高速重载齿轮传动的多目标优化设计
基于改进响应面法的齿轮可靠性优化分析

基于改进响应面法的齿轮可靠性优化分析目录一、内容概要 (2)1. 研究背景与意义 (3)2. 国内外研究现状 (4)3. 研究目的与任务 (4)二、齿轮可靠性理论基础 (6)1. 齿轮可靠性概述 (7)2. 齿轮失效模式与机制研究 (8)3. 齿轮可靠性设计准则 (9)三、响应面法基本原理及改进 (10)1. 响应面法概述 (12)2. 响应面模型建立 (13)3. 响应面法优化流程 (14)4. 改进响应面法介绍 (15)四、齿轮可靠性优化模型建立 (16)1. 问题描述与定义 (18)2. 建立齿轮可靠性优化模型 (19)3. 模型参数设置与选取 (20)五、基于改进响应面法的齿轮可靠性优化分析过程 (21)1. 数据准备与预处理 (22)2. 建立改进响应面模型 (23)3. 可靠性优化分析 (25)4. 结果验证与讨论 (26)六、实例研究 (27)1. 研究对象介绍 (28)2. 齿轮可靠性优化模型应用 (29)3. 结果分析与对比 (29)七、齿轮可靠性优化设计的未来发展与展望 (30)1. 发展趋势 (32)2. 技术挑战与解决方案 (33)3. 行业应用前景 (34)八、结论 (36)1. 研究成果总结 (36)2. 对未来研究的建议 (37)一、内容概要本篇论文题为《基于改进响应面法的齿轮可靠性优化分析》,主要探讨了在齿轮设计中如何通过改进响应面法来提高其可靠性。
随着现代工业的飞速发展,齿轮作为机械传动的关键部件,其性能优劣直接影响到整个系统的稳定性和效率。
开展齿轮可靠性优化分析具有重要的现实意义和工程价值。
论文首先介绍了响应面法的基本原理和常用方法,指出传统响应面法在处理复杂非线性问题时存在一定的局限性。
论文提出了改进的响应面法,通过引入新的数学模型和求解策略,有效提高了计算精度和效率。
在齿轮可靠性优化分析方面,论文建立了综合考虑齿轮强度、刚度、振动噪声等多个因素的可靠性指标函数。
高速动车组齿轮箱设计研究现状及趋势

2021年2月第49卷第4期机床与液压MACHINETOOL&HYDRAULICSFeb 2021Vol 49No 4DOI:10.3969/j issn 1001-3881 2021 04 035本文引用格式:杨树峰,王晓鹏,陈超,等.高速动车组齿轮箱设计研究现状及趋势[J].机床与液压,2021,49(4):173-179.YANGShufeng,WANGXiaopeng,CHENChao,etal.Researchstatusandtrendofgearboxdesignforhigh⁃speedEMU[J].MachineTool&Hydraulics,2021,49(4):173-179.收稿日期:2019-10-10基金项目:国家重点研发计划(2018YFB2001700)作者简介:杨树峰(1986 ),男,博士研究生,研究方向为齿轮传动技术㊂E-mail:yangshufeng8610@163 com㊂通信作者:刘世军(1962 ),男,硕士,研究员,博士生导师,主要研究方向为齿轮传动㊂E-mail:Lsj769@163 com㊂高速动车组齿轮箱设计研究现状及趋势杨树峰1,2,王晓鹏1,陈超1,刘世军1(1 郑州机械研究所有限公司,河南郑州450052,2 中原工学院机电学院,河南郑州450007)摘要:齿轮箱是高速动车组动力转向架的核心部件,其性能直接影响运行的安全可靠性㊂介绍了目前国内高速动车组齿轮箱结构及安装方式㊂根据齿轮箱的结构,分别从齿轮㊁支架㊁箱体㊁润滑密封等方面描述了国内外高速动车组齿轮箱设计方法的研究现状及存在的问题㊂提出了后期应重点针对齿轮箱的造型设计㊁故障诊断与健康管理和极端环境下的产品性能等方面开展相关研究,为深入研究高速动车组齿轮箱提供了参考㊂关键词:高速动车组;齿轮箱;设计方法;研究现状中图分类号:U260 332ResearchStatusandTrendofGearboxDesignforHigh-speedEMUYANGShufeng1,2,WANGXiaopeng1,CHENChao1,LIUShijun1(1 ZhengzhouResearchInstituteofMechanicalEngineeringCo.,Ltd.,ZhengzhouHenan450052,China;2 SchoolofMechanicalEngineering,ZhongyuanUniversityofTechnology,ZhengzhouHenan450007,China)Abstract:Gearboxisthecorecomponentofhigh-speedEMUpowerbogie,itsperformancedirectlyaffectsthesafetyandrelia⁃bilityofoperation.Thestructureandinstallationofthegearboxofhigh-speedEMUindomesticwasintroduced.Accordingtothestructureofthegearbox,theresearchstatusandexistingproblemsofthegearboxdesignmethodofthehigh-speedEMUathomeandabroadweredescribedfromtheaspectsofgear,bracket,box,lubricationandsealing.Itwasproposedthattheresearchshouldfocusontheshapedesign,faultdiagnosisandhealthmanagementofthegearboxandtheproductperformanceinextremeenvironment.Itprovidesreferenceforthein⁃depthstudyofhigh⁃speedEMUgearbox.Keywords:High⁃speedEMU;Gearbox;Designmethod;Researchstatus0㊀前言1964年,世界上首条高速铁路 东海道新干线投入运营,列车运行时速高达210km,产生巨大的轰动效应㊂近半个多世纪,世界各国都在努力进行铁路技术装备和现代化管理的研究,高速铁路技术取得突破性进展㊂我国于2004年开始从川崎重工㊁庞巴迪等公司引进并合作生产高速动车组,研究出适合我国的CRH1㊁CRH2㊁CRH3和CRH5型系列动车组㊂2008年,我国第一条高速铁路 京津城际铁路开始运营,2010年拥有完全自主知识产权的CRH380A㊁CRH380B型动车开始运行,实现了由仿制向创造㊁从摸索到突破的复兴之路,使我国成为了高铁里程数最长的国家㊂高铁的舒适㊁便捷㊁高效㊁准时等优势已经深入民心,但是,我国对高速重载牵引齿轮箱的研究起步较晚,整体水平与发达国家相比还有较大差距,因此,在动车组齿轮传动技术等方面还需参照国外的相关标准进行设计㊂高速动车组齿轮箱是动车组列车的动力驱动核心部件,也是保证列车正常运行的关键零部件㊂由于列车运行速度快,需面对高温高寒㊁潮湿㊁沙尘多等极端恶劣的运行环境,对齿轮箱的设计提出了更高的要求,特别是在齿轮抗载荷㊁齿间啮合㊁润滑㊁箱体强度㊁密封等方面㊂目前,小空间㊁轻量化㊁高功率密度[1]已经成为齿轮箱的设计趋势㊂1㊀高速动车组齿轮箱结构根据车型的不同,齿轮箱安装方式及传动方式也不相同,具体统计见表1㊂齿轮箱将牵引电机的转矩传递给轮轴,齿轮箱内包括小齿轮轴,它与一个直接安装在车轴上的齿轮箱相啮合,其传动方式分为斜齿轮传动和锥齿轮转动2种㊂齿轮箱的箱体由直接安装在轮轴上的圆锥滚柱轴承支承㊂平衡杆安装在转向架和齿轮箱之间,用于承受作用在齿轮箱上的各种扭矩载荷,包括由牵引和制动引起的负荷㊁转矩振动和牵引电机短路引起的转矩振动[2]㊂表1㊀高速动车组齿轮箱汇总序号实用车型传动方式安装方式模型1CRH1CRH2CRH380A斜齿轮传动平衡杆吊装2CRH5锥齿轮传动平衡杆横装3CRH3CRH380B斜齿轮传动C形托架2 