因式分解配方法课件PPT课件
一元二次方程因式分解配方法

一元二次方程因式分解配方法嘿,朋友们!今天咱就来聊聊一元二次方程因式分解配方法。
这玩意儿啊,就像是一把神奇的钥匙,能打开好多数学难题的大门呢!你看啊,一元二次方程就好像是一个有点复杂的小怪兽,而因式分解配方法呢,就是我们降伏它的秘密武器。
比如说,一个方程x²+6x+8=0,乍一看,是不是有点头疼?别急,咱有办法。
咱先把 x²+6x 这一块看成一个整体,就好像是给小怪兽穿上了一件特别的衣服。
然后呢,我们要找到一个合适的数字,让这件衣服变得更加合身。
这个数字怎么找呢?我们可以把 6 除以 2,得到 3,然后把3 平方,就是9。
接下来,我们把9 加到方程里,变成x²+6x+9+8-9=0。
咦,这时候你发现了吗?x²+6x+9 可以变成(x+3)²呀!那方程就变成了(x+3)²-1=0。
哇塞,是不是一下子就简单多啦?就好像小怪兽被我们打扮成了一个可爱的小宠物。
再举个例子呗,比如 2x²-8x+6=0。
咱还是先处理前面那一块,2(x²-4x)+6=0。
然后呢,4 除以 2 得 2,2 平方是 4。
我们给方程加上 4,再减去 4,就变成 2(x²-4x+4)+6-8=0。
嘿嘿,2(x-2)²-2=0 啦!你瞧,这不就轻松搞定啦?你说这一元二次方程因式分解配方法是不是特别神奇?就像变魔术一样,把那些复杂的式子变得简单易懂。
这就好比我们走路,遇到一个大坡,我们不能硬着头皮往上冲,得找个好走的路绕过去呀。
学习这个方法的时候,可别嫌麻烦,多练几次,你就会发现自己越来越熟练啦。
到时候,那些一元二次方程在你眼里就不再是小怪兽,而是小绵羊啦!总之呢,一元二次方程因式分解配方法真的是非常重要且好用的方法呀,学会了它,数学的道路就会更加顺畅呢!大家一定要好好掌握哦!。
人教版九年级数学上册《因式分解法》PPT

(1) x2 9 0
(2) x2 2x 1 0
1.理解用因式分解法解一元二次方 程的基本思想,会用因式分解法解 一些一元二次方程; 2.灵活运用适当的方法解一元二次 方程,提高分析问题和解决问题的 能力.
因式分解法
当一元二次方程的一边是0,而另一边易于分解成两 个一次因式的乘积时,我们就可以用因式分解的方法 求解.这种用因式分解解一元二次方程的方法就叫因 式分解法.
温馨提示:
1.用因式分解法的条件是:方程左边易于分解,而右边等于零; 2. 关键是熟练掌握因式分解的知识 ; 3.理论依据是“两个因式的积等于零,至少有一个因式等于零.”
交流讨论
x2 x
解:方程的两边同时除以x,得 x 1.
原方程的解为x 1.
这样解是否正确呢?
感悟新知
快速回答下列各方程的根分别是多少?
(1)x(x 2) 0
(2)( y 2)( y 3) 0 (3)(3x 2)(2x 1) 0
(4)x2 2x
x1 0, x2 2
y1 2, y2 3
x1
2新知尝试
用因式分解法解下列方程
1.x2 36 0 2.x2 6x 9 3.3x(2x 1) (4x 2) 0 4.(x 4)2 (2x 5)2
一次方程. (4)两个一元一次方程的解 就是原方程的解.
2.解一元二次方程的方法: 直接开平方法 配方法 因式分解法
公式法
3.x1
1,
x2
2 3
4.x1
2,
x2
4 3
这节课,你收获了什么?
这节课上,我学会了…… 这节课上,我感到最困难的是…… 这节课上,我感受最深的是……
小结
1.用因式分解法解一元二次方程的步骤:
《解一元二次方程》一元二次方程PPT(因式分解法)

