第7章吸附离子交换法膜分离法泡沫浮选分离法2
膜分离法、浮选分离法

溶液的种类、浓度和温度 (与膜本身无关)
反渗透的去除规律
(1)高价离子去除率大于低价离子 A13+ >Fe3+>Mg2+ >Ca2+ >Li+ (2)去除有机物的特性受分子构造与膜亲和性的影响 分子量:高分子量>低分子量 亲和性:醛类>酸类>胺类 侧链结构:第三级>异位>第二级>第一级 (3)对分子量>300的电解质、非电解质都可有效的除 去,其中分子量在100~300之间的去除率为90%以 上 。
第一节 概述
四、膜分离法的特点 (一)、优点 7、膜分离装臵简单、操作容易、维修费用低、易于 自动化。膜设备本身没有运动的部件,工作温度又在 室温附近,所以很少需要维护,可靠度很高。 (二)、缺点 1、耐药性、耐热性、耐溶剂能力有限,故使用范围 受限制; 2、膜面易污染,要不定时清洗 ; 3、分离效果有限,需与其他分离工艺组合使用。
三、超滤和微滤分离 (四)浓差极化与膜污染
1、浓差极化— 由于膜的选择透过性,被截留组分 在膜料液侧表面积累,其浓度比料液主体浓度高很多, 组分在边界层和膜内形成浓度分布。若组分在膜面浓 度达到饱和,透过液中的浓度近似为零,则膜渗透速 率与操作压力无关,这种现象称为浓差极化。
2、膜污染— 料液中的某些组分在膜表面或膜孔中 沉积导致膜渗透速率下降的现象。
第三节 膜分离技术
四、渗析分离
(一)概念 把一张半透膜臵于两种溶液(一种溶液称为料液, 另一种称为渗析液)之间并使之接触时,两种溶液中 的大分子溶质原地不动,小分子溶质(包括溶剂)可 以透过膜而相互交换,这种由于浓度差为推动力的膜 分离称为渗析,也叫透析。 推动力:浓度差
泡沫浮选分离介绍

泡沫浮选分离技术一、摘要泡沫浮选分离法是在一定的条件下,向试液鼓入空气或氮气使之产生气泡,将溶液中存在的欲分离富集的微量组分(离子、分子、胶体或固体颗粒)吸着或吸附在其上面并随着气泡浮到液面,从而与母液分离,收集后即达到分离和富集的目的。
泡沫浮选分离法是在矿物分离中一种常用的方法,在分析化学的分离富集物质中取得显著的成绩。
随着分析技术的提高,及跟其它测试手段的使用。
泡沫浮选技术必将在稀溶液的分离,有价物质的回收方面有更加广泛的使用。
二、基本概念泡沫分离技术是近十几年发展起来的新型分离技术之一,在化工、生化、医药、污水处理等领域得到了广泛的应用。
泡沫分离是根据吸附的原理,向含表面活性物质的液体中鼓泡,使液体内的表面活性物质聚集在气液界面(气泡的表面)上,在液体主体上方形成泡沫层,将泡沫层和液相主体分开,就可以达到浓缩表面活性物质(在泡沫层)和净化液相主体的目的。
目前一般只能分离溶液中ppm 量级的物质。
高纯金属中微杂质的分离亦有采用此法的。
被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相络合的物质,但它们必须具备和某一类型的表面活性物质能够络合或鳌合的能力。
人们通常把凡是利用气体在溶液中鼓泡,以达到分离目的的这类方法总称为泡沫吸附分离技术,简称泡沫分离技术。
按分离对象是溶液还是含有固体例子的悬浮液、胶体溶液,泡沫分离可以分成泡沫分馏和泡沫浮选两种分离方法。
泡沫浮选分离就是利用某种物质(如离子、分子、胶体、固体颗粒、悬浮微粒),表面活性的不同,可被吸附或粘附在从溶液中升起的泡沫表面上,从而与母液分离的技术。
泡沫浮选分离技术用于分离不溶解的物质,它的优点是使用的分离装置简单并易于放大,可连续和间歇操作并能实现自动化和连续化操作。
