2017理论力学超典型例题
《理论力学》静力学典型习题+答案

1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。
试求二力F1和 F2之间的关系。
解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。
F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。
试求 A 和 C 点处的拘束力。
解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。
曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。
AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。
对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。
2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。
2017理论力学超典型例题

匀质细杆 AB 的质量是 M ,长度是 2l ,放在铅直面内,两端分别 沿光滑的铅直墙壁和光滑的水平地面滑动。假设杆的初位 置与墙成交角 0 ,初角速度等于零;试求杆沿铅直墙壁下滑时 的角速度和角加速度 ,以及杆开始脱离墙壁时它与墙壁所成 的角度 1 .。
例题
解:
在 A 端脱离墙壁以前,受力如图所示。 杆作平面运动,取坐标系 Oxyz ,则杆的运 动微分方程可写成
C N A M x C N B Mg M y N B l sin N Al cos I C
(1) ( 2) (3)
ቤተ መጻሕፍቲ ባይዱ
例题
由几何关系知 xC l sin yC l cos
( 4) (5)
将式(4)和(5)对时间求导,得
cos , C l x sin C l y cos l 2 sin C l x sin l 2 cos C l y (a ) ( b)
例题6-7
根据虚位移原理的平衡方程,有
mg F mg
δ W F δ xC mg δ y D mg δ y E F 2l (cos 1 δ 1 cos 2 δ 2 ) mgl sin 1 δ 1 mgl (2 sin 1 δ 1 sin 2 δ 2 ) 0
例题
aA = aAn + aA = aCx + aCy + aAC + aACn 在绳 BO 刚剪断的瞬时,杆的角速度ω = 0 ,角加速度 ε≠0.因此 aACn = AC · ω2 = 0 而
aAC = lε/2
又 aAn = 0,加速度各分量的方向如图(c)所示.把 aA 投影到点 A 轨迹的法线 AO 上,就得到
2017级南阳理工理论力学试题及答案

期末考试
剩余时间 : 78分 : 48秒
1. ( 单选题 ) 平面内一非平衡共点力系和一非平衡力偶系最后可能合成的情况是( )。(本 题2.0分)
A、 一合力偶; B、 一合力; C、 相平衡; D、 无法进一步合成。
A、 与物体的重量成正比 B、 与物体的重力在支承面的法线方向的大小成正比 C、 与相互接触物体之间的正压力大小成正比 D、 由力系的平衡方程来确定
13. ( 单选题 ) 满足下述哪个条件的运动是刚体的平面运动( )(本题2.0分)
A、 刚体运动时,其上某直线始终与其初始位置保持平行 B、 刚体运动时,其上某两条相交直线始终与各自初始位置保持平行 C、 刚体运动时,其上所有点到某固定平面的距离始终保持不变 D、 刚体运动时,其上每一点都在某固定平面上运动。
33. ( 填空题 ) 在静力学中主要研究三方面问题,即__、__、__。(本题4.0分)
答题1:
代码语言
物体的受力分析
当前已输入7个字符, 您还可以输入9993个字符。
答题2:
代码语言
力系的等效与简化
当前已输入8个字符, 您还可以输入9992个字符。
答题3:
代码语言
力系的平衡条件及应用
当前已输入10个字符, 您还可以输入9990个字符。
34. ( 填空题 ) 空间力偶的三个要素是 __、__ 和__ 。(本题4.0分)
答题1:
代码语言
力偶矩的大小
当前已输入6个字符, 您还可以输入9994个字符。
答题2:
代码语言
理论力学2017期末试卷及答案