高速动车组齿轮箱设计研究现状2 1㊀齿轮设计高速重载齿轮传动在高速轧机㊁高速列车及航空发动机等中得到广泛应用,运行中需承受较高的载荷,运行速度高,工况相对复杂㊂因此,对高速重载齿轮传动进行非线性动力学㊁计算机辅助工程㊁制造系统工程等基础理论研究尤为迫切㊂高铁齿轮箱采用一级渐开线齿轮传动方式,在设计齿轮的过程中充分考虑因轮齿时变啮合刚度㊁齿侧间隙和传递误差等非线性因素引起的传动不稳定现象,对高速重载齿轮传动的稳定性展开研究㊂大连理工大学的学者根据齿轮传动中出现的非线性动力学现象,如混沌和分岔现象[3],结合高速动车牵引齿轮箱的特点,建立斜齿轮-扭-轴非线性动力学模型,采用定性和定量的方法,研究了激励频率㊁啮合阻尼和齿侧间隙对系统产生混沌和分岔的规律和机制㊂西南交通大学的学者采用集中参数法建立基于多种非线性因素的齿轮系统动力学模型[4],研究了齿轮传动系统在内㊁外部激励作用下的轮齿间啮合力传递及变化规律㊂以上对动力学模型的分析是基于理论研究的,缺乏实验性的验证㊂传动模型的精确建模是进行齿轮啮合研究的基础,通过对齿轮各曲线方程的推导,根据齿轮空间啮合原理,完成动车组齿轮箱斜齿轮对模型的精确装配[5]㊂有学者基于VisualC++和SolidWorks,利用MFC类型库对列车牵引齿轮进行参数化设计,实现了模型的设计㊁建模㊁装配一体化设计[6]㊂由于高速列车传动齿轮的制造和装配误差的影响,以及齿轮基节误差的作用,导致齿面载荷突变㊁啮入和啮出位置载荷集中等现象,需进行齿面修形研究㊂在齿廓修形研究中,主要针对主动轮齿顶㊁齿根的变形量和长度等参数展开研究[7-8],可结合啮合理论和实际工况对齿轮修形量进行计算㊂有学者根据齿轮在啮合过程中齿轮副的热弹变形[9-10],对斜齿轮采用直修形的方式,研究齿轮修形曲线,并运用VB及ANSYS/APDL语言编制了一套基于热弹变形的齿轮修形软件,实现齿轮修形的可视化操作[11]㊂在齿向修形研究中,郑州机械研究所团队针对动车组传动齿轮副触底误差及齿面载荷分布不均的问题,通过将小齿轮直线修形㊁鼓形修形和大齿轮的螺旋角修形相结合的方式[12],使传递误差减少26 42%,线载荷减小43 64%,使齿面接触区域分布更加合理;LIU和PARKER[13]考虑齿轮动载荷分布㊁时变啮合刚度和齿廓修形等因素的影响,建立了齿轮非线性分析模型,研究了齿廓修形对多啮合齿轮系统振动响应的影响规律㊂陈思雨等[14]利用准静态接触下的有限元计算方法得到不同修形量的啮合刚度和静态传递误差,研究不同齿廓修形量和修形长度对齿轮动态行为的影响,并提出根据W齿轮副的振动幅值及动态因子来确定最佳的修形参数,使齿轮副啮合的接触斑点㊁齿面线载荷分布以及传递误差明显降低,㊃471㊃机床与液压第49卷传动更加平稳㊂2 2㊀轴承选型齿轮箱轴承为高速轨道列车运行的支撑部件,运行中承受极大的轴向载荷及径向载荷,其性能的稳定性及寿命直接影响动车组运行安全㊂目前,高速轨道列车所需的电机轴承㊁齿轮箱轴承㊁轮轴轴承全部被瑞典SKF㊁德国FAG㊁日本NTN等国外知名厂商垄断[15]㊂由表1可知,CRH1和CRH3系列均采用一级斜齿轮传动,如图1所示,输入轴上装有1个四点接触球轴承和2个圆柱滚子轴承[16]㊂四点接触球轴承承受轴向载荷,与轴承座内圈采用间隙配合;圆柱滚子轴承承受径向载荷,采用过渡配合的方式装入轴承座㊂输出轴采用圆锥滚子轴承面对面布置㊂CRH5型高速动车组采用一级锥齿轮传动方式,如图2所示,输入轴上同样安装有1个四点接触球轴承和2个圆柱滚子轴承;输出轴上安装有圆锥滚子轴承和双列圆锥滚子轴承[17]㊂圆锥滚子轴承可承受较高的轴向力,安装后可通过调整轴向游隙提高轴承的旋转精度和承载能力[18]㊂图1㊀一级斜齿轮传动图2㊀一级锥齿轮传动2 3㊀支架设计目前,高速列车采用的齿轮箱安装方式主要有齿轮箱吊杆和C形支架2种吊挂方式,其结构简图分别如图3㊁图4所示,在悬架连接处都安装有弹簧橡胶模块,该模块既可以较好地承受载荷,也可在弹簧失效时起到一定的承载作用㊂图3㊀吊杆吊装简图㊀㊀㊀图4㊀C形支架吊装简图HOLZAPFEL和BASSMANN[19]在吊杆支架的基础上研制出C形支架㊂相比于吊杆吊挂,C形支架使受力分散到2个位置,更加可靠㊂目前,以CRH2㊁CRH380A为代表的日系动车组均采用了吊杆吊挂式安装,以CRH3㊁CRH380B为代表的德系动车组则采用了C形支架安装方式,2种安装方式均属于弹性安装㊂有学者分别计算了不同齿轮箱安装方式对车辆动力学性能的影响,在低速状态下吊杆吊挂方式振动加速度更小,但在350km/h以上时,C形支架表现更佳[20-23]㊂2 4㊀箱体研究随着高速动车组向高可靠㊁高速㊁舒适等趋势发展,对齿轮箱提出了更高的要求㊂箱体作为齿轮箱的支撑件,其稳定性㊁安全性直接影响动车行业的发展㊂目前,箱体均采用铝合金铸造成型,箱体结构的高强度㊁轻质化一直是箱体的发展方向㊂(1)箱体CAE分析学者们分别从模态分析㊁静力学分析㊁谐响应分析等方面对箱体强度进行研究[24],根据箱体存在的应力集中现象,提出箱体改进方案[20],采用等损伤准则[25]㊁Steinberg积累损伤三区间法[26]等方法对箱体进行疲劳寿命的评估㊂针对出现故障裂纹的箱体,采用金相检测和实际测试的实验方法进行研究[27-28],指出箱体固有频率与轨道激励在低频存在共振现象,为箱体的改进指明方向㊂(2)箱体优化设计在箱体轻量化方面,学者们以体积最小为目标函数[29],采用灵敏度分析法和物理规划法,对箱体进行稳健优化分析;利用HyperMesh软件中的拓扑和形状优化功能对箱体进行优化设计[30],降低最大变形量和等效应力;以容差和优质率为目标函数[31],采用模糊理论与容差多面体法对箱体装配尺寸链进行优化㊂2 5㊀密封及润滑的研究高速动车组驱动齿轮箱的密封设计技术至关重要,密封性能的优劣直接影响到齿轮箱零部件的使用寿命以及高速动车组运行的安全性和可靠性㊂为了保证齿轮箱的高效工作,其传动轴的轴端通常采用非接触式迷宫密封㊂2 5 1㊀密封性能研究(1)迷宫密封结构㊂为了增强迷宫密封的性能,学者们提出了不同的方案:①分别设置阶梯密封外环和内环[32];②在轴两侧的油路设置2-3道内装有带切口的涨圈的环形槽[33];③将内挡油环的外环面处理成超疏油膜层,将外挡油环的外环面处理成超疏水膜层[34];④增加径向密封以及轴向密封的长度间隙比[35];⑤将密封齿齿形锐化(减小夹角和齿顶长㊃571㊃第4期杨树峰等:高速动车组齿轮箱设计研究现状及趋势㊀㊀㊀度)[36];⑥将迷宫密封更改为阶梯式迷宫密封,减小密封间隙,增加密封空腔[37]㊂通过采用不同的结构方案,阻止箱体内润滑油泄漏以及外界水分㊁杂质进入箱体㊂(2)密封数值模拟㊂学者们主要采用了数值模拟和实验研究相结合的方式进行密封数值模拟,裘雪玲[38]从不同压比㊁密封齿顶间隙㊁进气预旋等方面对泄漏量进行研究;田华军等[39]从密封齿的节流间隙尺寸㊁齿间回油效果㊁齿尖厚度等方面展开研究;还有学者研究空腔数量和深度[40-41]㊁进出口压差㊁转速[42]对泄漏系数的影响㊂2 5 2㊀润滑性能研究国内高速动车齿轮箱齿轮油一般是选用设备说明书上推荐的品牌及型号,但是由于受到运行环境及复杂工况的影响,有时需要根据齿轮载荷㊁摩擦副相对速度㊁工作温度等参数选取[43]㊂有学者通过在齿轮油中添加TiO2[44]或者钼元素[45]来提高齿轮油的抗载和耐磨性能㊂齿轮油在不同转速和载荷下表现出的摩擦特性也不同[46],刘杰等人[47]提出了有效润滑油量的概念,并探讨与浸油深度㊁大齿轮转速的关系,当齿轮啮合线速度为35m/s时,搅油损失急剧增大[48],中车的高军团队通过实验方法对齿轮油中的硫添加剂[49]和换油周期[50]进行了研究㊂2 6㊀齿轮箱性能研究动车组齿轮箱传动系统性能一直是研究重点,目前主要采用仿真实验和在线监测的方式来评估齿轮箱性能㊂(1)在仿真实验方面,研究人员将齿轮箱温度㊁振动[51]㊁噪声[52]㊁传动效率㊁可靠性为评价指标,采用定性㊁定量的筛选方法,开发了动车组齿轮传动性能综合评价软件[53]㊂有学者针对运行中存在的负压现象,研制了相关实验设备[54],以验证箱体性能㊂(2)在在线监测方面,有学者通过研究齿轮油中铁元素性能的退化数据[55],建立了齿轮箱的性能评价方法;学者还研制了基于涡流技术的非接触探伤仪[56];张伟伟[57]设计了基于光纤布拉格(Bragg)光栅传感器的动车组齿轮箱的实时振动监测系统;邓晓宇[58]根据检测数据和非参数的核密度估计方法,建立 