理论力学课件
理论力学课件

理论力学Theoretical Mechanics综合实验楼504 yliu5@要求•上课认真听讲,作笔记,积极思考•及时完成作业考核平时+研究性学习报告+期末绪论1.关于力学2.力学的发展简史3.力学的学科性质4.力学的研究方法5.力学的学科分类6.关于理论力学第1章静力学基本概念§1-1 刚体和力的概念§1-2 静力学公理§1-3 力的解析表示吊车梁的弯曲变形一般不超过跨度(A、B间距离)的1/500,水平方向变形更小。
因此,研究吊车梁的平衡规律时,变形是次要因素,可略去不计。
实际物体受力时,其内部各点间的相对距离都要发生改变,其结果是使物体的形状和尺寸改变,这种改变称为变形(deformation)。
物体变形很小时,变形对物体的运动和平衡的影响甚微,因而在研究力的作用效应时,可以忽略不计,这时的物体便可抽象为刚体(rigid body)。
如果变形体在某一力系作用下已处于平衡,则将此变形体刚化为刚体时,其平衡不变,这一论断称为刚化原理(rigidity principle)。
当研究航天器轨道问题时——质点当研究航天器姿态问题时——刚体、质点系、刚体系2.力的概念力(Force)是物体间相互的机械作用力对物体产生的效应一般可分为两个方面:一是物体运动状态的改变,另一个是物体形状的改变。
通常把前者称为力的运动效应(effect of motion),后者称为力的变形效应(effect of deformation)。
理论力学中把物体都视为刚体,因而只研究力的运动效应,即研究力使刚体的移动或转动状态发生改变这两方面的效应。
来表示,如图。
物体受力一般是通过物体间直接或间接接触进行的。
接触处多数情况下不是一个点,而是具有一定尺寸的面积。
因此无论是施力体还是受力体,其接触处所受的力都是作用在接触面积上的分布力(distributed force)。
当分布力作用面积很小时,为了分析计算方便起见,可以将分布力简化为作用于一点的合力,称为集中力(concentrated force)。
ppt版本-哈工大版理论力学课件(全套)

理论力学课程的内容包括质点和刚体的运动、弹性力学、 流体力学、振动和波等,其体系由静力学、运动学和动力 学三个部分组成。
理论力学课程的内容非常广泛,主要包括质点和刚体的运 动、弹性力学、流体力学、振动和波等方面的知识。这些 内容在理论力学体系中占据着重要的地位,为后续的工程 技术和科学研究提供了重要的理论基础和应用方法。同时 ,理论力学体系由静力学、运动学和动力学三个部分组成 ,这三个部分相互联系、相互渗透,构成了完整的理论力 学体系。
详细描述
理论力学作为经典力学的一个重要分支,主要研究物体运动规律、力的作用机制以及它们之间的相互作用。通过 对质点和刚体的运动规律、力的合成与分解、动量守恒和能量守恒等基本原理的研究,理论力学为各种工程技术 和科学研究提供了重要的理论基础和应用方法。
理论力学课程的内容和体系
要点一
总结词
要点二
详细描述
置和速度。
刚体的转动
02
描述刚体绕固定点或轴线的旋转运动,通过角速度矢量和角加
速度矢量表示刚体的转动状态。
刚体的复合运动
03
描述刚体同时存在的平动和转动,通过平动和转动运动的合成
来描述。
刚体的动力学方程
牛顿第二定律
表述了物体运动与力的关系,即物体受到的合外力等 于其质量与加速度的乘积。
动量定理
表述了物体动量的变化率等于作用在物体上的力与时 间的乘积。
由于非惯性参考系中物体受到的力不是真实的外力,而是由于参考 系加速或旋转产生的惯性力。
非惯性参考系的应用
在研究地球上的物体运动时,常常需要用到非惯性参考系,例如研 究地球的自转和公转对物体运动的影响。
05
刚体的运动
01
描述刚体在空间中的位置和运动,通过平动矢量表示刚体的位
理论力学经典课件-振动

2 n
x C1er1t C2er2t
本征值与运动微分方程旳通解旳形式与阻尼比有关。
3. 小阻尼情形
当 n< n 时,阻尼系数 c 2 mk ,这时阻尼较小,
称为小阻尼情形。其两个根为共轭复数,即:
r1 n i
2 n
n2
r2 n i
2 n
n2
其方程旳解为
或
x Aent sin(
2 n
F l 3 3EI
Fl 3 3EI
F ky yst
k
3EI l3
k-等效刚度
Wl 3 mgl 3 yst 3EI 3EI
k
3EI l3
my mg F
F ky yst
my ky 0 此即梁-物块旳运动微分方程
y Asin(nt )
串联弹簧与并联弹簧旳等效刚度
1. 串 联
meq-等效质量:使系统在广 义坐标方向产生单位加 速 度,需要在这一坐标方 向施加的力或力矩。
meq q keq q=0
q=C1cosnt C2cosnt
q
2 n
q=0
q=Asinnt
=
n
keq -系统的固有频率;A meq
q02
q0
n
2
振动的振幅;
arctan
n q0
q0
-振动的初位相; q0-初始广义坐标; q0-初始速度。
l
处于平衡,若k、m、a、l 等均
为已知。
ak
m
求:系统微振动旳固有频率
解:取静平衡位置为其坐标原点,
由动量矩定理,得
F
JO
d 2
dt 2
mgl cos
Fa cos
《哈工大理论力学》课件

总结词
动量守恒定律在物理学、工程学和天文 学等领域有着广泛的应用。
VS
详细描述
在碰撞、火箭推进、行星运动、相对论等 领域中,动量守恒定律都起着重要的作用 。通过应用动量守恒定律,可以预测系统 的运动状态和变化趋势,为实际应用提供 重要的理论支持。
04
角动量与角动量守恒定律
角动量的定义与计算
角动量的定义
体育竞技
在花样滑冰、冰球等体育项目 中,运动员通过改变身体姿态 来调整角动量,以完成各种高
难度动作。
05
万有引力定律
万有引力定律的表述
总结词
万有引力定律是描述两个质点之间由于它们 的质量而相互吸引的力的大小和方向的定律 。
详细描述
万有引力定律由艾萨克·牛顿提出,表述为 任意两个质点通过连心线方向上的力相互吸 引,该力的大小与它们质量的乘积成正比,
02
牛顿运动定律
牛顿运动定律的表述
第一定律(惯性定律)
除非受到外力作用,否则保持静止或匀速直线运动 的状态不变。
第二定律(动量定律)
物体的加速度与作用力成正比,与物体的质量成反 比。
第三定律(作用与反作用定律)
对于任何作用力,都存在一个大小相等、方向相反 的反作用力。
牛顿运动定律的应用
动力学问题
弹性力学的应用实例
总结词:实际应用
详细描述:弹性力学在工程领域有广 泛的应用,如桥梁、建筑、机械和航 空航天等。应用实例包括梁的弯曲、 柱的拉伸和压缩、壳体的变形等。
THANKS
感谢观看
提供理论基础和解决方案。
理论力学的发展历程
总结词
理论力学的发展经历了古典力学和相对论力学两个阶段,相对论力学对于高速运动和强引力场的研究具有重要意 义。
理论力学获奖课件

已知:R,1,2,OM 水平,求vM
解:1、动点:M点。动系:框架 BACD 2、绝对运动:未知
相对运动:圆周运动(圆心O点)
牵连运动:定轴转动(AB轴)
3、 大小 方向
va ve vr
? R2 R1
?√ √
va ve2 vr2 R 12 22
课堂习题:已知,vr ,求1、2两处旳 aC 大小。
2
vr
aC1 0 aC 2 2 ωvr
1
方向⊥纸面对外
3-3 速度、加速度合成定理
做题措施和环节 1.合理选动点、动系
① 动点相对动系有运动 ② 相对轨迹要简要
2.正确画运动矢量图。由轨迹定方向。
3.灵活投影法求大小。
例7-8 刨床旳急回机构如图所示。曲柄OA旳 一端A与滑块用铰链连接。当曲柄OA以匀角速度ω 绕固定轴O转动时,滑块在摇杆O1B上滑动,并带
动系为滑槽, 动点为滑块A, 三种轨迹
aa
ar
A
ae arn
3-2-1 三种运动旳概念
O
va
动系为斜面, 动点为轮心O。
va
veO
vr
va
3-2 点旳复合运动概念
aa
ae O
ar
a
利用坐标变换建立三种运动之间旳关系
动点:M,动系:O’x’y’
绝对运动 x x t
运动方程
y
y
t
相对运动 x xt
3.
va ve vr
大小 r ? ?
