浙教版七年级下册数学《因式分解》导学案PPT课件教案课堂教学实录

合集下载

浙教版七下第六章《因式分解》教案(1)

浙教版七下第六章《因式分解》教案(1)

浙教版七下第六章《因式分解》教案一、教学内容本节课选自浙教版七年级下册数学教材第六章《因式分解》的第一课时。

详细内容包括教材第6.1节,主要讲解因式分解的概念、方法和应用。

具体涉及提取公因式法、公式法等基本因式分解方法。

二、教学目标1. 理解因式分解的概念,掌握提取公因式法和公式法进行因式分解;2. 能够运用因式分解解决一些实际问题,提高解决问题的能力;3. 培养学生的观察能力、逻辑思维能力和运算能力。

三、教学难点与重点教学难点:提取公因式法和公式法的灵活运用。

教学重点:理解因式分解的概念,掌握基本因式分解方法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:教材、练习本、草稿纸。

五、教学过程1. 导入新课:通过一个实践情景引入,如“小明的计算器按键坏了,只能进行乘法运算,现在他想计算一个多项式的值,你能帮他简化计算过程吗?”引导学生思考如何简化计算过程,从而引出因式分解的概念。

2. 讲解新课:(1)讲解因式分解的概念,让学生明确因式分解的意义;(2)讲解提取公因式法,通过例题演示,让学生掌握提取公因式的方法;(3)讲解公式法,通过例题演示,让学生掌握公式法进行因式分解;3. 随堂练习:布置一些具有代表性的题目,让学生独立完成,及时巩固所学知识;六、板书设计1. 因式分解的概念;2. 提取公因式法;3. 公式法;4. 例题及解答过程;5. 课堂小结。

七、作业设计1. 作业题目:(1)分解因式:x^2 4;(2)分解因式:a^2 + 2ab + b^2;(3)分解因式:6x^2 9x。

2. 答案:(1)(x + 2)(x 2);(2)(a + b)^2;(3)3x(2x 3)。

八、课后反思及拓展延伸1. 反思:本节课学生对因式分解的概念和方法掌握程度,以及课堂讲解的清晰度;2. 拓展延伸:布置一道具有挑战性的题目,让学生在课后思考和探究,提高学生的自主学习能力。

例如:已知a、b、c是正整数,且满足a^3 + b^3 = c^3,试证明a、b、c中必有一个是3的倍数。

浙教版初中数学七年级下册【教案一】4.1因式分解

浙教版初中数学七年级下册【教案一】4.1因式分解
浙教版初中数学
重点知识精选
掌握知识点,多做练习题,基础知识很重要! 浙教版初中数学 和你一起共同进步学业有成!
浙教版初中数学
TB:小初高题库
浙教版初中数学
课 题 学 1.经历因式分解概念的发生过程,了解因式分解的概念。 习 了解因式分解与整式乘法的关系,并能据此检验因式分解是否正确。 目 标
课前自学 课中交流
TB:小初高题库
(1)99+99×99
(2)1012 992
依据:_________________ 2.填空:
(1)am+bm=m(
)
依据:____________________
(2) a2 b2 =(a+b)(
)
(3) a2 2ab b2 =(
)2
二.新知探究: 1.明确概念:像上述三个等式一样,把一个______化成几个_____相乘的形式,叫做因式分解。
强调它是一种变形。 2.在讲解检验因式分解是否正确时要强调因式分解与整式乘法的互逆关系及书写的规范。 3.可以运用课本作业题 1,2,3 强化训练。 二.补充题:
若多项式 x2 x k 有一个因式是 x+2,求 k 的值。
2.下列从左到右的变形,因式分解的是________________.
① a(x y) ax ay , ② 6xy2 2x 3y2 , ③ a2 4a 4 (a 2)2 , ④ x2 3x x(x 3) , ⑤
x2
2x 2
(x 1)2
1 ,⑥ 1
4 a2
(1
2 )(1 a
2) 。 a
浙教版初中数学
课前自学 课中交流
TB:小初高题库
课堂教学设计
3.请写出两个因式分解的例子。 (1)______________________________________________