齿轮箱振动阈值数据库 与 齿轮系统故障特征频率库 ,确保齿轮箱的安全运行㊂3㊀高速动车组齿轮箱的展望随着我国铁路行业的不断发展,高速动车组运行将呈现 高速㊁重载㊁全天候 的特点[59],而机车驱动系统为适应这些特点,向高速㊁大功率方向发展成为必然趋势,所以必然对齿轮箱的结构㊁承载能力㊁润滑系统及抗胶合㊁振动能力提出更高的要求㊂因此,结合我国高速动车组齿轮箱传动系统的发展现状[60],应从以下几方面加大研究力度:(1)应对高速动车组齿轮箱齿轮从结构设计㊁参数优化㊁动力学性能分析等方面进行创新性研究,开发出适合我国现状的传动齿轮㊂同时,在日常的维修㊁故障解决中及时总结经验,在设计中加以改进,防患于未然㊂(2)目前国内减速机箱体依旧沿用国外的结构,缺乏工业设计㊁艺术设计角度的创新,应该用人机交互等新的设计方法对箱体外观进行研究㊂(3)关于高速动车组列车齿轮箱在线监测㊁故障诊断技术方面的研究还不够深入,难以建立产品的故障诊断与健康管理系统,核心的振动机制研究和故障特征的提取及其对应的信号分析方法都有待深入研究㊂(4)针对高速动车组齿轮箱在极端㊁恶劣环境中运行的研究不够深入,运行中齿轮箱外围气压为瞬态㊁交替变化,导致齿轮箱内气液流场比较复杂㊂用于齿轮箱运行过程相关仿真及实验的设备比较缺失㊂在齿轮箱轻量化设计制造㊁润滑密封㊁高可靠性等方面应重点攻关㊂4㊀结束语高速动车组齿轮箱的设计是一项系统工程,我国对高速重载牵引齿轮箱的研究起步较晚,整体水平与发达国家相比还有较大差距㊂本文作者从高速动车组齿轮箱的结构出发,在齿轮㊁轴承㊁支架㊁箱体㊁密封润滑等方面综述了国内外的研究现状,最后从齿轮设计制造㊁箱体外观设计㊁在线检测㊁极端场合等方面展望了齿轮箱未来的研究方向㊂参考文献:[1]高小平.高速动车齿轮箱产品开发中的计算仿真应用[J].轨道交通装备与技术,2015(5):1-4.GAOXP.ApplicationofcomputationalsimulationinthedevelopmentofgearboxesforhighspeedEMUs[J].RailTransportationEquipmentandTechnology,2015(5):1-4.[2]王伯铭.高速动车组总体及转向架[M].2版.成都:西南交通大学出版社,2014:242-253.[3]褚衍顺.高速重载齿轮传动系统稳定性研究[D].大连:大连理工大学,2012.CHUYS.Studyonstabilityofhighspeed&heavyloadgeartrain[D].Dalian:DalianUniversityofTechnology,2012.[4]全克博.CRH2型动车组齿轮系统动力学特性分析[D].成都:西南交通大学,2015.QUANKB.ThedynamicsanalysisofCRH2multipleunitsgearsystem[D].Chengdu:SouthwestJiaotongUniversity,2015.[5]杨萌.高速列车传动系统齿轮可靠性建模研究[D].北㊃671㊃机床与液压第49卷京:北京交通大学,2014.YANGM.Researchonreliabilitymodelingofthetransmis⁃siongearsinthehighspeedtrain[D].Beijing:BeijingJiao⁃tongUniversity,2014.[6]曹从庆.机车车辆齿轮参数化CAD系统研究[D].成都:西南交通大学,2012.CAOCQ.ResearchonaparameterizedCADsystemforthevehiclegear[D].Chengdu:SouthwestJiaotongUniversity,2012.[7]黄琦.高速列车传动齿轮齿廓修形及箱体优化设计[D].大连:大连理工大学,2012.HUANGQ.Researchongearprofilemodificationandtheoptimizationdesignforgearboxofhigh⁃speedtraindrivesystem[D].Dalian:DalianUniversityofTechnology,2012.[8]HUZH,TANGJY,ZHONGJ,etal.Effectsoftoothprofilemodificationondynamicresponsesofahighspeedgear⁃ro⁃tor⁃bearingsystem[J].MechanicalSystemsandSignalPro⁃cessing,2016,76/77:294-318.[9]李绍彬.高速重载齿轮传动热弹变形及非线性耦合动力学研究[D].重庆:重庆大学,2004.LISB.Studyoncoupledthermo⁃elasticdeformationandnonlineardynamicemulateabouthigh⁃speed,heavy⁃loadgeartransmissionssystem[D].Chongqing:ChongqingUni⁃versity,2004.[10]姚阳迪.基于热弹变形的高速重载齿轮修形研究[D].重庆:重庆大学,2010.YAOYD.Modificationresearchofhigh⁃speedandheavy⁃loadgearbasedonthermo⁃elasticdeformation[D].Chongqing:ChongqingUniversity,2010.[11]杨玉良.斜齿轮系统热弹耦合及修形减振研究[D].大连:大连理工大学,2016.YANGYL.Researchonthermo⁃elasticcouplingandvi⁃brationdampingwithmodificationofhelicalgearsystem[D].Dalian:DalianUniversityofTechnology,2016.[12]范乃则,田华军,裴帮,等.基于KISSsoft动车组传动齿轮修形优化设计[J].机械传动,2017,41(3):83-87.FANNZ,TIANHJ,PEIB,etal.Modificationandopti⁃mizationdesignofmotortrainunittransmissiongearbasedonKISSsoft[J].JournalofMechanicalTransmission,2017,41(3):83-87.[13]LIUG,PARKERRG.Dynamicmodelingandanalysisoftoothprofilemodificationformultimeshgearvibration[J].JournalofMechanicalDesign,2008,130(12):121402.[14]陈思雨,唐进元,王志伟,等.修形对齿轮系统动力学特性的影响规律[J].机械工程学报,2014,50(13):59-65.CHENSY,TANGJY,WANGZW,etal.Effectofmodi⁃ficationondynamiccharacteristicsofgeartransmissionssystem[J].JournalofMechanicalEngineering,2014,50(13):59-65.[15]张亨飏.高速动车轴承试验台的开发与研究[D].长春:吉林大学,2017.ZHANGHY.Designandresearchonthetestrigofhigh⁃speedrailwayrollingbearings[D].Changchun:JilinUni⁃versity,2017.[16]吴成攀,阙红波,王本涛,等.典型动车组齿轮箱轴承的计算[C]//铁路车辆轮轴技术交流会论文集.大连,2016:107-112.