.【考点】有理数的混合运算.28.(2014秋•韶关期末)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?【答案】(1)17辆;(2)696辆.【解析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.解:(1)7﹣(﹣10)=17(辆);(2)100×7+(﹣1+3﹣2+4+7﹣5﹣10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆.【考点】正数和负数.29.的倒数是A.B.C.-3D.3【答案】B.【解析】因为乘积是1的两个数互为倒数,而(-3)×()=1.故选B.【考点】倒数.30.有理数5,,0,-2.9,3.14,,0.1,10中,分数有个,整数有个.【答案】5;3【解析】有理数5,,0,-2.9,3.14,,0.1,10中,分数有,-2.9,3.14,,0.1,共5个,整数有5,0,10,共3个.【考点】有理数的分类.31.下列运算正确的是A.3x2+2x3=5x5B.2x2+3x2=5x2C.2x2+3x2 =5x4D.2x2+3x3=6x5【答案】B.【解析】A、与不是同类项不能合并,故选项错误; B、,故选项正确;C、,故选项错误;与不是同类项不能合并,故选项错误.故选B.【考点】合并同类项.32.(2015秋•无锡期中)下列各组的两个数中,运算后结果相等的是()A.﹣24与(﹣2)4B.53与35C.﹣(﹣3)与﹣|﹣3|D.(﹣1)3与(﹣1)2013【答案】D【解析】根据有理数的乘方,绝对值的性质对各选项分析判断后利用排除法求解.解:A、﹣24=﹣16,(﹣2)4=16,﹣16≠16,故本选项错误;B、53=125,35=243,125≠243,故本选项错误;C、﹣(﹣3)=3,﹣|﹣3|=﹣3,3≠﹣3,故本选项错误;D、(﹣1)3=﹣1,(﹣1)2013=﹣1,﹣1=﹣1,故本选项正确.故选D.【考点】有理数的乘方;绝对值.33.计算:(1)(2)(3).【答案】(1)0(2)26(3)-17【解析】根据有理数混合运算的法则,运算律,和运算顺序可计算,解题过程中注意符号变化.试题解析:(1)===0(2)==18+8=26(3)===【考点】有理数的混合运算34.(2015•岳阳)实数﹣2015的绝对值是()A.2015B.﹣2015C.±2015D.【答案】A【解析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解:|﹣2015|=2015,故选:A.【考点】绝对值.35.已知多项式M、N,计算M-N.某同学做此题时误将看成了,求得其结果为,若,请你帮助他求得正确答案.【答案】-m2+4m-1.【解析】根据题意求出M,确定出正确的算式,去括号合并即可得到结果.试题解析:根据题意得:M=(3m2-2m-5)-(2m2-3m-2)=3m2-2m-5-2m2+3m+2=m2+m-3,则M-N=(m2+m-3)-(2m2-3m-2)=m2+m-3-2m2+3m+2=-m2+4m-1.【考点】整式的加减.36.计算02009+(-1)2010-(-1)2011的结果是()A.-2B.-1C.2D.1【答案】C【解析】零的任何非零次幂为0,-1的奇数次幂为-1,-1的偶数次幂为1,则原式=0+1-(-1)=2.【考点】幂的计算37.(1)已知求的值;(2)已知,且求的值.【答案】(1)或;(2)5.【解析】(1)根据绝对值为3的数有两个是得关于的方程,再求解;(2)根据绝对值的非负性,先求的值,再代入求值即可.试题解析:(1)由题意可得方程或,解方程得,解方程得.(2)因为所以得,解得,所以=5-8+8=5.【考点】1、非负数的性质;2、绝对值.38.若单项式2x2y a+b与﹣x1﹣b y4是同类项,则a-b的值为.【答案】6【解析】因为单项式2x2y a+b与﹣x1﹣b y4是同类项,所以1-b=2,所以b=-1,又a+b=4,所以a=5,所以a-b=5-(-1)=6.【考点】同类项39.(2015秋•日照期末)按如图所示的程序计算:若开始输入的x值为﹣2,则最后输出的结果是()A.352B.160C.112D.198【答案】B【解析】观察图形我们首先要理解其计算顺序,可以看出当x≥0时就计算上面那个代数式的值,反之计算下面代数式的值,不管计算哪个式子当结果出来后又会有两种情况,第一种是结果大于等于100,此时直接输出最终结果;第二种是结果小于100,此时刚要将结果返回再次计算,直到算出的值大于等于100为止,即可得出最终的结果.解:∵x=﹣2<0,∴代入代数式x2+6x计算得,(﹣2)2+6×(﹣2)=﹣8<100,∴将x=﹣8代入继续计算得,(﹣8)2+6×(﹣8)=16<100,∴需将x=16代入继续计算,注意x=16>0,所以应该代入计算得,结果为160>100,∴所以直接输出结果为160.故选:B.【考点】代数式求值.40.(2015秋•鞍山期末)已知|a﹣3|+(b+1)2=0,代数式的值比的值多1,求m 的值.【解析】先根据|a﹣3|+(b+1)2=0求出a,b的值,再根据代数式的值比的值多1列出方程=+1,把a,b的值代入解出x的值.解:∵|a﹣3|≥0,(b+1)2≥0,且|a﹣3|+(b+1)2=0,∴a﹣3=0且b+1=0,解得:a=3,b=﹣1.由题意得:,即:,,解得:m=0,∴m的值为0.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.41.(2013•新华区一模)计算:﹣(﹣1)2= .【答案】﹣1【解析】根据有理数的乘方的定义解答.解:﹣(﹣1)2=﹣1.故答案为:﹣1.【考点】有理数的乘方.42.如果两个数m、n互为相反数,那么下列结论不正确的是()A.m+n=0B.C.|m|=|n|D.