三.原理表面活性剂在水溶液中有富集(吸附)在气/液界、泡沫浮选的简单原面(溶液中气饱表面)的倾向,它在气泡表面是定向排列的,分子内带电的极性端朝向气-液界面的水的一边,这时表面活性剂将与一种或一类的离子由于物理的 (如静电引力)或化学的(如络合作用)原因相互作用而联结在一起,被气泡带至液面,从而达到分离的目的。
吸附法、离子交换法、膜析法

按合成树脂母体
苯乙烯系类 丙烯酸系类
c0
cx
tbcb
txt
池漏曲线
0 饱和度% 100
树
A
B 脂A
B
原
C
D 高C
D
度
R2Ca100% RNa100%
交换带:树脂床的厚度恰好足够使容积△V的水流过 时完成去除,其中全部钙离子的任务,这个厚度的 树脂称为交换带。
水中的Ca2+和Mg2+构成水的硬度
着在树脂颗粒上。 4、清洗 清洗是将树脂层内残留的再生废液清洗掉,清洗水 量一般为树脂体积的4~13倍。
1、转换离子组成,回收贵金属离子,或汇集有毒害 的离子。
2、浓缩离子的浓度 将废液中低浓度微量物质进行富集浓缩。
3、废水脱盐和酸、碱废水处理
4、提纯分离 溶液中同时会有Cr2O72- 、SO42-、NO3-、Cl-通过阴
1、交换 交换过程主要与树脂层高度、水流速度、原水浓 度、树脂性能以及再生程度等因素有关。 2、反洗 反洗的目的在于松动树脂层,使注入的再生液能分布 均匀,同时及时清除积存在树脂层内的杂质、碎粒和 气泡。反洗使树脂层膨胀40~60%,反冲流速约 15m/h,历时约15min。
3、再生 再生液浓度对树脂再生程度有较大影响。 食盐再生液浓度: 5~10% 盐酸再生液浓度: 4~6% 硫酸再生液浓度:<2%,以免再生时生成CaSO4粘
高出于水面的水柱高度是由于溶液的渗透压所致。 如果我们向溶液的一侧施加压力,并且超过它的渗 透压,则溶液中的水就会透过半透膜,流向纯水一 侧,而溶质被截留在溶液一侧,这种方法就是反渗 透法。
任何溶液都具有相应的渗透压,其数值决定 于溶液中溶质的分子数,而与溶质的性质无 关。其数学表达式为:
第七章新分离方法优秀课件

起分离作用的固体膜可以是有机膜、无机膜、生物 膜或复合膜,分离对象可以是液体或气体。
固膜分离技术广泛用于石油、化工、生化、制药、 食品、环保等领域。
7.3.1 膜分பைடு நூலகம்技术的分类
7.3.1 膜分离技术的分类
7.3.5 电渗析简介
1. 电渗析使用的膜
电渗析使用的分离膜为离子交换膜。离子交换膜分阴 离子交换膜和阳离子交换膜,两种膜通常需配套使用。
7.3.5 电渗析简介
2. 电渗析工艺过程
1-料液 2-阴极 3-阳极 4-阴极废水 5-阳极废水 6-稀产品水 7-浓产品水 A-阴极膜 C-阳极膜
7.4 耦合分离技术
基本概念
耦合分离技术是针对一些难分离体系采取 的一类组合分离技术。如前面介绍过的萃取精 馏技术就是萃取和精馏耦合的分离技术。
由于耦合分离技术采用了组合分离技术, 因而具有所组合的分离技术的优势,可突破单 一分离技术选择性分离上存在的不足。
第七章新分离方法
7.1 泡沫吸附分离技术
基本概念
泡沫分离技术就是根据表面吸附原理,籍鼓泡使溶液内的表面活性 物质聚集在气液界面(气泡表面),上浮至溶液主体上方形成泡沫层, 将泡沫层与液相主体分开,就可达到浓缩表面活性物质和净化液相 主体的目的。
被浓缩在泡沫层的物质可以是表面活性物质,也可以是与表面活 性物质具有亲和能力的其他物质,如金属阳离子、阴离子、蛋白质 、酶、染料、矿物粒子、溶液悬浮物质等。
7.2 液膜分离技术
基本概念
液膜分离技术就是以液膜为分离介质、以浓差为 推动力的液-液萃取与反萃过程结合为一体的分离过 程。
起分离作用的液膜通常为添加了表面活性剂的溶剂 相,液膜两边的被萃相和反萃相通常都是可互溶相。
化工分离工程第7章 吸附

FLGC
活性氧化铝和分子筛的脱水性能比较