[17]李春蕾,吴承攀,赵艳英,等.标准动车组齿轮箱轴承的选型及开发[C]//铁路车辆轮轴技术交流会论文集.大连:中国铁道学会,2016.[18]刘志恒,张红军.轴箱轴承轴向自由间隙对机车动力学影响分析[J].铁道学报,2006,28(2):48-52.LIUZH,ZHANGHJ.Influenceofaxialfreeclearancesofaxleboxbearingsonlocomotivedynamics[J].JournaloftheChinaRailwaySociety,2006,28(2):48-52.[19]HOLZAPFELM,BASSMANNT.Designinghigh⁃perform⁃ancedrivesfor350km/hhigh⁃speedtrainoperation[J].RailEngineeringInternational,2005,6(4):201-206.[20]胡伟钢,刘志明,李强,等.高速列车齿轮箱载荷识别方法研究[J].铁道学报,2020,42(12):50-57.HUWG,LIUZM,LIQ,etal.Loadidentificationmethodforhigh⁃speedtraingearbox[J].JournaloftheChinaRail⁃waySociety,2020,42(12):50-57.[21]刘杰,刘世军,郭熛,等.基于有限元的高铁齿轮箱箱体载荷计算与结构分析[J].机械传动,2016,40(2):77-81.LIUJ,LIUSJ,GUOB,etal.StructuralanalysisandloadcalculationofCRH380high⁃speedrailgearboxbasedonfiniteelement[J].JournalofMechanicalTransmission,2016,40(2):77-81.[22]YANGJW,YANGMH,LIX,etal.Strengthanalysisandexperimentofhighspeedrailwaygearboxbracket[J].TheOpenMechanicalEngineeringJournal,2015,9(1):266-270.[23]李众.高速动车组转向架齿轮箱安装方式研究[D].成都:西南交通大学,2017.LIZ.Researchoninstallationmethodofgearboxforhigh⁃speedtrains[D].Chengdu:SouthwestJiaotongUniversity,2017.[24]王富民,李捷,杨建伟,等.地铁齿轮箱箱体模态及谐响应分析[J].机械传动,2015,39(9):146-150.WANGFM,LIJ,YANGJW,etal.Modalandharmonicresponseanalysisofsubwaygearboxhousing[J].JournalofMechanicalTransmission,2015,39(9):146-150.[25]袁文东.标准动车组齿轮箱箱体强度分析与寿命预测[D].北京:北京交通大学,2016.YUANWD.Analysisonthestrengthandfatigue⁃lifepre⁃dictionofstandardhigh⁃speedEMUgearboxhousing[D].Beijing:BeijingJiaotongUniversity,2016.㊃771㊃第4期杨树峰等:高速动车组齿轮箱设计研究现状及趋势㊀㊀㊀[26]潘红明.基于三区间法的高速动车组齿轮箱体疲劳寿命研究[D].成都:西南交通大学,2016.PANHM.Studyongearboxfatiguelifeanalysisbystein⁃bergmethod[D].Chengdu:SouthwestJiaotongUniversity,2016.[27]HUWG,LIUZM,LIUDK,etal.Fatiguefailureanalysisofhighspeedtraingearboxhousings[J].EngineeringFail⁃ureAnalysis,2017,73:57-71.[28]LIGQ.Fatiguecrackmechanismstudyonhigh⁃speedEMUgearbox[J].JournalofMechanicalEngineering,2017,53(2):99-105.[29]李永华,臧庆,张军.高速动车组齿轮箱稳健优化设计[J].大连交通大学学报,2015,36(6):29-33.LIYH,ZANGQ,ZHANGJ.Robustdesignoptimizationofgearboxonhigh⁃speedEMU[J].JournalofDalianJiao⁃tongUniversity,2015,36(6):29-33.[30]魏静,李震,孙伟,等.基于SIMP及应变能理论的高速动车齿轮箱结构优化[J].机械强度,2011,33(4):558-564.WEIJ,LIZ,SUNW,etal.Shapeandtopologyoptimiza⁃tionforgearboxofhigh⁃speedtrainbasedonSIMPmodelandstrainenergytheory[J].JournalofMechanicalStrength,2011,33(4):558-564.[31]臧庆.高速动车组齿轮箱稳健优化设计研究[D].大连:大连交通大学,2015.ZANGQ.Robustoptimizationdesignofgearboxonhigh⁃speedEMU[D].Dalian:DalianJiaotongUniversity,2015.[32]重庆江增船舶重工有限公司.一种齿轮箱密封装置:CN201120525968.1[P].2012-09-05.[33]哈尔滨东安发动机(集团)有限公司.风电齿轮箱的密封结构:CN201120533043.2[P].2012-08-01.[34]郑州机械研究所.高速列车齿轮箱轴密封结构:CN2016106003981.8[P].2016-12.[35]李枫,金思勤,吴成攀.高速动车组齿轮箱迷宫密封系统设计与试验验证[J].机车车辆工艺,2013(2):1-3.LIF,JINSQ,WUCP.Designandverificationofthelab⁃yrinthsealingsystemforthegearboxofhighspeedEMU[J].Locomotive&RollingStockTechnology,2013(2):1-3.[36]张雨,张开林,姚远.高速动车组齿轮箱径向迷宫密封的数值研究[J].润滑与密封,2016,41(12):16-20.ZHANGY,ZHANGKL,YAOY.Numericalstudyofra⁃diallabyrinthsealforhigh⁃speedtrainunitgearbox[J].LubricationEngineering,2016,41(12):16-20.[37]张晶.地铁齿轮箱结构改进研究[D].上海:上海交通大学,2014.ZHANGJ.Studyonimprovementofmetrogearboxstruc⁃ture[D].Shanghai:ShanghaiJiaoTongUniversity,2014.[38]裘雪玲.迷宫密封流场与转子动力学耦合研究[D].杭州:浙江大学,2007.[39]田华军,范乃则,裴帮,等.基于Fluent的高速动车组齿轮箱迷宫密封数值模拟[J].机械传动,2017,41(4):62-66.TIANHJ,FANNZ,PEIB,etal.NumericalsimulationoflabyrinthsealofhighspeedEMUgearboxbasedonfluent[J].JournalofMechanicalTransmission,2017,41(4):62-66.