数轴上,表示这两个数的点到原点的距离相等【答案】B【解析】根据相反数的定义进行判断即可.解:A.由相反数的性质知:m+n=0,故A正确;B.∵m+n=0,∴m=﹣n,∴,故B错误;C.由于相反数是一对符号相反,但绝对值相等的数,所以|m|=|n|,故C正确;D.因为由C知|m|=|n|,所以数轴上,表示这两个数的点到原点的距离相等,故D正确,故选B.【考点】相反数;数轴;绝对值.43.(2015秋•故城县期末)(1)计算:﹣12﹣(1﹣)×[2﹣(﹣3)2](2)求(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2)的值,其中x=﹣1,y=2.【答案】(1);(2)3.【解析】(1)原式先计算乘方运算,子啊计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:(1)原式=﹣1﹣××(﹣7)=﹣1+=;(2)原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2,当x=﹣1,y=2时,原式=﹣1+4=3.【考点】有理数的混合运算;整式的加减—化简求值.44.计算:(1)(+)+(﹣2)﹣(﹣2)﹣(+3);(2)﹣24+5×(﹣3)﹣6÷(﹣).【答案】(1)﹣3;(2)5.【解析】(1)先算同分母分数,再相加即可求解;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解:(1)(+)+(﹣2)﹣(﹣2)﹣(+3)=(+2)+(﹣2﹣3)=3﹣6=﹣3;(2)﹣24+5×(﹣3)﹣6÷(﹣)=﹣16﹣15+36=5.【考点】有理数的混合运算.45. -2+1= .【答案】-1.【解析】同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,故-2+1=-1.【考点】有理数加法计算.46.有理数与()A.互为相反数B.互为倒数C.相等D.和为【答案】A.【解析】则互为相反数.故选A.【考点】相反数.47.在﹣1,0.2,,3,0,﹣0.3,中,负分数有,整数有.【答案】﹣,﹣0.3;﹣1,3,0.【解析】按照有理数的分类填写:有理数.解:负分数有﹣,﹣0.3;整数有﹣1,3,0.【考点】有理数.48.(1)36﹣76+(﹣23)﹣105(2)(3)(4)(5)(6).【答案】(1)﹣168;(2)﹣5;(3);(4)﹣7;(5)14.【解析】(1)原式结合后,相加即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式结合后,相加即可得到结果;(5)原式利用绝对值的代数意义化简,计算即可得到结果;(6)原式利用减法法则变形,计算即可得到结果.解:(1)原式=36﹣(76+23+105)=36﹣204=﹣168;(2)原式=﹣0.2+3.2﹣7﹣1=3﹣8=﹣5;(3)原式===;(4)原式=﹣1.75﹣2.25﹣6+3=﹣4﹣3=﹣7;(5)原式=21.76﹣7.26+2.5﹣3=14.【考点】有理数的加减混合运算.49.两个数的和为正数,那么这两个数是()A.正数B.负数C.一正一负D.至少一个为正数【答案】D【解析】根据有理数的加法法则进行逐一分析即可.解:A、不一定,例如:﹣1+2=1,错误;B、错误,两负数相加和必为负数;C、不一定,例如:2与6的和8为正数,但是2与6都是正数,并不是一正一负,错误;D、正确.故选D.【考点】有理数的加法.50.一天,小红和小利利用温差测量山峰的高度,小红在山顶测得温度是﹣1℃,小利此时在山脚测得温度是5℃,已知该地区高度每增加100米,气温大约下降0.8℃,这个山峰的高度大约是米.【答案】750【解析】设这个山峰的高度大约x米,再根据题意列出关系式,求出x的值即可.解:设这个山峰的高度大约x米,则5﹣×0.8=﹣1,解得x=750(米).故答案为:750.【考点】有理数的混合运算.51.= ;[(﹣3)2= .【答案】,3【解析】试题分析:根据立方根的定义计算即可求解;先算平方,再根据分数指数幂的计算法则计算即可求解.解:=[(﹣3)2==3.故答案为:,3.【考点】立方根;分数指数幂.52.下列各式计算正确的是()A.﹣2a+5b="3ab"B.6a+a=6a2C.4m2n﹣2mn2=2mnD.3ab2﹣5b2a=﹣2ab2【答案】D【解析】本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.解:解:A、﹣2a+5b不是同类项,不能合并.错误;B、6a+a=7a,错误;C、4m2n﹣2mn2不是同类项,不能合并.错误;D、3ab2﹣5b2a=﹣2ab2.正确.故选D.【考点】合并同类项.53.先化简再求值(1)(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.【答案】(1)﹣3;(2)﹣2.【解析】(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.解:(1)(4a2﹣3a)﹣(1﹣4a+4a2)=4a2﹣3a﹣1+4a﹣4a2=a﹣1,当a=﹣2时,原式=﹣2﹣1=﹣3;(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn=mn,当m=1,n=﹣2时,原式=﹣2.【考点】整式的加减—化简求值.54.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样【答案】C【解析】设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选:C.【考点】列代数式.55.计算:= .【答案】.【解析】由同底数幂的乘法法则可知,【考点】同底数幂的乘法.56.先化简,再求值(1)、,其中(2)、,其中(3)、已知,求的值。