方向 √ √ √
ve va sin r sin
1
ve O1 A
r 2
l2 r2
理论力学哈工大第六版课件(经典)

绪
论
理论力学
1
牛顿第一定律 任何物体都要保持匀速直线运动或静止状态,直到外力 迫使它改变运动状态为止
牛顿第二定律 物体加速度的大小跟作用力成正比,跟物体的质量成反 比,且与物体质量的倒数成正比;加速度的方向跟作用 力的方向相同
牛顿第三定律 相互作用的两个物体之间的作用力和反作用力总是大 小相等,方向相反,作用在同一条直线上。
(2) 球铰链
约束特点:通过球与球壳将构件连接,构件可以绕球心任意 转动,但构件与球心不能有任何移动.
约束力:当忽略摩擦时,球与球座亦是光滑约束问题.约束 力通过接触点,并指向球心,是一个不能预先确定的空间力.可用 三个正交分力表示.
(3)止推轴承
约束特点: 止推轴承比径向轴承多一个轴
向的位移限制.
F2
FR
为一个合力,此合力也作用于该点,合力
的大小和方向由这两个力为邻边所构成的 A
F1
平行四边形的对角线来确定。
即:合力为原两力的矢量和。
FR
F2
F2
F1 FR
FR F1F2 力三角形 A
A
F1
理论力学
10
公理2 二力平衡条件
作用于同一刚体上的两个力,使刚体保持平衡的 必要与充分条件是: 这两个力
图. 解:取屋架 画出简图
画出主动力
画出约束力
例1-3
水平均质梁 AB重为 ,P1电动机重
为 ,P不2 计杆 的C自D重,画出杆 和梁 的CD受力图A。B
解:
取 CD杆,其为二力构件,简称二
力杆,其受力图如图(b)
取 AB梁,其受力图如图 (c)
CD杆的受力图能否画
为图(d)所示?
理论力学说课PPT课件

机械运动实例
总结词
机械运动是理论力学的传统应用领域,涉及 各种实际机械系统的运动规律。
详细描述
机械运动是理论力学中最为常见的应用领域 之一。各种实际机械系统,如汽车、飞机、 机器和机器人等的运动规律,都需要通过理 论力学进行分析和描述。通过研究机械运动, 可以深入理解力矩、动量、动能等力学概念, 以及它们在机械系统中的具体应用。
自我评价
通过本课程的学习,我掌握了理论力 学的基本知识和分析方法,对物理学
的理解更加深入
我认为自己的逻辑思维、抽象思维和 创新能力得到了提高,解决问题的能 力也有所增强
建议
建议增加一些与实际应用相关的案例 和实验,以更好地理解理论力学的应 用价值
对于一些较难理解的概念和公式,希 望能够有更多的解释和练习题
详细描述
力的分析方法包括矢量表示法、直角坐标表示法和极坐标表 示法等。通过力的合成与分解,可以确定物体运动状态的变 化。力矩的计算则涉及到转动惯量、角速度和动量矩等概念 。
运动分析方法
总结词
运动分析方法主要研究物体运动轨迹、速度和加速度等参数。
详细描述
运动分析方法包括对质点和刚体的运动学分析,通过求解运动微 分方程或积分方程,可以确定物体的运动轨迹、速度和加速度等 参数。这些参数对于理解力学系统的运动规律和相互作用至关重 要。
本课程总结
提高了学生解决实际问题的能力 改进方向
针对不同专业需求,调整教学内容和深度,更好地满足学生需求
本课程总结
01
加强实验和实践环节,提高学生 的动手能力和实践经验
02
引入更多现代技术和方法,更新 教材和教学方法,保持课程的前 沿性
力学发展历程与展望
力学发展史
理论力学知识点ppt课件

图 (a)
图 (b)
图 (c)
6
静力学
第一章 静力学公理和物体的受力分析
由此可见,对于刚体来说,作用其上力的三要素是:力的 大小、方向和作用线。此时,力是一个滑动矢量。
公理3 力的平行四边形法则
作用于物体上同一点的两个力,可以合成一个合力。合力 的作用点仍在该点,其大小和方向由这两个力为边构成的平行 四边形的对角线来确定。如图(a)所示。即