[40]ZHAOW,NIELSENTK,BILLDALJT.Effectsofcavityonleakagelossinstraight⁃throughlabyrinthseals[C]//ProceedingsofEarthandEnvironmentalScience,25thIAHRSymposiumonHydraulicMachineryandSystems.Timişoara,2010.[41]吴特,米彩盈.高速齿轮箱润滑系统密封结构的数值研究[J].铁道学报,2014,36(4):26-31.WUT,MICY.Numericalanalysisonsealstructureofhigh⁃speedgearboxlubricationsystem[J].JournaloftheChinaRailwaySociety,2014,36(4):26-31.[42]王琰,王丽娜,张开林.高速齿轮箱迷宫密封流场和泄漏特性的数值研究[J].内燃机车,2012(3):6-9.WANGY,WANGLN,ZHANGKL.Numericalstudyofflowfieldandleakagecharacteristicsoflabyrinthsealforhighspeedgearbox[J].DieselLocomotives,2012(3):6-9.[43]马骁驰,张朝前,张松鹏,等.高速列车齿轮箱润滑油黏度指数的计算方法研究[J].润滑与密封,2015,40(4):26-29.MAXC,ZHANGCQ,ZHANGSP,etal.Thecalculationmethodsofhigh⁃speedtraingearboxlubricantviscosityin⁃dex[J].LubricationEngineering,2015,40(4):26-29.[44]赵巍,粟斌,周新聪,等.GL-5重负荷车辆齿轮油换油周期研究[C]//第八届全国摩擦学大会论文集.广州:中国机械工程学会,2007.[45]陈琳,李枫,水琳,等.高速列车齿轮油性能要求与验证方法初探[J].合成润滑材料,2014,41(3):9-12.CHENL,LIF,SHUIL,etal.Primarydiscussionsofper⁃formancerequirementsandverificationmethodsofgearoilsforhighspeedtrain[J].SyntheticLubricants,2014,41(3):9-12.[46]盛晨兴,曾卓,冯伟,等.高铁齿轮油摩擦学特性的试验探究[J].润滑与密封,2016,41(5):86-90.SHENGCX,ZENGZ,FENGW,etal.Experimentalex⁃ploreontribologicalpropertiesofhigh⁃speedrailgearoils[J].LubricationEngineering,2016,41(5):86-90.[47]刘杰,刘世军,徐文博,等.高速列车齿轮箱润滑性能优化与热平衡温度分析[J].机械传动,2017,41(4):89-94.LIUJ,LIUSJ,XUWB,etal.Lubricantperformanceopti⁃mizationandthermalbalancetemperatureanalysisofhigh⁃speedtraingearbox[J].JournalofMechanicalTransmis⁃sion,2017,41(4):89-94.㊃871㊃机床与液压第49卷[48]陈晓玲,刘松丽,黄智勇,等.高速列车传动齿轮箱浸油深度对平衡温度的影响[J].铁道学报,2008,30(1):89-92.CHENXL,LIUSL,HUANGZY,etal.Studyonthein⁃fluenceofimmersiondepthonequilibriumtemperatureofspurgearusedinhighspeedtrain[J].JournaloftheChi⁃naRailwaySociety,2008,30(1):89-92.[49]高军,李来顺,冯伟,等.动车组齿轮箱油中含硫添加剂损失的试验研究[J].润滑与密封,2016,41(12):129-133.GAOJ,LILS,FENGW,etal.Experimentalstudyonsul⁃furadditivelossoftrain⁃setgearboxlubricants[J].Lubri⁃cationEngineering,2016,41(12):129-133.[50]高军,李来顺,赵海板,等.高速动车组齿轮油换油周期研究[J].润滑与密封,2015,40(2):89-92.GAOJ,LILS,ZHAOHB,etal.Researchondraininter⁃valofgearboxoilsofhigh⁃speedelectricmultipleunit[J].LubricationEngineering,2015,40(2):89-92.[51]LINTJ,HEZY,GENGFY,etal.Predictionandexperi⁃mentalstudyonstructureandradiationnoiseofsubwaygearbox[J].JournalofVibroengineering,2013,15(4):1838-1850.[52]HUANGGH.Dynamicresponseanalysisofgearboxhous⁃ingsystemsubjectedtointernalandexternalexcitationinhigh⁃speedtrain[J].JournalofMechanicalEngineering,2015,51(12):95.[53]吴冬.高铁齿轮传动系统性能检测评价研究[D].大连:大连理工大学,2012.WUD.Researchontheevaluationoftestingperformanceforthetransmissiongearboxinhigh⁃speedtrain[D].Dalian:DalianUniversityofTechnology,2012.[54]马玉强,林新海,李枫.高速动车组齿轮箱的负压试验研究[J].机车车辆工艺,2016(6):1-3.MAYQ,LINXH,LIF.ResearchofthenegativepressuretestofthegearboxforhighspeedEMU[J].Locomotive&RollingStockTechnology,2016(6):1-3.[55]王泰.基于性能退化分析的高速动车组齿轮箱可靠性研究[D].成都:西南交通大学,2017.WANGT.TheresearchofEMUgearboxreliabilitybasedondegradationanalysis[D].Chengdu:SouthwestJiaotongUniversity,2017.[56]田勐.CRH380动车组福伊特齿轮箱深层涡流检测技术开发[C]//中国中车2016第二届轨道交通先进金属加工及检测技术交流会.长春:中国中车科技管理部,中车工业研究院有限公司,2016.[57]张伟伟.基于光纤布拉格光栅传感器的动车组齿轮箱振动监测系统设计与研究[D].开封:河南大学,2014.ZHANGWW.Thedesignandresearchofthevibrationmonitoringsystemforthegearboxofhigh⁃speedrailbasedonfiberBragggratingsensor[D].Kaifeng:HenanUniversity,2014.[58]邓晓宇.高速列车齿轮传动系统动态特性仿真与评价方法研究[D].成都:西南交通大学,2016.DENGXY.Studyonsimulationandevaluationmethodofdynamiccharacteristicsofgeartransmissionsystemofhighspeedtrain[D].Chengdu:SouthwestJiaotongUniversity,2016.[59]邢志伟,孙银生,邓晓丽,等.