活性氧化铝:在水蒸气分压高的范围内吸附容量较高 沸石分子筛:在低水蒸气分压下吸附容量较高 因此,若要求水蒸气的脱除程度高,应选用? 若吸附容量更为重要,则应选用? 也可混用,先用氧化铝脱除大部分水,之后用分子筛进 行深度干燥。
FLGC
其他吸附剂
反应性吸附剂:能与气相或液相混合物中多组分进行化学 反应而使之去除。适用于去除微量组分(反应不可逆,不 能现场再生;吸附负荷高时,吸附剂更换过于频繁,不经 济)。 生物吸着剂:利用微生物将吸附的有机物氧化分解成二氧 化碳和水等,如工业废水的生化处理
FLGC
分子筛
分子筛亦称沸石,是一种晶态的金属水合铝硅酸盐晶体。
化学通式:Mex/n[(AlO2)x(SiO2)y]mH2O,其中Me阳离子,n 为原子价数,m为结晶水分子数 每一种分子筛由高度规则的笼和孔组成,它具有高度选择 性吸附性能,是由于其结构形成许多与外部相通的均一微 孔。
FLGC
根据原料配比、组成和制造方法不同可以制成各种孔 径和形状的分子筛。见课本表7-3。 强极性吸附剂,对极性分子如H2O、CO2、H2S等有 很强的亲和力,对氨氮的吸附效果好,而对有机物的 亲和力较弱。 分子筛主要用于气态物的分离和有机溶剂痕量水的去 除。
工业吸附剂可以是球形、圆柱形、片状或粉末状 粒度范围从50μm至1.2cm,比表面积从300至1200m2/g, 颗粒的孔隙度30%—85%, 平均孔径1-20nm 孔径:按纯化学和应用化学国际协会的定义,微孔孔径 小于2nm,中孔为2~50nm,大孔大于50nm
FLGC
1.密度
1)填充密度B(又称体积密度): 是指单位填充体积的吸 附剂质量。通常将烘干的吸附剂装入量筒中,摇实至体积 不变,此时吸附剂的质量与该吸附剂所占的体积比称为填 充密度。
泡沫浮选分离技术

泡沫浮选分离技术一、摘要泡沫浮选分离法是在一定的条件下,向试液鼓入空气或氮气使之产生气泡,将溶液中存在的欲分离富集的微量组分(离子、分子、胶体或固体颗粒)吸着或吸附在其上面并随着气泡浮到液面,从而与母液分离,收集后即达到分离和富集的目的。
泡沫浮选分离法是在矿物分离中一种常用的方法,在分析化学的分离富集物质中取得显著的成绩。
随着分析技术的提高,及跟其它测试手段的使用。
泡沫浮选技术必将在稀溶液的分离,有价物质的回收方面有更加广泛的使用.二、基本概念泡沫分离技术是近十几年发展起来的新型分离技术之一,在化工、生化、医药、污水处理等领域得到了广泛的应用。
泡沫分离是根据吸附的原理,向含表面活性物质的液体中鼓泡,使液体内的表面活性物质聚集在气液界面(气泡的表面)上,在液体主体上方形成泡沫层,将泡沫层和液相主体分开,就可以达到浓缩表面活性物质(在泡沫层)和净化液相主体的目的。
目前一般只能分离溶液中ppm量级的物质。
高纯金属中微杂质的分离亦有采用此法的。
被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相络合的物质,但它们必须具备和某一类型的表面活性物质能够络合或鳌合的能力。
人们通常把凡是利用气体在溶液中鼓泡,以达到分离目的的这类方法总称为泡沫吸附分离技术,简称泡沫分离技术。
按分离对象是溶液还是含有固体例子的悬浮液、胶体溶液,泡沫分离可以分成泡沫分馏和泡沫浮选两种分离方法。
泡沫浮选分离就是利用某种物质(如离子、分子、胶体、固体颗粒、悬浮微粒),表面活性的不同,可被吸附或粘附在从溶液中升起的泡沫表面上,从而与母液分离的技术.泡沫浮选分离技术用于分离不溶解的物质,它的优点是使用的分离装置简单并易于放大,可连续和间歇操作并能实现自动化和连续化操作。