姓名:__________大 连 理 工 大 学 学号:__________课 程 名 称: 理论力学 试卷: A 考试形式: 闭卷院系:__________ 授课院(系):__力学系_____ 考试日期:2017年1月9 日 试卷共 6 页 班级:__________装 一.简答题 (共30分, 每题5分)1. 图示机构中均质杆OA 、AB 完全相同,质量为m ,长度为l ,图示瞬时OA 杆角速度为1ω,角加速度为1α,AB 杆角速度为2ω,角加速度为2α。
根据达朗贝尔原理,试将AB 杆的惯性力向其质心简化。
(求惯性力和力偶的大小,方向标在右图上)订2. 图示构件由圆盘和两杆铰接而成,均质圆盘质量为2m ,半径为4l /,两根相同的均质杆长为l ,质量为m ,构件绕O 轴定轴转动,求该构件对O 轴的转动惯量O J 。
线得分 题一.2图601ω1603. 图示机构中均质杆OA 的质量为m ,长度为l ,绕O 轴匀速转动,角速度为ω,通过均质AB 杆带动均质圆轮A 的在地面上纯滚动,AB 杆质量为2m ,长度为2l ,圆轮质量为m ,半径为l/3,当OA 杆处于铅直位置时,求系统对O 轴的动量矩。
4. 图示桁架各夹角均为60,求AB 杆内力。
5. 图示机构中杆AB 以角速度ω绕A 轴匀速转动,由CB 杆带动滑块C 在滑槽中运动,已知AB 杆长为l ,CB 杆长为4l ,求滑块C 的运动方程和速度方程。
题一.3图题一.4图 题一.5图x6. 滑块A 和滑块B 与杆由铰链连接,分别在水平面和铅直面内滑动,在图示位置平衡,滑块质量均为m ,不计杆的自重。
试利用虚位移原理求滑块A 、B 所受摩擦力间的关系。
二.(15分)图示结构由直角折杆ABC 及杆CD 、EG 铰接而成,受集中力和线性分布力作用,求A 、D 处约束力和EG 杆的内力。
得分题一.6图三.(15分)图示起重机简图,机身重W = 80kN ,重力作用线通过E 点;三个轮子A ,B ,C与地面接触点的连线ABC 为等边三角形。
《理论力学》动力学典型习题+答案

学习 资料 整理 分享《动力学I 》第一章 运动学部分习题参考解答1-3 解:运动方程:θtan l y =,其中kt =θ。
将运动方程对时间求导并将030=θ代入得34cos cos 22lklk l y v ====θθθ 938cos sin 2232lk lk y a =-==θθ1-6证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知:a a v v yn cos ==θ,所以: yv va a n =将c v y =,ρ2n v a =代入上式可得 ρc v a 3=证毕 1-7证明:因为n2a v =ρ,v a a v a ⨯==θsin n所以:va ⨯=3v ρ证毕1-10解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式:t v L s 0-=,并且 222x l s +=将上面两式对时间求导得: 0v s-= ,x x s s 22= 由此解得:xsv x-= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2002v v s x x x =-=+ (b)将(a)式代入(b)式可得:3220220xlv x x v x a x -=-==(负号说明滑块A 的加速度向上)1-11解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为xR x 22cos -=θ (b ) 将上式代入(a )式得到A 点速度的大小为: 22Rx x Rv A -=ω (c )由于x v A -=,(c )式可写成:Rx R x xω=--22 ,将该式两边平方可得: 222222)(x R R x xω=- 将上式两边对时间求导可得:x x R x x R x xx 2232222)(2ω=-- 将上式消去x2后,可求得:22242)(R x xR x --=ω由上式可知滑块A 的加速度方向向左,其大小为 22242)(R xxR a A -=ω1-13解:动点:套筒A ;动系:OA 杆; 定系:机座; 运动分析:绝对运动:直线运动;o vo va ve vr vxovxot学习 资料 整理 分享 相对运动:直线运动; 牵连运动:定轴转动。
理论力学习题及解答1