浙教版七年级数学下册:第四章 因式分解 教学课件

浙教版七年级数学下册:第四章 因式分解 教学课件

1.提取公因式法口决
①系数:提取最大的公因数;
课堂小结
②字母:提取相同字母最低次幂。
2、提取公因式法分解因式
① 确定应提取的公因式 ② 用公因式去除多项式,所得的商为另一个因式 ③ 把多项式写成这两个因式积的形式
3、添括号法则
括号前面是“+”号,括到括号里的各项都不变号; 括号前面是“—”号,括到括号里的是各项都变号.
(6)4x2 ( y)2
练习:把下列各式分解因式:
(1)16a2 1 (2) m2n2 4l 2
(3) 9 x2 1 y4 25 16
(4)121-4a2b2
我能行!
(1)(x z)2 ( y z)2
(2)(2n+1)2-(2n-1)2
(3) (2x-y)2-4(x+y)2 (4) a4-81
x2 1 x(x 1) x
不是因式分解,为什么?
例1. 检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y) 正确 (2) 2x2-1=(2x+1)(2x-1) 不正确 (3) x2+3x+2=(x+1)(x+2) 正确
下列代数式从左到右的变形是因式分解吗? 多
(1) a2 a a(a 1)
第4章 因式分解
4.1 因式分解
计算:
2×3×5= 30 这是整数乘法运算,
30 =2×3×5是什么运算呢? (因数分解)
整数乘法
2×3×5 因数分解 30
一般地,把一个多项式化成几个整式的 积的形式,叫做因式分解,也叫分解因式。
注意:因式分解是整式范围内的概念.
x 4 ( x 2)( x 2)
提取公因式法的一般步骤:

浙教版初中数学七年级下册4.1 因式分解课件

浙教版初中数学七年级下册4.1  因式分解课件

知2-练
(来自《教材》)
知2-练
2 因为(a-2)2=a2-4a+4,所以a2-4a+4可因式分解 为________.
3 (中考·株洲)把多项式x2+mx+5因式分解得(x+5)(x +n),则m=________,n=________.
符合因式分解的概念,因此是因式分解,故D正
确.
(来自《点拨》)
总结
知1-讲
识别某个等式的变形是因式分解的方法,关键扣 住两点:一是等式的左边是多项式;二是等式的右边 是整式的积.
(来自《点拨》)
知1-练
1 下列代数式变形中,哪些是因式分解?哪些不是? (1) 2m(m-n) = 2m2-2mn. (2) ab2-ab= ab(b-2). (3) 4x2-4x+1 = (2x-1)2. (4) x2-3x+1=x(x-3)+1.
第4章 因式分解
4.1 因式分解
1 课堂讲解 2 课时流程
因式分解的定义 因式分解与整式乘法的关系
逐点 导讲练
课堂 小结
作业 提升
在小学时我们学过怎样把一个整数转化为几个整 数的积. 在代数中,我们也常常需要把一个多项式转 化为几个整式的积.
知识点 1 因式分解的定义
知1-导
前面我们学过整式的乘法,例如两个整式x和x-y 相乘的积是x2-xy, 即x(x-y)= x2-xy. 根据等式的性 质,可得x2-xy=x(x-y).像这种把多项式x2-xy转化 为两个整式x与x-y的积的形式,是一种重要的代数式 变形.
解:原式=(23+59+18)×2.718 =100×2.718 =271.8.
(来自《点拨》)
总结
知2-讲
化繁为简,体现了转化思想,这里通过逆用乘 法分配律,巧妙地实现了“凑整”,从而使计算变 得简便.