三.原理表面活性剂在水溶液中有富集(吸附)在气/液界、泡沫浮选的简单原面(溶液中气饱表面)的倾向,它在气泡表面是定向排列的,分子内带电的极性端朝向气—液界面的水的一边,这时表面活性剂将与一种或一类的离子由于物理的(如静电引力)或化学的(如络合作用)原因相互作用而联结在一起,被气泡带至液面,从而达到分离的目的。
7.1泡沫吸附

泡沫浮选用于分离不溶解的物质, 泡沫浮选用于分离不溶解的物质,按照被分离 用于分离不溶解的物质 对象是分子还是胶体, 对象是分子还是胶体,是大颗粒还是小颗粒等 又可分为: 等,又可分为
• 1 矿物浮选,用于矿石和脉石离子的分离; 矿物浮选,用于矿石和脉石离子的分离; • 2 粗粒浮选和微粒浮选,常用于共生矿中单质 粗粒浮选和微粒浮选, 的分离,前者粒子直径大致1~10mm内,后者 的分离,前者粒子直径大致 ~ 内 的粒子直径为1µm ~1mm ,处理的对象为胶 的粒子直径为 高分子物质或矿浆; 体、高分子物质或矿浆; • 3 离子浮选和分子浮选,用于分离非表面活性 离子浮选和分子浮选, 粒子或分子, 粒子或分子,需要向体系中加入浮选捕集剂与 被分离组分形成难溶或不溶物, 被分离组分形成难溶或不溶物,然后以浮渣形 式将其脱除
泡沫浮选是一种能处理大量试样的快速浓集分离方法: 泡沫浮选是一种能处理大量试样的快速浓集分离方法: 是一种能处理大量试样的快速浓集分离方法 日常生活肥皂泡沫分离污秽物; ● 日常生活肥皂泡沫分离污秽物; 在选矿、精制蔗糖、环境废水处理等方面分离; ● 在选矿、精制蔗糖、环境废水处理等方面分离; 在分析上作为痕量元素的分离富集方法, 在分析上作为痕量元素的分离富集方法, 特别适用于 L)的分离富集 的分离富集。 大量的极稀溶液(10 大量的极稀溶液(10-7-10-15mol/ L)的分离富集。对于共 沉淀分离中不易过滤或离心分离的胶状、絮状沉淀, 沉淀分离中不易过滤或离心分离的胶状、絮状沉淀,对 于离子对溶剂萃取分离中经常遇到的分层费时、 于离子对溶剂萃取分离中经常遇到的分层费时、两液界 面不清晰等难题, 可改用适当的浮选分离解决。其特点: 面不清晰等难题, 可改用适当的浮选分离解决。其特点: ☆ 样品处理量大,0.5-2L 样品处理量大,0.5富集倍数大,100☆ 富集倍数大,100-10000 回收率高,90%以上 ☆ 回收率高,90%以上 易于联用, ☆ 易于联用,成为超高灵敏度光度法
第七章泡沫与絮凝分离技术

• 泡沫浮选: • a、矿物浮选:主要用于矿石等粒子的分离,自然界中的矿 物多以硫化物形式存在. 表面活性剂 鼓泡 表面吸附 富 集。 • b、微粒浮选:粒子直径在1um-1mm的微粒,如胶体、高 分子物质、矿物液等难以用通常的浮选法进行浮选分离: 担 体加入 吸附 浮选分离。 • c、沉淀浮选: 絮凝剂 沉淀 加入表面活性剂鼓泡 吸附 浮选。 • d、离子浮选与分子浮选:适用于分离非表面活性物质的分 子或离子:浮选捕集剂 与待分离组分形成难溶或不溶的 沉淀 泡沫分离。 • e、吸附胶体浮选: 胶体粒子(捕集剂) 吸附 • 鼓泡浮选分离。 •
7.2: 泡沫分离的基本原理
• 7.2.1:表面张力 • 表面张力:表面张力r可定义为将液体表面扩大1cm2时所 需做的功。r= dW/dA • W为功的单位,A为面积单位. • r与物质的性质、表面温度、压力和组成有关,对于一个纯 液体,r越大,即扩大其表面积时所要作的就越多,因此就 越难起泡。反之,r越小,液体就越容易起泡。因此表面 张力r亦即是表示在指定条件下液体单位面积的内能、焓、 自由焓、自由能。 • 7.2.2: 表面活性剂 • 某种液体,在温度、压力一定时,其表面张力也一定,在液 体中加入少量的其它物质,如果能使液体的表面张力下降的 话,这类物质就称为表面活性剂.