电动机车牵引齿轮设计概述[J].机械传动,2011,35(11):41-44.XINGZW,SUNYS,DENGXL,etal.Surveyontractiongeardesignofelectriclocomotive[J].JournalofMechani⁃calTransmission,2011,35(11):41-44.[60]刘忠明.中国战略性新兴产业研究与发展-齿轮[M].北京:机械工业出版社,2013.(责任编辑:张楠)(上接第172页)[5]GIESENU,MULLERS.ThevehicleofH⁃bahnsystemsinDortmunduniversity[J].VerkehrundThchnik,1983,36(10):371-382.[6]许桂红.地铁制动系统的研究与仿真[D].成都:西南交通大学,2014.XUGH.Researchandsimulationofmetrobrakingsystem[D].Chengdu:SouthwestJiaotongUniversity,2014.[7]张龙飞.低地板有轨电车制动系统性能研究[D].成都:西南交通大学,2018.ZHANGLF.Studyontheperformanceofbrakesystemforlowfloortram[D].Chengdu:SouthwestJiaotongUniversity,2018.[8]周纪武,纪铅磊,刘勇刚.浅谈城市轨道车辆制动冲击率的计算[J].铁道车辆,2017,55(4):30-31.ZHOUJW,JIQL,LIUYG.Calculationofbrakeimpactratioofurbanrailvehicles[J].RollingStock,2017,55(4):30-31.(责任编辑:张楠)㊃971㊃第4期杨树峰等:高速动车组齿轮箱设计研究现状及趋势㊀㊀㊀。
国内齿轮研究现状及问题研究

国内齿轮研究现状及问题研究一、本文概述齿轮作为机械传动系统中的核心元件,其性能与精度直接影响到整机的运行效率和使用寿命。
随着国内制造业的飞速发展,齿轮研究在技术创新、材料研发、加工工艺和质量控制等方面取得了显著成果。
然而,与国际先进水平相比,国内齿轮研究仍面临一些亟待解决的问题和挑战。
本文旨在全面梳理国内齿轮研究的现状,深入剖析存在的问题,以期为相关领域的科技人员和企业决策者提供有益的参考和借鉴。
通过系统分析国内齿轮研究的发展历程、技术特点、优势与不足,以及未来发展趋势,本文将为推动国内齿轮研究的进步和创新提供理论支持和实践指导。
二、国内齿轮研究现状分析近年来,随着制造业的快速发展和高端装备需求的日益增长,国内齿轮研究取得了显著进展。
齿轮作为机械传动系统中的关键部件,其性能和质量直接影响着整机的运行效率和可靠性。
因此,国内学者和企业在齿轮设计、制造、材料、热处理以及检测等方面进行了大量研究和探索。
在设计方面,国内研究团队已经能够利用先进的计算机辅助设计(CAD)和仿真分析技术,对齿轮的几何形状、齿面接触、载荷分布等进行精确计算和模拟。
这不仅提高了齿轮的设计精度,也缩短了新产品的开发周期。
在制造工艺方面,国内齿轮加工设备不断更新换代,高精度、高效率的加工技术得到广泛应用。
数控机床、激光切割、精密磨削等先进加工技术的使用,显著提升了齿轮的加工精度和表面质量。
在材料研究领域,国内已经开发出多种高性能齿轮材料,如高强度钢、渗碳钢、粉末冶金材料等。
这些新型材料的应用,极大地提高了齿轮的承载能力和耐磨性。
在热处理技术和检测手段方面,国内也取得了显著进步。
通过优化热处理工艺,可以显著改善齿轮的力学性能和抗疲劳性能。
先进的无损检测技术和精密测量设备的应用,使得齿轮的质量控制更加严格和准确。
尽管国内齿轮研究取得了诸多成果,但仍存在一些亟待解决的问题。
例如,与国际先进水平相比,国内齿轮在高端应用领域仍存在一定的差距,齿轮的可靠性和寿命有待进一步提高。
基于多目标遗传算法重型齿轮优化设计

基于多目标遗传算法重型齿轮优化设计摘要:该研究利用多目标遗传算法(NSGA-II)对重载齿轮进行优化设计。
建立齿轮传动模型和多目标遗传算法数学模型,确定了优化目标为最小化齿轮体积和最大重合度以及齿轮疲劳强度,利用NSGA-II对重载齿轮进行了多目标优化设计,可以实现齿轮在使用寿命、传动效率等方面的最优化。
关键词多目标遗传算法,重载齿轮,优化设计基金:攀枝花市科学技术局市级指导性科技计划项目(2020ZD-G-6)1引言齿轮传动广泛应用于航天航空、汽车制造领域,实现高效动力传递,高精度的传动和控制[1]。
多目标遗传算法可用于齿轮的优化设计[2]。
通过设置多个目标函数,如重量、强度、刚度等,考虑设计变量相互关系,在多个目标之间找到一组最优设计参数。
重型齿轮传动系统对于设备的安全、稳定、可靠运行起着至关重要的作用。
然而,在实际使用中,重型齿轮传动也常常面临着疲劳点蚀、断齿等现象。
本研究根据某山地拖拉机中的重载齿轮,以齿轮传动的总体积最小、齿轮疲劳强度最高、重合度最大为优化设计目标函数,齿轮基本参数为基本参数为设计变量,建立齿轮传动优化设计数学模型,多目标遗传算法分析设计变量,最后得到符合设计要求的重型齿轮。
2三维模型的构建与装配该重型齿轮的齿顶圆直径分别为630mm和280mm,分度圆直径分别为602mm 和252mm,齿根圆直径分别为567mm和217mm。
其中,齿数分别为43和18,模数为14,变位系数为0,压力角为20°,齿宽为140mm。
选择基本参数:齿数、齿轮模数、压力角等,生成大小齿轮进行模型装配。
3优化目标函数的构建综合考虑重量、体积、挡位变换、噪音及重合度问等因素,确保整个系统在减小尺寸的同时保持高强度和高可靠性。
将所选啮合齿轮总质量、啮合齿轮的疲劳强度以及在传动过程中的重合度作为优化目标,以寻求最佳的设计方案。
3.1齿轮重合度目标函数构建重合度作为影响齿轮系统传动质量的重要指标,齿轮重合度越大,传动越平稳,系统振动噪声响应越小[14],同时还能够降低齿轮动应力,减小单个轮齿承受的载荷,提高齿轮系统的承载能力和可靠性。
高速齿轮传动的多目标优化设计研究

高速告伦待动的多3 椋优化设讨研堯
叶 小 芬 ,祝 敏 ,王 起 梁 ( 中 车 成 墅 堰 机 车 车 辆 工 艺 研 究 所 有 限 公 司 ,江 苏 常 州 2 1 3 0 1 1 )
收稿日期:2 0 1 8 -1 0 -1 2 作者简介:叶小芬(1 9 3 4 - ) ,女 ,工 程 师 ,硕士 。
具 有 普 遍 意 义 ,可 为 各 类 机 械 零 部 件 的 优 化 设 计 和 可靠性设计提供理论依据。
1 多目标优化模型
1 . 1 确定设计变量 高 速 齿 轮 传 动 系 统 的 主 体 部 分 是 一 对 齿 轮 ,选
择 齿 轮 模 数 % 、主 动 齿 数 Z ,、齿 宽 6 、螺旋角/3,作为
优化设计变量。
故设计变量:
X = [ m n zl b /3] = [ x t x 2 Xj x A]
(1 )
1 . 2 建立目标函数 1 . 2 . 1 齿轮传动体积
在 满 足 接 口 尺 寸 、承 载 能 力 、传 动 效 率 等 要 求
齿轮传动是高速列车齿轮传动系统的重要组成 部 分 ,主要功能是将驱动电机的功率传递给走行轮 对。齿轮的主要结构参数决定传动系统的可靠度的 高低 、体积重量,轻 量 化 、髙可靠度是高速齿轮传动 的 设 计 目 标 ,传 统 设 计 方 法 仅 靠 经 验 和 专 业 知 识 来 调 整 结 构 设 计 参 数 ,设 计 周 期 大 ,较难得到系统最优 解 。本文应用优化设计理论和可靠性设计理论对齿 轮 传 动 开 展 多 目 标 优 化 研 究 ,建 立 以 齿 轮 传 动 的 体 积最小、系统可靠度最接近6〇•水平2 个目标作为 目 标 函 数 ,采 用 容 限 值 允 许 进 行 目 标 权 重 分 析 ,并以 齿轮模数、主动齿轮齿数、螺 旋 角 、齿宽等齿轮传动 主 要 结 构 参 数 为 设 计 变 量 的 多 目 标 优 化 模 型 ,通过 自 编 M a tla b 程序语言完成优化计算。结果表 明 ,优 化计算可行,优化计 算 效 果 显 著 。本文的研究方法