浙教版七年级数学下册第四章《4.1因式分解》公开课课件(14张)

浙教版七年级数学下册第四章《4.1因式分解》公开课课件(14张)
谢谢观赏
You made my day!
我们,还在路上……
a(a+1)= a2+a (a+b)(a-b)=a2-b2 (a+1)2=a2+2a+1 (x-y)2=x2-2xy+y2
a2+a= a(a+1) a2-b2= (a+b)(a-b) a2+2a+1= (a+1)2 x2-2xy+y2= (x-y)2
整式的积 多项式 多项式 整式的积
整式乘法
因式分解
4.1因式分解
忆一忆
1.在小学里,我们学过: 2×3×5=30 ( 整数乘法 ) 30 = 2×3×5 ( 因数分解 )
2.第三章里,我们学过: x (x + y) = x2 + xy ( 整式乘法 )
x2 + xy = x (x + y) ( ? )
2. 按要求填表:
整式的乘法
多项式转化为几个整式的积
做一做
你能先写出整式相乘(其中至 少一个是多项式)的两个例子,并 由此得到相应的两个多项式的因式 分解吗?把结果与你的同伴交流。
下列代数式从左到右的变形是因式分解吗?
ቤተ መጻሕፍቲ ባይዱ
(1) a2aa(a1)

(2)(a 3 )(a 3 ) a 2 9不是
(3) 4 x 2 4 x 1 (2 x 1 )2 是
思考:993-99能被100整除吗? 你是怎样想的?
993-99=99×992-99 ×1 =99 ×(992-1) =99 (99+1)(99-1) = 99×100×98
所以, 993-99能被100整除.
想一想: 993-99还能被哪些整数整除?

浙教版七下第六章《因式分解》教案

浙教版七下第六章《因式分解》教案

浙教版七下第六章《因式分解》教案一、教学内容本节课选自浙教版七年级下册第六章《因式分解》的第一课时。

主要内容包括:因式分解的意义,提取公因式法,以及应用举例。

具体涉及的教材章节为6.1节。

二、教学目标1. 理解因式分解的概念,掌握提取公因式法进行因式分解的方法。

2. 能够运用因式分解解决一些实际问题,提高数学思维能力。

3. 培养学生的观察能力、分析能力和解决问题的能力。

三、教学难点与重点教学重点:提取公因式法进行因式分解。

教学难点:理解因式分解的意义,以及如何找出多项式中的公因式。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、草稿纸、笔。