பைடு நூலகம்
FR=F1+F2
也可以由力的三角形来确定合力的大小和方向,如图 (b)(c )。
图(a)
图(b)
7
图(c)
静力学
第一章 静力学公理和物体的受力分析
推论 三力平衡汇交定理
作用于刚体上三个相互平衡的力,若其中任意两个力 的作用线汇交于一点,则第三个力的作用线必交于同一点, 且三个力的作用线在同一平面内。
5
静力学
第一章 静力学公理和物体的受力分析
由此公理可以导出下列推论: 推论 力的可传性
作用于刚体上某点的力,可以沿其作用线移到刚体内 任意一点,并不改变该力对刚体的作用。
证明:刚体上的点A处作用有力F,如图(a)所示。根 据公理2,可在力F的作用线上任取一点B,加上一对平衡 力F1和F2,使其 F=F2 = - F1 ,如图 (b)所示。再根据公 理2,去掉一对平衡力系F和 F1 ,这样只剩下力 F2 = F,如 图 (c )所示,即将力 F沿其作用线移到了点B。
根据力的定义,约束对其被约束物体的作用,实际上就 是力的作用,这种力称为约束力。它的大小是未知的,以后 可用平衡条件求出,但它的方向必与该约束对被约束的物体 所能阻止的位移方向相反。
11
静力学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章转动参照系
本章应掌握①转动参照系中的速度、加速度计算公式及有关概念;
②转动参照系中的动力学方程;③惯性力的有关概念、计算公式;④地球自转产生的影响。
第一节平面转动参照系
本节应掌握:①绝对运动、相对运动、牵连运动的有关概念及相互关系;特别是科里奥利加速度的产生原因;②平动转动参照系中的速度和加速度。
一、绝对运动、相对运动、牵连运动
有定系οξηζ,另一平面以角速度ω绕轴旋转,平板上固定坐标系oxyz,oz轴与οζ轴重合。
运动质点P相对板运动。
由定系οξηζ看到的质点的运动叫绝对运动;动系oxyz看到的质点运动叫相对运动;定系上看到的因动系转动导致质点所在位置的运动叫牵连运动。
绝对速度、加速度记为;相对速度、加速度记为V',a'。
二、平动参照系中的速度、加速度
1、v和a的计算公式
速度:(为牵连速度)
加速度:
其中,牵连加速度a l为:
(转动加速度+向心加速度)
科里奥利加速度:
2、科里奥利加速度a c
①它产生条件是:动系对定系有转动;质点相对动系的运动速度不为零,而且运动方向与转轴方向不平行。
②它产生原因是:科氏加速度的产生在于牵连运动与相对运动
的相互影响:从静止系看来,一方面牵连运动使相对速度发生改变,另一方面,相对运动也使牵连速度中的发生改变,两者各贡献,结果科氏加速度为。
三、平面转动参照系问题解答例
关键是分清定系,动系和运动物体;然后适当选取坐标系,按公式计算。
[例1]P263 4.1题
等腰直角三角形OAB,以匀角速ω绕点O转动,质点P以相对速度沿AB边运动。
三角形转一周时,P点走过AB。
求P质点在A 点之速度、加速度(已知AB=b)
解:(1)相对动系(直角三角形)的速度
v r=b/T=b/(2π/ω)=bω/2π(方向)
A点的牵连速度(方向垂直)
由V=V r+V e,利用矢量合成法则,得到
(2)加速度,因匀速,所以相对加速度α'=0 又匀角速转动,所以角加速
牵连加速度,大小,方向沿
科氏加速度注意到,所以其大小
方向与AB边垂直(见图4.1.1)
由,利用矢量合成法则则得到:
与斜边的夹角
第二节空间转动参照系
本节要求:①掌握空间转动参照系中绝对、相对、牵连变化率等概念;②掌握空间转动参照系中的速度V、加速度a的计算公式。
一、绝对、相对、牵连变化率
设动系固定在刚体上并随刚体在空间转动,有定系s(οξηζ),两坐标系原点重合,有一物理量矢量G随时间t变化。
刚体的转动角速度ω。
则定系S上看到的物理量G的变化率称为绝对变