人字齿轮传动系统优化设计的方法

人字齿轮传动系统优化设计的方法人字齿轮传动系统作为主要应用在高速、重载机构中的一种传动部件,具有传动可靠、运转平稳的优点,其结构的优劣直接影响到设备的性能。
开展人字齿轮传动系统结构的优化设计,对优化结构尺寸、减轻齿轮重量及提高人字齿轮强度有重要的理论和现实意义。
标签:人字齿轮;传动系统;优化设计;齿轮强度人字齿轮作为新型的圆柱齿轮在实际中有广泛的应用,其主要特征就是齿宽一侧为左旋,在某一部分齿宽上为右旋齿,而在另一部分齿宽上为左旋齿,实际上就是将斜齿轮拼成新的齿轮形式;至于认字齿轮的传统优势,它不仅有效地克服了斜齿轮传动存在轴向推力的弱点,而且具备承载能力高、重合系数大、传动系能耗的优点,因此,人字齿轮在机械中有着广泛的额应用范围,尤其是在工作载荷严重的情况。
对于进行优化齿轮,传统的方式主要讲应力和强度最为分析的确定量,缺乏对齿轮传动存在其他影响的不确定因素,从而导致了优化设计与实际工况存在差异,缺乏考虑实际工况的许用应力、传动系数和约束条件,所以,传动的优化方法有待提高。
遗传算法(GA)作为解决优化问题的新型算法,在最近几年获得广泛的推广。
遗传算法是基于机械专业和生物遗传学形成的新的方法,其基本原理就是分析生物进化原理,形成的一种用于实际工程优化的方法。
从求解角度分析,遗传算法属于全局优化算法,能够对不同的优化情况产生良好的适应。
在进行优化过程中,遗传算法对于函数的连续和不连续没有具体要求,也不需要梯度信息,特别适合复杂的工况优化。
本文正是结合遗传算法优化优点,建立了基于遗传算法的人字齿轮传动参数优化设计数学模型。
并分析比较了优化前后齿轮的效果,达到了良好的优化目的。
1 人字齿轮传动的优化设计数学模型针对进行优化设计人字齿轮,可以根据实际的需要设计不同的目标函数。
本文所选用的目标函数为传动中心距最小和体积最小,进行人字齿轮的优化设计。
1.1 建立目标函数1.2 确定设计变量1.3 约束条件1.3.1 齿数约束1.3.2 模数约束1.3.3 螺旋角约束1.3.4 齿宽系数约束1.3.5 齿面接触疲劳强度约束1.3.6 齿根弯曲疲劳强度约束1.3.7 纵向重合度?着?茁约束2 基于遗传算法的优化模型求解2.1 基因编码[4]2.2 适应度函数和初始种群产生GA适应度函数主要根据优化的目标函数定义,初始种群中的N个个体染色体可由随机的方法在各个基因取值确定相应的范围。
基于MATLAB的多级齿轮传动多目标可靠性优化设计研究

基于MATLAB的多级齿轮传动多目标可靠性优化设计研究I. 内容概述随着工业自动化的发展,多级齿轮传动系统在各个领域得到了广泛的应用。
然而由于其复杂的结构和工作条件,齿轮传动系统的可靠性一直是设计者关注的重点。
为了提高齿轮传动系统的可靠性,本文提出了一种基于MATLAB的多级齿轮传动多目标可靠性优化设计方法。
首先本文对多级齿轮传动系统的工作原理进行了详细的阐述,包括齿轮啮合、齿面接触、磨损和疲劳等方面的问题。
在此基础上,分析了齿轮传动系统的可靠性评价指标体系,包括寿命、失效率、维修性等关键性能指标。
其次针对多级齿轮传动系统的可靠性优化设计问题,本文提出了一种基于遗传算法和粒子群优化算法的多目标优化设计方法。
通过对比分析不同优化算法的优缺点,最终确定了基于MATLAB的遗传算法作为本研究的主要优化方法。
本文以某型号齿轮传动系统为例,运用所提方法对其进行了多目标可靠性优化设计。
实验结果表明,所提方法能够有效地提高齿轮传动系统的可靠性指标,为实际工程应用提供了有力的理论支持。
A. 研究背景和意义随着科学技术的不断发展,齿轮传动技术在各个领域的应用越来越广泛。
齿轮传动具有传动效率高、承载能力大、传动精度高等优点,因此在工业生产中得到了广泛的应用。
然而齿轮传动系统的可靠性一直是制约其性能的重要因素,为了提高齿轮传动系统的可靠性,降低故障率,保证设备的正常运行,需要对齿轮传动系统进行多目标可靠性优化设计。
目前基于数值计算的可靠性优化设计方法已经成为齿轮传动系统研究的主要手段。
MATLAB作为一种广泛应用于工程领域的数值计算软件,具有强大的数学运算能力和图形化编程功能,为齿轮传动系统的可靠性优化设计提供了有力的支持。
因此基于MATLAB的多级齿轮传动多目标可靠性优化设计研究具有重要的理论和实际意义。
首先研究基于MATLAB的多级齿轮传动多目标可靠性优化设计方法有助于提高齿轮传动系统的可靠性。
通过合理的参数设置和优化策略选择,可以有效地提高齿轮传动系统的可靠性指标,降低故障率,延长设备使用寿命。
机械设计基础_重庆大学中国大学mooc课后章节答案期末考试题库2023年

机械设计基础_重庆大学中国大学mooc课后章节答案期末考试题库2023年1.齿形系数YFa只与模数有关,因为模数愈大,齿厚愈大。
参考答案:错误2.在曲柄摇杆机构中,当曲柄与机架共线时,机构可能出现最小传动角。
参考答案:正确3.凸轮机构能使从动杆按照凸轮轮廓曲线,实现各种复杂的运动。
参考答案:正确4.为了节约青铜材料,蜗轮常采用组合式结构。
参考答案:正确5.蜗杆传动中,常将蜗轮作为主动件,蜗杆作为从动件。
参考答案:错误6.具有2个自由度的周转轮系称为差动轮系。
参考答案:正确7.闭式蜗杆传动必须做热平衡计算。
参考答案:错误8.差动轮系的自由度为____________。
参考答案:29.惰轮在轮系中的作用如下:1)改变从动轮转向;2)改变从动轮转速;3)调节齿轮轴间距离;4)提高齿轮强度。
其中有____________个作用是正确的。
参考答案:210.自由度为1的轮系称为行星轮系。
参考答案:错误11.周转轮系中行星架与中心轮的几何轴线必须重合,否则便不能传动。
参考答案:正确12.zG和zK分别是G、K两轮的齿数,则zG/zK就是行星轮系中G、K两轮之间的传动比。
参考答案:错误13.普通V带轮的槽楔角随带轮直径的减小而____________。
参考答案:减小14.弹簧垫圈和对顶螺母都属于机械防松。
参考答案:错误15.V带的参数中,____________尚未标准化。
参考答案:带的厚度与小带轮直径的比值16.选取V带型号,主要取决于____________。
参考答案:带传递的功率和小带轮的转速17.链传动中,一般链条节数为偶数,链轮齿数为奇数,最好互为质数,其原因是____________。
参考答案:磨损均匀18.链传动中,限制链轮最少齿数的目的之一是为了____________。
参考答案:减少传动的运动不均匀性和动载荷19.在一定的条件下,摩擦系数为一定值时,要增加带传动的传动能力,就应增加初拉力和小带轮包角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g) 齿轮齿根弯曲疲劳强度限制 :
σ F1
-
[σF1 ] ≤0
σF1
= YFS Yεβ KFα KFβ KA Kv
2 000T1
m 2 z1 bcos
1 arcsin b
2
2R
( 10 ) ( 11 )
4 优化方法
因重合度要求最大 , 中心距与最大滑动率要求最小 , 故采用多目标函数优化方法中的乘除法 。总目标函数为 :
X = ( x1 , x2 , x3 , x4 ) T = (m , z1 , b, R ) T
3 约束条件
约束条件如下 :
a) 模数约束 : m ≥3;
b) 防止胶合破坏 : z1 ≥25;
c) 螺旋角约束 : 25°≤ 1 arcsin b ≤40°;
2
2R
d) 重载齿轮齿宽系数约束 : 20≤ψm ≤25;
m inf ( x) = f2 ( x) ×f3 ( x) / f1 ( x) 对目标函数进行求最小值计算 , 采用 MATLAB 优化 工具箱中的最小化函数 fm incon求解约束优化问题 [7 ] 。
5 设计实例
初轧连轧机大型齿轮主传动中 ,已知电动机驱动功率
P = 4 000 kW , 转速 n = 248 r/m in, 单向运转 , 传动比 i =