理论力学习题及解答第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
理论力学精选80题

图示机构由四根杆组成,已知:各杆重均为P,长均为L,弹簧原长为L。,弹性系数为K,B端在光滑水平面上。没弹簧受压时不会失隐,试用虚位移原理求系统的平衡位置θ。
计算题
图示结构由AC、CE、ED三个刚杆组成,已知:P=3KN,M=1KN·m,L=1m,用虚位面刚架中,自重不计,已知:q1=10KN,m,q2=20KN/m,P=16KN。试求:支座A、B、E的反力。
计算题:
计算题
构架由AC、CD、DB三根杆用铰链C和D连接,其他支承和载荷如图所示。在杆DB的中点E作用集中力F=8kN,均布载荷集度q=4kN/m,力偶矩M=10kN•m,尺寸a=1m。如果不计杆件重,求固定端A的约束力。
理论力学精选80题
北京科技大学理论力学课程组编
计算题
平面结构如图,A、B为固定铰支座,已知:а=1m,α=30o,在铰链D处作用一铅直载荷Q=1KN,在AC杆的中点作用一水平载荷P=0.4KN,各构件自重不计,试求支座A、B的反力及杆CB,杆CD的内力。
计算题
构架如图,在水平杆AD的中点E和D点,各铰接一直杆EG及DG,此二杆在G点与GH杆铰接,GH杆为铅直方向,其在H点又与水平直杆BH及直角弯杆CH铰接,在D、G铰上各装一个定滑轮Ⅰ及Ⅱ,半径相同,一无重绳跨过此二滑轮,其一端固于BH杆的K点,另一端挂一重为P的重物,细绳LK与BH垂直,已知:P=100N,q=200N/m,R=0.4m,a=1m,b=0.6m,滑轮及各杆重不计,求固定铰支座A、B、C的反力。
计算题
在平面机构中,已知:AB=CD=EH=r,AC=BD= r, K、E分别是AC、BD的中点,图示瞬时,D点正好在KH的连线上,且DH= r,不计自重及摩擦。已知 ,用虚位移原理求平衡时力偶M的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MyC NB Mg
( 2)
IC NBl sin N Al cos (3)
例题
最后得杆 AB 的角加速度
3g sin
(c)
4l
利用关系 dd d 把上式化成积分 dt d d
d
3g
sin d
0
4ቤተ መጻሕፍቲ ባይዱ 0
A
将上式沿铅垂方向投影,得
aC
art
1 2
l
联立求解得
N
1 4
mg
C
aC mg
例题
用长 l 的两根绳子 AO 和 BO 把长 l 、质量是 m 的匀质细杆悬在点 O
(图 a )。当杆静止时,突然剪断绳子 BO ,试求刚剪断瞬时另一绳子 AO 的拉力。
解:
绳子 BO 剪断后,杆 AB 将开始在铅直面内
(a)
把(c) 和(d)的表达式在 = 1时的值代入
上式,得关系
3g sin
4l
l
3g 4l
sin
1
cos1
l
3g 2l
(cos 0
cos1) sin
1
(c)
整理后,求得杆开始脱离墙时与墙所成的
夹角
1
cos1(
2 3
cos0
)
3g 2l
(cos
0
cos
mg F
mg
例题6-7
解: 本例的系统具有两个自由度,它的位置可以
用角 1 和 2 (以顺时针为正)来表示。各主动力的
作用点有关坐标是
yD l cos1 yE 2l cos1 l cos2 xC 2l sin 1 2l sin 2
求得杆 AB的角速度
3g 2l
(cos 0
cos
)
(d )
例题
杆开始脱离墙壁时它与墙壁所成的角度 1:
MxC N A
当杆即将脱离墙时,NA→0。以NA= 0代 入(1),再根据(a)得
lcos1 l2 sin 1
( 1)
xC lcos l2 sin
xC lcos ,
yC lsin
xC lcos l2 sin
(a)
yC lsin l2 cos
( b)