• 7.1.2:泡沫分离技术的分类 • 凡是利用泡沫进行分离的方法,都可统称为泡沫分离 法。泡沫分离一般又可分为泡沫分馏及泡沫浮选,前者 用于分离溶解的物质,由于其操作费用和设计等在许多 方面与精馏过程相似,所以叫泡沫分馏或泡沫精馏,但也 可以笼统地称为泡沫分离。后者主要用于分离难溶解 的物质(包括胶体和小颗粒物质)。
7.3:泡沫的形成过程及其性质
• 7.3.1:气泡的形成过程 • 泡沫是气体分散在液体中的多相非均匀体。 • 液体中泡沫的形成有两种方法: – 一种是将气体通过连续相-液体时采用搅拌或通过细孔 鼓泡的方法被分散而形成泡沫, – 第二方法是先将气体以分子或离子的形式溶解于液体中, 然后设法使这些溶解的气体从液体中析出而形成大量的 泡沫。例如啤酒或汽水中的泡沫就属于后一类。 用气体向水鼓泡时,能产生很多泡沫,但这此泡沫处于一种不稳 定状态,会很快消失,当水中存在有表面活性剂时,形成的泡沫 就比较稳定。 气体分散在溶液内部形成被液体包裹住的气泡,表面活性剂在 气泡表面作定向排列:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 吸附和离子交换法
§1. 吸附分离法 利用适当的吸附剂,在一定的pH条件下,使欲分离
物被吸附剂吸附,然后再用适当的洗脱剂将吸附物解 脱下来,达到分离纯化的目的,这种提取方法称为吸 附分离法。
吸附分离法中所用的吸附剂可以分为有机吸附剂和无 机吸附剂。
常用的有机吸附剂有活性炭、球形碳化树脂、聚酰胺、纤维 素、大孔树脂等;
在选择方法时。主要考虑以下几个因素,混合物中组分的性质, 被处理溶液的体积,要求的分离程度。特别在大规模的工业应用 中,还应考虑作业的费用。
在大多数情况下,膜分离比其它分离技术更有利。
膜又分为合成膜和液膜。合成膜也称固态膜。
固态膜经过:
(1)五十年代初期的阴、阳离子交换膜; (2)六十年代初期的一、二价阴、阳子交换膜; (3)六十年代中、末期的反渗透膜和超滤醋酸纤维膜,特
(4) 其吸附力受pH的影响,如碱性抗生素在中性情况下 吸附,而在酸性条件下解吸;
(5) 吸附溶质的量在未达到平衡前,一般随温度的升高而 增加。
2、疏基棉纤维
疏基棉纤维是将巯基联结在棉花的大分子链上而制 成的,其制备方法有液相法和气相法两种,
液相法就是将棉花纤维浸泡在巯基酸(硫代乙醇酸)溶液中, 避光加热反应即可生成巯基棉;
品、冶金、环保、原子能、生物学、医学、和医药工业中, ቤተ መጻሕፍቲ ባይዱ于热学上和化学上不稳定的化学品的制备 用膜法生产饮用水。费用较低。 在工业污水处理、有价值的产品的回收等方面。膜法都具 有许多优点。
膜法分离纯化技术包括:
微孔滤膜 超滤膜 反渗透膜 离子交换膜 液态膜 生物膜 其它膜分离方法。
别是1965年世界上第一张具有实用价值的反渗透膜出现 之后。膜技术受到了很多技术领域的热切关注,得到迅速 的发展,很快就形成了膜科学。
固态膜中除了深层过滤介质的多孔陶瓷、石墨、金 属等外,都为高分子膜。
§2. 合成膜的结构、性质和应用: 膜是物质分离过程中最核心的部分。根据膜的结构。半透膜可以
于大孔网状聚合物吸附剂,它们已在微生物制药生 产上得到广泛应用,如四环索、土霉索、红霉紊、 赤霉索、维生索B12等的提取和精制。 4、氨基纤维素 氨基纤维素主要用于无机阴离子的富集。
5、聚丙烯酰胺污一羧酸螯合纤维素(黄原脂棉) 聚丙烯酰胺污一羧酸螯舍纤维索是富集ppt级痕量元
素的好方法。
§2. 离子交换法(离子交换树脂法)
第七章 吸附、离子交换法、膜分 离法、泡沫浮选分离法