〔3〕9〔x+1〕2=〔2x-5〕2 ;
分析:移项易发现符合平方差公式,考虑用因式分解法.
〔4〕9x2-12x-1 = 0.
分析:方程的结构没有明显特殊性,考虑公式法.
解:∵ a = 9,b = -12,c = -1,
∴ Δ = b 2-4 a c =〔-12〕2-4×9×〔-1〕= 144+36
(x + m) 〔x + n〕=0
解法选择根本思路
1.一般地,当一元二次方程一次项系数为0时〔ax2+c=0〕, 应选用直接开平方法; 2.假设常数项为0〔 ax2+bx=0〕,应选用因式分解法; 3.假设一次项系数和常数项都不为0 (ax2+bx+c=0〕,先化为 一般式,看一边的整式是否容易因式分解,假设容易,宜选 用因式分解法,不然选用公式法; 4.当二次项系数是1,且一次项系数是偶数时,用配方法也较 简单.
不过现在教同学们一个 小办法,左边我为大家准备 了一张视力保健“远眺图” ,看看图就能缓解眼疲劳, 起到远眺解乏的作用。
远眺图是利用心理学 空间知觉原理,在一张二维 空间平面上,强烈显示出三 维空间的向远延伸的立体图 形,远视和视力良好的人在 长时间近距离用眼情况下引 起的视力疲劳,可以通过此 种方法获得一定的缓解。
远眺图使用方法
第一步、首先在能把远眺图都看清的位置,熟悉 一下最远处几个框细微的纹路,
第二步、然后逐渐加大距离至远眺图最远处的几 个框处于模糊与清晰之间的位置停止。
第三步、思想集中,认真排除干扰,精神专注, 开始远眺,双眼看整个图表,产生向前深进的感 觉,然后由外向内逐步辨认最远处几个框每一层 的绿白线条。
配方法(课件1)

配方法可以用于求解一元二次方程和某些一元高 次方程,将其转化为容易求解的形式。
03 函数极值
配方法可以用于求函数的极值,通过将函数转化 为完全平方的形式,可以更容易地找到极值点。
配方法的基本步骤
步骤1
步骤3
将多项式转化为完全平方的形式,可 以通过加上或减去适当的常数来实现。
利用直接开平方法求解,得到原多项 式的解。
01
02
03
解的求解过程
通过对方程进行配方,将 其转化为完全平方形式, 然后利用直接开平方法求 解。
解的表示
解可以表示为 $x=hpmsqrt{k}$的形式, 其中$h$和$k$是常数, $sqrt{k}$是方程的解。
解的验证
解出方程后,需要验证解 的正确性,确保解满足原 方程。
03
多元一次方程组的配方法
开方得到:$x - 2 = pm 1$
解得:$x_1 = 3, x_2 = 1$
THANKS
感谢观看
步骤2
对完全平方进行因式分解,得到两个 相同的因式。
02
一元二次方程的配方法
方程的转化
转化形式
将一元二次方程转化为$a(xh)^2+k$的形式,其中$h$和$k$ 是常数,$a$是方程的二次项系数。
配方过程
通过移项、配方等步骤,将一元二 次方程转化为完全平方的形式。
配方技巧
利用完全平方公式,将方程中的项 进行组合,使其成为完全平方项。
02
01
03
将方程两边同时除以二次项 系数,使二次项系数为1。
将方程两边同时加上一次项 系数一半的平方。
04
05
化简得到一个完全平方项。
配方法的应用实例
人教版九年级数学上册21.2解一元二次方程因式分解法 课件(共19张PPT)

新知探究
(1)因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练 掌握分解因式的知识,理论依旧是“如果两个因式的积等于零,那么至少 有一个因式等于零.” (2)因式分解法,突出了转化的思想方法,鲜明地显示了“二次”转化为 “一次”的过程. (3)在解一元二次方程的时候,要具体情况具体分析,选择合适的解一元 二次方程的方法.
公式 x= b b2 4ac 就可得到方程的根.
2a
学习目标 1.理解因式分解法解一元二次方程的推导过程. 2.理解并掌握用因式分解法解一元二次方程.
课堂导入
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么
物体经过x s离地面的高度(单位:m)为
10x-4.9x2.
根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?
新知探究
解下列方程: (1) x2+x=0;
(2) x2 2 3x 0;
(3) 3x2-6x=-3.
新知探究
解下列方程: (1) x2+x=0;
(2) x2 2 3x 0;
(3) 3x2-6x=-3.
随堂练习
用因式分解法解下列方程: (1) 3x2-12x=-12;
x1=x2=2.
(2) 3x(x-1)=2(x-1). x1=1 x2=2/3.
新知探究
例1 解方程:x(x-2)+x-2=0. 解: 因式分解,得
(x-2)(x+1)=0. 于是得
x-2=0,或x+1=0, x1=2,x2=-1.
转化为两个一元 一次方程
新知探究
例2 解方程:5x2 2x 1 x2 2x 3 .
4
4
新知探究
用因式分解法解一元二次方程的步骤: 1.移项:将方程化为一般形式; 2.分解:将方程的左边分解为两个一次式的乘积; 3.转化:令每一个一次式分别为0,得到两个一元一次方程; 4.求解:解这两个一元一次方程,它们的解就是一元二次方程的解.
降次解一元二次方程因式分解法教学课件.ppt