M ulti2objective O ptim um D esign of H igh Speed and Heavy 2duty Gear D r ive
ZHAO Xue2ling, HOU L i, REN Yan2m ing ( S choo l o f M a nufa c tu ring S c ie nce a nd Eng ine e ring, S ichua n U n ive rs ity, C he ngdu 610065, C h ina )
118,采用外循环喷油润滑 , 油品为 220 号极压工业齿轮
油 。每天 24 h连续运转 ,设计寿命为 8 000 h。
根据 齿 轮 的 工 作 情 况, 确 定 小 齿 轮 材 料 为
37SiM n2MoV,锻件 , 进 行 调 质 处 理 , 齿 面 硬 度 为 ( 260 ~
290) HBS;大齿轮材料为 ZG35CrMo, 铸钢件 , 进行调质处
Abstract: Ea ch fa c to r in the he a vy2du ty ge a r de s ign is d iscu s se d in th is p ap e r. The symm e tric a rc2shap e d ge a rs a re de c ide d ba se d o n a na lyz ing the a dva n ta ge a nd w e a k po in ts o f he lica l ge a rs a nd he rringbo ne o ne s. M u lti2o b je c tive op tim iza tio n m o de ls fo r m a xim a l o ve rlap ra tio a nd m in im um vo lum e a nd m in im um re la tive s lid ing sp e e d ra te a re e s ta b lishe d a nd the co n s tra in t co nd itio n is g ive n the he a vy2du ty ge a r op tim iza tio n de s ign. O p tim um so lu tio n is o b ta ine d by m u ltip ly2d ivide m e tho d a nd im p lem e n te d o n MATLAB. Th is m e tho d im p ro ve s the e ffic ie ncy a nd p re c is io n o f m e cha n ica l op tim iza tio n de s ign. Key words:m u lti2o b je c tive op tim iza tio n de s ign; ge a ring; he a vy2du ty ge a r; a rc2shap e d ge a r
α a2
———分别为齿轮
1、2的端面齿顶压力角 ;
α′———齿轮传动的端面啮合角 ;
R ———刀盘展成半径 , mm。
其中 :
α a1
= arccos
z1 cosα′ z1 + 2ha3
(3)
α′= arctan R tan20°
(4)
R2 - b2 /4
目标函数为 : maxf1 ( x) =εγ。
最大滑动率的计算公式 [5 ] :
η 1m ax
=
tanαa2 - tanα′
1 + z1 z2
tanα′- tanαa2
i +1 i
(5)
η 2m ax
=
tanαa1 - tanα′ ( i + 1)
1 + z2 z1
tanα′- tanαa1
(6)
目标函数为 :
m inf2 ( x) =
η 1m ax
0 引言
重载齿轮是制造冶金 、矿山 、采煤 、石油和水泥等行业 大型机电设备的重要传动部件 。在设备运转时 ,它承受着 巨大而复杂的载荷 ,因此要求其可靠性高 、寿命长和品质 好 。由于重载齿轮体积大 ,质量重 ,生产工艺复杂 ,所以出 现缺陷后所带来的影响是巨大的 。为提高重载齿轮的品 质和承载能力 ,延长其工作寿命 ,减少生产损失 ,综合考虑 各种影响因素 ,对其进行多目标的最优化设计 。
过圆整为 :m = 20 mm; z1 = 36; b = 246 mm; R = 13018 mm。计 算得重合度 εγ = 101275,而若仅以重合度为设计目标 ,得到的
结果为 εγ = 51096,从而提高了齿轮传动的综合性能。
6 结论
从理论上分析了重载齿轮设计的影响因素 ,对对称弧 齿线圆柱齿轮进行了多目标优化设计 ,提出以重合度最 大 ,相对滑动率和齿轮体积最小为目标函数的数学模型 , 这种优化数学模型能全面反应设计参数与全局最优之间 的相互关系 ,使设计方案的综合性能更好 。应用 MATLAB 优化工具箱进行机械优化设计问题求解 ,不用编写大量的 优化算法程序 ,提高了设计效率和机械产品设计精度 ,为 重载齿轮的设计制造提供了一定的参考与应用价值 。
-
η 2,
m ax
。
上式中各参数同式 ( 2) 。
1. 3 体积
齿轮传动结构紧凑 , 质量最轻 , 体积最小 , 节省材料 , 是我们进行优化设计要达到的目标 。因此将两齿轮分度
圆处体积最小作为第三个目标函数 。分度圆处体积的计
算公式为 :
V
=
π 4
m
2
z21
b
(
1
+
i2 )
(7)
则目标函数为 :
m inf3 ( x)
理 ,齿面硬度为 ( 220~250) HBS。查机械设计手册确定各
系数并代入上述设计公式 ,得到的优化设计数学模型为 :
m inf ( x) = f2 ( x) ×f3 ( x) / f1 ( x) 。
X = ( x1 , x2 , x3 , x4 ) T = (m , z1 , b, R ) T g1 ( x) = x1 ≥3; g2 ( x) = x2 ≥25; g3 ( x) = 0. 5arcsin ( x3 /2 / x4 ) ≤0. 766; g4 ( x) = 0. 5arcsin ( x3 /2 / x4 ) ≥0. 906 3; g5 ( x) = x3 / x1 ≥20; g6 ( x) = x3 / x1 ≤25;
(下转第 47页 )
M achine B uilding A utomation, D ec 2007, 36 ( 6 ) : 44 ~45, 47
斜齿轮的接触齿面宽度较大 、承载能力较高 、运转较 平稳 ,但由于附加在轴承和机体上的较大轴向力 ,使斜齿 轮在许多情况下的应用存在着一定的困难 。人字齿轮可 保留斜齿轮的优点 ,又不产生轴向力 ,实际上人字齿轮传 动也存在着一些缺点 ,如轴向浮动 、啮合振动增加等 。本 设计的重载齿轮为对称弧形圆柱齿轮 [1 - 3 ] 。弧齿齿轮是 一种新型齿轮 ,轮齿沿轴线方向呈弧形排列 ,在垂直于齿 轮轴线方向的各个端面上的齿形为渐开线 。
1. 2 滑动率
在重载传动中 ,由于齿面啮合区的压力很大 , 润滑油 膜因温度升高容易破裂 ,重载齿轮传动的齿面易产生胶合
·44·
http: ∥ZZHD. chinajournal. net. cn E2mail: ZZHD @ chainajournal. net. cn《机械制造与自动化 》
·机械制造与研究 ·
=πm2 4
z21
b(1
+
i2
)
2 设计变量
设计变量是在搜索最优设计过程中可以改变的量 。 弧齿线圆柱齿轮在中截面内轮齿的几何参数与普通渐开 线齿轮完全一样 ,该截面可以作为设计 、制造和测量的基 准截面 [6 ] 。在其设计中 , 与普通渐开线齿轮不同的是 , 要 进行齿线方向的刀盘展成半径 R 的选择 。因此 , 弧齿形 齿轮传动系统的优化设计变量是模数 m、齿数 z、刀盘展成 半径 R,齿宽 b。即 :
赵雪玲 ,等 ·高速重载齿轮传动的多目标优化设计
破坏 ,除了要选择合适的润滑油粘度 , 或采用含有加入剂
的活性润滑油等措施外 , 尽量使最大滑动率接近相等 , 这
样不仅可以增大齿面的综合曲率半径 , 减少齿面接触应