五、教学过程1. 实践情景引入通过一个简单的实际问题,引导学生思考如何求解一个多项式的值。

如:计算长方形的面积和周长,引导学生将面积和周长公式中的多项式进行因式分解。

2. 知识讲解(1)因式分解的意义:将一个多项式表示成几个整式的乘积的形式。

(2)提取公因式法:找出多项式中的公因式,并将其提取出来。

3. 例题讲解讲解两道例题,一道为提取公因式的简单例子,另一道为稍微复杂的多项式因式分解。

4. 随堂练习让学生独立完成两道练习题,巩固因式分解的方法。

5. 答疑解惑针对学生在练习中遇到的问题,进行解答和讲解。

六、板书设计1. 因式分解的概念及意义。

2. 提取公因式法进行因式分解的步骤。

3. 两道例题的解答过程。

4. 练习题目及答案。

七、作业设计1. 作业题目:(1)分解因式:6x^2 9x。

(2)分解因式:5a^2 + 10a。

2. 答案:(1)3x(2x 3)。

(2)5a(a + 2)。

八、课后反思及拓展延伸1. 反思:本节课学生掌握了因式分解的基本方法,但部分学生在提取公因式时仍存在困难,需要在今后的教学中加强练习。

2. 拓展延伸:引导学生思考,除了提取公因式法,还有哪些方法可以进行因式分解?为学生学习下一节课的内容做好准备。

重点和难点解析1. 教学难点与重点的明确。

因式分解的简单应用 PPT课件 2 浙教版



74、先知三日,富贵十年。付诸行动,你就会得到力量。

75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。

76、好习惯成就一生,坏习惯毁人前程。

77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。

78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。

79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。
探索新知
( 2 ) 4 x 2 9 3 2 x
解: 原式 2 x 3 2 x 3 2 x 3
2x3
2x3
因式分解
两个多项式相除
(未知)
换元
单项式的除法 (已知)
运用因式分解进行多项式除
梳理知识 法的步骤:1、因式分解
练习1.计算:
挑战自我
( 3) x2x22
温馨提示
当方程两边有公因式时, 切忌两边同时除以公因式, 仍应按一般步骤解.
开动脑筋,试试吧!
例3 解下列方程:
(1) 3x3 48x (2) x3 4x 0
综合与应用
( 1 )若 a b c 0 ,求 ( a 2 b 2 ) ( a c c b ) 的 值

x2
3.
梳理知识 练习2.解下列方程:
用因式分解解方程的步骤: ( 1) x22x0
1、移项,使方程右边变形为零;
2、等式左边因式分解; ( 2) 4x2x12
3、转化为一元一次方程.
8765432198765432101987654320 8765432198765432101987654320

数学浙教版七下-第六章因式分解 课件1

2020/4/24
1.隧道的横截面如图,用关于h,r的多项式表示 隧道横截面的面积.这个多项式能分解因式吗?
若r=7米,h=2 米,计算这个隧道的横截面积.
r h
2020/4/24
探究学习
2. 已知一块纸板形状如图,要把它 剪拼成一个面积与之相等的长方形纸板, 这个长方形纸板的长与宽是多少?
2020/4/24
2b
45°
2a
2020/4/24
4.将4x2 1再加上一项,使它成为完全平方式,
你有几种方法?
5.如图,现有正方形纸片3张,长方形纸片3张, 请你将它们拼成一个长方形,并运用面积之
间的关系,将多项式 2a23a bb2因式分解.
a
2020/4/24
b
b
b
a
b
a
a
a
6.利用因式分解的方法,试说明 913324
2020/4/24
4.因式分解的方法:
(1)提取公因式法. am+an=a(m+n)
(2)公式法: a 2 b 2 a b a b
a 2 2 a b b 2 a b 2
5.因式分解的应用:
(1)利用因式分解进行简单的多项式除以多项式 的运算.
(2)利用因式分解解方程:若A×B=0,则
A=0 或 B=0 .
1.把一个多项式化成几个整式的积的形式 , 叫做因式分解,也叫分解因式。2、因式分解与整式乘法Fra bibliotek关系: 因式分解
结合: a2 b2 ========(a+b)(a-b)
整式乘法
因式分解和整式乘法具有 互逆 的关 系.
2020/4/24
1.下列等式从左边到右边的变形,哪些是因式 分解?

浙教版数学七年级下册 4.1《因式分解》导学案

4.1 因式分解 导学案【学习导言】了解因式分解的概念和意义;了解因式分解与整式乘法的关系——互逆变形课前学习:尝试体验(对话课本,记下问题,尝试练习)【对话课本】阅读教材98页到99页【记下重点与问题】1. 什么是整式的乘法___________________________________.2. 看书本98页然后填写下表3.因式分解的概念:把一个多项式化成_____________的______的形式,叫做________.[记下问题]【尝试练习】1.请你写出整式相乘的两个例子(其中至少一个是多项)_______________________________________;____________________________________由此你能得到相应的两个多项式的因式分解吗?_______________________________________;____________________________________2.下列代数变形中,哪些是因式分解?哪些不是?写出为什么. 2(1)2()22m m n m mn -=- 211(2)(2)22ab ab ab b -=-x x x x-+=-+(4)31(3)1-+=-2(3)41(21)x x x422课内学习:合作体验(检评预习,审视问题,独立练习,纠错反审)【检评预习】同桌交换学案,检查评价批语:【审视问题】审视下面的学习要点,思考提出的问题【尝试例题】:例:检验下列因式分解是否正确22x x x(2)21(21)(21)-=+-(1)()x y xy xy x y-=-22++=++x x x x(3)32(1)(2)解:(1)(2)(3)想一想:检验因式分解是否正确的方法是【练习】检验下列因式分解是否正确(1)m2+nm=m(m+n) (2)a2-b2=(a+b)(a-b)(3)x2-x-2=(x+2)(x-1) (4)5x2y-10xy=5xy(x-2y)。