右化零 两因式
简记歌诀: 左分解 各求解
六、作业设计
作业
课本P43 习题22.2第6题
(1)x(x 2) 0 x1 0, x2 2
(2)( y 2)( y 3) 0 y1 2, y2 3
(3)(3x
2)(2x
1)
0
x1
2 3
,
x2
1 2
(4)x2 x
x1 0, x2 1
例1、解下列方程 1、x2-3x-10=0
解:原方程可变形为
(x-5)(x+2)=0 x-5=0或x+2=0
解:移项,得
3x(x 2) 5(x 2) 0
x 23x 5 0
x 2 0或3x 5 0
x1
2,
x2
5 3
(2)(3x+1)2-5=0
解:原方程可变形为
(3x+1+ 5 )(3x+1- 5 )=0
3x+1+ 5=0或3x+1- 5=0
∴
x1=
1
3
5,
x2=
1
3
5
三、巩固练习
x1
1,
x2
a a
b b
.
2.解关于x的方程x2 2ax a2 b2 0
1 (a b) 1 (a b)
解:[x (a b)][x (a b)] 0 x (a b) 0或x (a b) 0
x1 a b, x2 a b.
3.解关于x的方程x2 2ax a2 b2 0
x 3y 0或2x 5y 0,
x 3y或2x 5y.
五、课堂小结
用因式分解法解一元二次方程的步骤: 1.方程右边不为零的化为 零 。 2.将方程左边分解成两个__一__次__因__式_____
课件《因式分解》精品PPT课件_人教版2

十字相乘法②随堂练习: 1)4a2–9a+2 a 24a 1
2)7a2–19a–6 7a 2a 3 3)2(x2+y2)+5xy 2x y x 2y
例 .将 2(6x2 +x) 2-11(6x2 +x) +5 分解因式 解:2(6x2 +x)2-11(6x2 +x) +5 = [(6x2 +x) -5][2(6x2 +x)-1] = (6x2 +x-5) (12x2 +2x-1 ) = (6x -5)(x +1) (12x2 +2x-1 )
x2 13x 42 x 6 x 7
对二次三项式x2+px+q用x2+(a+b)x+ab=(x+a)(x+b)进行因式分解, 应重点掌握以下问题:
1.适用范围:只有当q=ab,且p=a+b时 才能用十字相乘法进
我
行分解。
2.掌握方法:拆分常数项,验证一次项.
3.符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
3.(x-2)(x+1)= x2-x-2
4.(x-2)(x-1)= x2-3x+2 5.(x+2)(x+3)= x2+5x+6 6.(x+2)(x-3)= x2-x-6 7.(x-2)(x+3)= x2+x-6 8.(x-2)(x-3)= x2-5x+6
(x+a)(x+b) =x2+(a+b)x+ab
2
-1
例1:2x2-7x+3
解:原式=(2x-1)(x-3) 1
-3
总结:
2 × (-3)+(-1) × 1=-7
因式分解之配方法与主元法