化率,记为;动系上看到的变化率叫相对变化率,记为;由于动系转动造成物体随同转动而具有的相对定系的时间变化率叫
牵连变化率。
利用是动系单位矢量),对时间求导可以得到:
(1)
(1)式中的最后一项为牵连变化率。
该式表明:绝对变化率为相对变化率与牵连变化率的矢量和。
二、空间转动参照系中的速度和加速度
在(1)中分别令G=r和令G=v,得到
(1)
(2)
其中:为相对加速度
为牵连加速度
为科里奥利加速度
(2)式表明:绝对加速度等于相对加速度、牵连加速度与科氏加速度矢量和。
第三节非惯性系动力学
本节要求是①掌握平面转动参照系中的动力学方程以及三种惯性力;②掌握平面转动参照系中动力学问题的求解步骤;③了解空间转动参照系中的动力学方程。
一、平面转动参照系中的动力学方程
由移项,两边同乘以m,得到
(1)
注意到:(作用于质点的合外力)。
而
(转动加速度与向心加速度的矢量和,称为牵连加速度),
为科氏加速度。
若令称为牵连力,称为科里奥利力。
则
即(2)
(2)式就是平面转动参照系中的动力学方程。
应注意:非惯性系中牛顿第二定律不成立,平面转动参照系不是惯性系。
但引入牵连力,科氏力的概念后,牛顿定律在非惯性系上律照常成立。
其中:
惯性力是由动系作变角速转动引起。
惯性离心力,是动系转动引起。
科氏力是由动系的转动和质点对转动的相对运动引起。
应注意:惯性离心力与离心力的区别:①离心力(如正电荷靠近正离子时受的斥力)是真实力,而惯性离心力是在转动系中观察者为解释物理现象而假想的力;②离心力无论动系或定系均可见到,而惯性离心力只在动系中才能体会得到。
二、平面转动参照系中的质点动力学问题解答例
已知动系和质点受力情况,求质点运动规律的一般步骤为:
①确定动系和定系,以及运动质点,选取坐标系;②分析质点受的力(主动力、惯性力);③写出动系中的动力学方程及其分量形式;
④求解方程。
[例1]书P265 4.10题
小环套在光滑圆圈上,而圆圈在水平面内以匀角速ω绕圆圈上某点o并垂直於圆圈平面的轴转动。
求小环沿圆圈切线方向的运动方程。
解:如图4.3.1,取圆圈为动系,小环为运动物体。
对动系而言,小环受力有:
重力mg和圆圈对环的支持力N(方向垂直于环面),两者平衡,环受圆圈反作用力(方向沿cp方向),环的相对速度方向如图(沿P点切线),则科氏力,其方向指向圆心C (沿pc方向),大小为因圆圈作匀角速转动,故只有惯
性离心力, 大小为,方向沿op
方向,所以质点的运动方程为:
取动系的切线方向,其方程为:
(1)
利用
代入(1)式,得到:
同除ma,得到运动方程:
第四节地球自转所产生的影响
地球有自转,公转,其中公转角速很小,它的影响可忽略,但地球自转的影响不可忽视。
本节应重点掌握地球自转引起的惯性离心力和里科奥利力对地球上运动物体的影响。
一、惯性离心力的影响
如图4.4.1,地球绕地轴(过南北极)旋转,角速ω,地面上一
质点m,受万有引力作用(),
同时因地球自转还受惯性离心力作用,惯性离心力的大小为,合力即为重力。
显然,重力的作用线一般并不通过地球的球心,只有在南北极时重力才通过地心。
二、科里奥利力的影响
设物体从地球北半球某点P以速度V'相对地球沿经线运动。
P点的纬度λ,由质点动力学方程:
由于科氏力的存在,使地球上运动物体的运动受影响:
(1)由于科氏力的作用,使南北向的气流发生东西向的偏转;北半球地面附近的气流由北向南推进时,则气流向西偏离,成为东北贸易风;反之,而南半球地面附近自南向北的气流,也向西偏离,成为东南贸易风。
(2)由于科氏力的作用,使北半球上自北向南流的河流,右岸冲刷更甚。
(3)由于科氏力的作用,使自由落体有偏东现象。
偏东的数值与物体所在的纬度有关,也与下落的物理高度h以及纬度λ有关:
赤道附近偏东最甚,而两极偏东为零。