浙教版七年级下册第六章《因式分解》课件33页文档

浙教版七年级下册第六章《因式分解》 课件
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七年级下册数学《因式分解》导学案PPT课件教案课堂教学实录
浙教版七年级下册数学《因式分解》导学案PPT课件教案课堂教学实录
第六章因式分解
第6.1节因式分解
●乐清市翁垟镇一中鲍旭娇
一、背景介绍
因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。

因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。

它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。

因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

二、教学设计
【教学内容分析】
因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。

教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。

在教学时
对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。

【教学目标】
1、认知目标:(1)理解因式分解的概念和意义
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

【教学准备】
实物投影仪、多媒体辅助教学。

【教学过程】
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。

【初一年级学生活波好动,好表现,争强好胜。

情境导入借助抢答的方式进行,引进竞争机制,可以使学生在参与的过程中提高兴趣,并增强竞争意识和探究欲望。

】㈡、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。

(多媒体出示答案)
(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

【“与其拉马喝水,不如让它口渴”。

探索最佳解题方法的过程,就是学生“口渴”
的地方。

由此引起学生的求知欲。


2、观察:a2-b2=(a+b)(a-b) ,
a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它们的特点。

(等式的左边是一个什么式子,右边又是什么形式?)
【利用教师的主导作用,把学生的无意识的观察转变为有意识的观察,同时教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。


3、类比小学学过的因数分解概念,得出因式分解概念。

(学生概括,老师补充。


【让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。

】板书课题:§6.1因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也
叫分解因式。

㈢、前进一步
1、让学生继续观察:(a+b)(a-b)= a2-b2 ,
(a-b)2= a2-2ab+b2,
20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
(要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的错误。

)【注重数学知识间的联系,给学生提供探索与交流的空间,让学生经历数学知识的生成过程,由学生发现整式乘法与因式分解的相互关系,培养学生观察、分析问题的能力和逆向思维能力及创新能力。


2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2=========(a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

结论:因式分解与整式乘法的相互关系——相反变形。

(多媒体展示学生得出的成果)
㈣、巩固新知
1、下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2+ +2=(k+ )2;
(8)18a3bc=3a2b?6ac。

【针对学生易犯的错误,制造认知冲突,让学生充分暴露错误,然后通过分析、讨论,达到理解的效果。


2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结
果与你的同伴交流。

【学生出题热情、积极性高,因初一学生好表现,因而能激发学生学习兴趣,激活学生的思维。


㈤、应用解释
例检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。

练习计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=
2.机动题:(填空)x2-8x+m=(x-4)( ),且m=
【进一步拓展学生在数学领域内的视野,增强学生对数学的兴趣,使学生从小热衷于数学的学习和探索。

通过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造能力,及时评价,及时矫正。


㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?
说出来大家分享。

【课堂小结交给学生,让学生总结本节课中概念的发现过程,运用概念分析问题的过程,养成学生学习——总结——学习的良好习惯。

唯有总结反思,才能控制思维操作,才能促进理解,提高认知水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环。


㈧、布置作业
教科书第153的作业题。

【设计思想】
叶圣陶先生曾说过课堂教学的最高艺术是看学生,而不是看教师,看学生能否在课堂中焕发生命的活力。

因此本教学是按“投疑——感知——概括——巩固、应用和拓展”的叙述模式呈现教学内容的,这种呈现方式符合七年级学生的认知规律和学习规律,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣。

本堂课先采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性,再把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,使学生能顺利地掌握重点,突破难点,提高能力。

并在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式的教学方法,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。

并改变了传统的言传身教的方式,恰当地运用了现
代教育技术,展现了一个平等、互动的民主课堂。

相关文档
最新文档