第6讲 因式分解-----配方法与主元法、换元法知识要点】配方法:配方法是一种特殊的添项法,如何拆项或添项,依赖于对题目所给代数式特点的观察和分析。
主元法:当题目中的字母较多、问题较复杂时,我们可以把某一字母作为主元,而将其他字母作为常数去解决问题。
换元法:换元法是根据代数式中的特征,把其中的某些部分看成一个整体,并用一个新的文字(新元)代替之,从而使这个代数式的结构简化,便于解题。
【经典例题】例1、分解因式:(1)2616x x +- (2)()444y x y x +++例2、已知,19911990,19901990,19891990+=+=+=x c x b x a 那么ca bc ab c b a ---++222的值是多少?例3、若c b 、、a 是不全相等的实数,且ab c z ca b y bc a x -=-=-=222,,,求证:z y 、、x 中至少有一个大于0例4、分解因式:2910322-++--y x y xy x例5、分解因式:)()()(222y x z x z y z y x -+-+-例6、分解因式:2005)12005(200522---x x例7、2)6)(3)(2)(1(x x x x x +++++例8、分解因式:262234+---x x x x【经典练习】1、分解因式:)(4)(22222y x xy y xy x +-++2、分解因式:90)384)(23(22+++++x x x x3、分解因式:222222)3(4)5()1(+-+++a a a4、分解因式:56422-++-y x y x5、分解因式:67222-+--+y x y xy x6、分解因式:613622-++-+y x y xy x7、分解因式:36355622-++-+b a b ab a8、分解因式:()()2222284384x x x x x x ++++++9、分解因式:144234+++-x x x x【课后作业】1、 分解因式:44+x2、 分解因式:222255372z yz xz y xy x +-++-3、分解因式:()()()12422+++-n n n n欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂作业
1、填空: (1)x2-18x+ =( )2 (2) 9x2 + +16y2=( )2
2、如果x2-2kx+4是完全平方式,则k=
.
3、分解因式 (1)x2+2x-24
(2) x2+8xy+12y2
(3)x2-3x-10
(4)x2y2-9xy+20
998(998 2 1002)1
998( 2)1 1997
对于 ax2 bx c (a 0) 这样
的二次三项式,可以进行因式分解吗?
例如 : x2 2x 3 解:原式=(x2 2x 1) 1 3
(x 1)2 4 [(x 1) 2][(x 1) 2] (x 3)(x 1)
练习3 把下列各式分解因式
x4 4
3x2 6x 1(在实数范围内)
你领略到配方的魅力了吗?
❖配方法是一种“通法”,就是说只 要是能分解的二次三项式,都能用配 方法来分解。
综合应用
1.若x2 (m 3)x 4是完全平方式,
则实数m的值是 ______.
分析:两种情况: (1)如果x2 (m 3)x 4 (x 2)2
➢能总结出用配方法分解因式的步骤吗?
➢对比用配方法解方程,你觉得用配方法分 解因式的过程中,哪些值得注意的地方?
❖步骤:1提:提出二次项系数;
2配:配成完全平方;
3化:化成平方差;
4分解:运用平方差分解因式。 ❖实质:对二次三项式的常数项进行 “添项”。“添”的是一次项系数一 半的平方。(添项拆项法)
则m 3 4即m 7; (2)如果x2 (m 3)x 4 (x 2)2 则m 3 4即m 1;
m 7或1。
提高练习:已知a2+b2-6a+2b+10=0, 求a,b的值.
解:∵ a2+b2-6a+2b+10=0 ∴a2-6a+9+b2+2b+1=0
因式分解配方法课件
知识回顾
1、分解下列因式:
(1)7x2-28x
(2) 5ab2-80a3
(3) -9a2+36b2 (4)25a2-30ab+9b2
(5)18x3y+24x2y2+8xy3 (6) a4-4 (在实数范围内)
x2 6axy 3ay2 3a x2 2xy y2
3a(x y)2
(2)a4 8a2b2 16b4 (a2 4b2 )2
[(a 2b)(a 2b)]2 (a 2b)2 (a 2b)2 (3)(a2 9)2 36a2 (a2 9 6a)(a2 9 6a)
(a 3)2 (a 3)2
练习1 把下列各式分解因式
(1)x2 2x 8 (2)x2 6xy 5y2
(3) x2 y2 20 xy 96
试试用配方法怎样进行下列式子 的因式分解呢?
(1)x2 3x 40
(2)2x2 x 3
➢在分解过程中,为什么要加上一项,又减 去该项?
➢在第2题中怎样把二次项系数变为1?
(5)-x2-2x+15
家庭作业
1、如果x2+2(k+4)x+25是完全平方式,求k的值。
2、已知x2+y2+6x-4y+13=0,求x,y的值.
3、分解因式
(1)x2-4x-12 (2)y2+12y-133
(3)x2-3x-28
(4)y2+18y+56
(5)x2+4xy-21y2 (6)x2y2+5xy+6
综合应用
3.用简便方计算:
(1)20082 64 16 2008 解:原式 2008 2 2 2008 8 82 (2008 8)2 20002 4000000
(2)9992 1002 998 解:原式 (998 1)2 1002 998
9982 299811002998