把 (a)和(b)分别代入 (1)和(2), 再把 NA和 NB的值代入式 (3)
MxC N A
( 1)
例题
aA = aAn + aA = aCx + aCy + aAC + aACn
在绳 BO 刚剪断的瞬时,杆的角速度ω = 0 ,角加速度 ε≠0.因此
aACn = AC ·ω2 = 0
而
aAC = lε/2
又 aAn = 0,加速度各分量的方向如图(c)所示.把 aA 投影到点 A 轨迹的法线 AO 上,就得到
的力 RQ 和一个力偶,两者都在运动平面 内, RQ 的两个分量大小分别是
RxQ = maCx , RyQ = maCy
aAt y
T aC
ε
y
C aCx
x
G
力偶矩 MCQ 的大小是
MCQ = JCz´ε
旋向与ε相反( 如图b)
例题
由动静法写出杆的动态平衡方程,有
Fx 0, Fy 0,
例题
匀质细杆 AB 的质量是 M ,长度是 2l ,放在铅直面内,两端分别 沿光滑的铅直墙壁和光滑的水平地面滑动。假设杆的初位
置与墙成交角 0 ,初角速度等于零;试求杆沿铅直墙壁下滑时
的角速度和角加速度,以及杆开始脱离墙壁时它与墙壁所成
的角度 1.。
例题
解: 在 A 端脱离墙壁以前,受力如图所示。
0
aCx
cos
aCy
sin
a
AC
sin
即
aCxcos
-
aCysin
l 2
sin
0
(4)
这个关系就是该瞬时杆的运动要素所满足的条件.
例题
由动静法写出杆的动态平衡方程,有
Fx 0, Fy 0,
mC (F ) 0,
maCx T cos 0
)
(d )
例题4
长为l、质量为m的均质细杆静止直立于光滑水平面上。当 杆受微小干扰而倒下时,求杆刚刚到达地面时的角速度和 地面约束力。
vA
A
C
vC
例题4
解: 由质心运动定理可知,直杆在倒下过程中其质心 将铅直下落。
1. 求杆刚刚到达地面时的角速度
杆刚刚到达地面时,A点为瞬心
vC
1 2
l
杆作平面运动,取坐标系 Oxyz ,则杆的运 动微分方程可写成
MxC N A
(1)
MyC NB Mg
(2)
IC NBl sin N Al cos (3)
例题
由几何关系知
xC l sin
( 4)
yC l cos
( 5)
将式(4)和(5)对时间求导,得
作平面运动。由于受到绳 OA 的约束,点 A
将在铅直平面内作圆周运动.在绳子 BO 刚剪断 的瞬时,杆 AB 上的实际力只有绳子 AO 的拉 aAt
力 T 和杆的重力 G。
T aC
ε
y
aCx
x
在引入杆的惯性力之前,须对杆作加速度
y
G
分析。取坐标系 Axyz 如图所示。
例题
杆的惯性力合成为一个作用在质心
T
1 2
mvC2
1 2
JC 2
1 6
ml2 2
vA
A
C
vC
由动能定理得:
1 6
ml2 2
1 2
mgl
3g l
例题4
2. 求杆刚刚到达地面时的地面约束力
由刚体的平面运动微分方程得
mg N maC
N
l 2
1 12
ml 2
aC aA art arn
N aA
maCy mg T sin 0
J Cz
T
l 2
sin
0
(1) (2)
(3)
aCxcos
-
aCysin
l 2
sin
0
(4)
联立求解方程(1)~(4),就可求出
T
mg sin 4 sin 2 cos2
23 13
mg
例题6-7
图中两根匀质刚杆各长 2l ,质量为 m ,在 B 端用铰链连接, A 端用铰链固定,而自由端 C 有水平力 F 作用,求系统在 铅直面内的平衡位置。
mC (F ) 0,
maCx T cos 0
maCy mg T sin 0
J Cz
T
l 2
sin
0
(1) (2)
(3)
且对于细杆 , JCz´ = ml2/12.
利用刚体作平面运动的加速度合成定理,以质心 C 作基点,则点 A 的加速度为
aA = aAn + aA = aCx + aCy + aAC + aACn