吸附分离法;离子交换法。 膜分离法简介;合成膜的结构、性质和应用;液膜的 结构性质和应用;化学键和物质分配过程中的作用力。 泡沫浮选分离法分类和原理;泡沫浮选法;浮选在分析化 学中的应用;影响泡沫分离效率的各种因素。 重点:吸附分离法、离子交换法、膜分离法和泡沫浮选分 离法。
膜分离方法与常用的分离技术例如蒸馏、结晶、溶 剂萃取等方法相比,具有以下的优点:
不发生相的变化 耗能量低 操作方便 设备简单 效率较高 比较经济 可在常温下进行
因此适用于对温度敏感的溶液。
通常使用的分离方法及其最适应用范围列于表1。
表1 各种分离方法的适用范围
从表1可看出: 能分离离子范围的方法有反渗透、渗析、电渗析、离子交换、 压渗析、蒸馏、结晶、吸附、萃取等方法。 能分离大分子范围的方法有超滤、凝胶色层谱、电泳、超离心 机等方法。 一般过滤、微滤、超滤、反渗透都是过滤,它们适合的分子大 小范围(孔径范围)是不同的。实际上微滤、超滤和反渗透三种 是膜分离中常用的技术。
活性炭作为吸附剂有以下几个特点:
(1) 对极性基团多的化合物的吸附力大于极性基团少的化 合物。如活性炭对酸性和碱性氨基酸的吸附力大于中性氨 基酸,对羟基脯氨酸的暇附力大于脯氨酸;
(2) 对芳香族化合物的吸附力大于脂肪族化台物; (3) 对分子量大的化合物的吸附力大于分子量小的化合物。
如对多糖的吸附力大于对单糖的吸附力,对肽的吸附力大 于对氨基酸的吸附力:
分为三种基本类型:微孔膜、均相膜和电荷结构膜。最近高分子 富集膜和中空纤维膜发展迅速。
1。微孔膜 微孔膜是一种具有一定孔径(10毫微米~50微米)的多孔固体膜。
微孔膜可由多种材料制成,如金属氧化物、石墨、金属和各种聚 合物等。最简单的膜是由二氧化硅或氧化铝烧结制成的多孔陶瓷。 最广泛的商品微孔膜是由纤维素聚合物通过相转换过程制备的。 此外,还有对局部结晶的均相聚合物薄膜进行处理和拉伸法和径 迹——蚀刻法。微孔膜主要用于微过滤(微滤)。
气相法是将疏基酸的蒸汽与棉花纤维接触反应而生成疏基 棉。
疏基棉纤维是一种固体吸附剂,吸附性能取决于棉 花纤维比表面上的疏基数量。疏基棉纤维素主要用 于无机阳离子的富集,对于金属离子的吸附能力与 吸附酸度、金属离子溶液通过疏基棉纤维的速度、 元素的性质等有关。
3、大孔网状聚合物吸附剂 聚苯乙烯、聚丙烯酸醣、聚亚砜、聚丙烯酰胺均属
聚四氟乙烯与聚偏氟乙烯制成的微过滤膜,在美国、 德国和日本等国均巳有商品生产。美国Millipore公 司的Fluoropore系列与Mitmitex系列。 Fluoropore系列的膜是由聚四氟乙烯制成。粘合 于高密度的聚乙烯上。能耐所有的有机溶剂、光刻 胶、酸、碱或其它化学物质。
用离子交换树脂作吸附剂,将溶液中的欲测 物靠厍仑力吸附在树脂上,然后用适当的洗 脱剂将吸附物从树脂上洗脱下来,达到分离 纯化富集的目的。
第二节 膜分离法 §1. 简介: 膜法分离是近三十年发展起来的一种新型分离纯化技术。 目前膜法已是一种分离多种物质的高效经济的工具。 用膜法可以不破坏化合物的组分和化学性质。在化工、食
常用的无机吸附剂有白土、氧化铝、硅酸、硅藻土等。
几种吸附剂的性能:
1、活性炭 活性炭是非极性吸附剂,在水溶液中吸附力最强,在有机溶剂中
吸附力较弱。它表面积大,吸附力强,分离效果好,来源容易, 价格便宜,但是由于生产原料和制备方法的不同,其吸附力也不 同,另外其色黑质轻,易造成环境污染。
活性炭主要有粉末活性炭、颗粒状活性炭和锦纶一活性炭。 粉末活性炭表面积最大,吸附力量强: 锦纶一活性炭是以锦纶为粘合剂。将粉末状活性炭制成颗粒。 其表面积界于粉末活性炭和颗粒活性炭之间,其吸附能力比粉 末活性炭和颗粒活性炭弱,但在使用锦纶活性炭分离酸性氨基 酸和碱性氨基酸时效果良好。