三角形知识点总复习附答案

合集下载

初一数学三角形与全等三角形知识点大全-经典练习-含答案

初一数学三角形与全等三角形知识点大全-经典练习-含答案

初一数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差〈第三边〈两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。

证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。

3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角和:n边形内角和等于(n-2)*1808、多边形的外角和:360度注:有些题,利用外角和,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n—3条对角线,n边形共有对角线23)-n(n条。

八年级上册第一章三角形整章复习知识点和对应练习

八年级上册第一章三角形整章复习知识点和对应练习

T ——三角形一、知识梳理:专题一:三角形有关的线段;专题二:三角形有关的角;专题三:多边形及其内角和.二、考点分类专题一:三角形有关的线段考点一:三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形分类:(1)按角的关系分类 (2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形 3.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.【例1】【类型一】 判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm ;B .5cm ,6cm ,10cm ;C .1cm ,1cm ,3cm ;D .3cm ,4cm ,9cm 解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( )A .3<x <11 ;B .4<x <7 ;C .-3<x <11 ;D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x <11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.考点二:三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.【例2】探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解:过点C 作边AB 的垂线段,即画AB 边上的高CD ,所以画法正确的是D.故选D. 方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】 根据三角形的面积求高如图所示①,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,若点P 在边AC 上移动,则BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC =12BP ·AC ,解得BP =245方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.① ② ③ ④ 探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长如图②在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图③,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图④,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.解析:根据AD 是△ABC 的角平分线,∠BAC =60°,得出∠BAD =30°,再利用CE 是△ABC 的高,∠BCE =40°,得出∠B 的度数,进而得出∠ADB 的度数.解:∵AD 是△ABC 的角平分线,∠BAC =60°,∴∠DAC =∠BAD =30°.∵CE 是△ABC 的高,∠BCE =40°,∴∠B =50°,∴∠ADB =180°-∠B -∠BAD =180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.考点三:三角形的稳定性【例3】要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.专题二:三角形有关的角考点四:三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.直角三角形的性质:直角三角形两锐角互余【例4】探究点一:三角形的内角和【类型一】 求三角形内角的度数已知,如图①,D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,若∠A =46°,∠D =50°.求∠ACB 的度数.① ② 解析:在Rt △DFB 中,根据三角形内角和定理,求得∠B 的度数,再在△ABC 中求∠ACB 的度数即可.解:在△DFB 中,∵DF ⊥AB ,∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°,∴∠B =40°.在△ABC 中,∵∠A =46°,∠B =40°,∴∠ACB =180°-∠A -∠B =94°. 方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】 判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法判定解析:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】 三角形的内角与角平分线、高的综合运用如图②,在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.解析:根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,∠ACD ,最后根据角平分线的定义求出∠ACE 即可求得∠DCE 的度数.解:∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x .∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得x =30°,∴∠A =30°,∠ACB =90°.∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =180°-90°-30°=60°.∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】 直角三角形性质的运用如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF ,再根据三角形的内角和定理求出∠C +∠DBC =∠F +∠DEF ,然后求解即可.解:∵CE ⊥AF ,∴∠DEF =90°,∴∠EDF =90°-∠F =90°-40°=50°.由三角形的内角和定理得∠C +∠DBC +∠CDB =∠F +∠DEF +∠EDF ,∴30°+∠DBC =40°+90°,∴∠DBC =100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.考点五:三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.【例5】探究点:三角形的外角【类型一】 应用三角形的外角求角的度数如图所示,P 为△ABC 内一点,∠BPC =150°,∠ABP =20°,∠ACP =30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD =∠A +∠ABC =60°+50°=110°,∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠1=12∠ACD =55°,∠2=12∠ABC =25°.∵∠E +∠2=∠1,∴∠E =∠1-∠2=30°;(2)猜想:∠E =12∠A ; (3)∵BE 、CE 是两外角的平分线,∴∠2=12∠CBD ,∠4=12∠BCF ,而∠CBD =∠A +∠ACB ,∠BCF =∠A +∠ABC ,∴∠2=12(∠A +∠ACB ),∠4=12(∠A +∠ABC ).∵∠E +∠2+∠4=180°,∴∠E +12(∠A +∠ACB )+12(∠A +∠ABC )=180°,即∠E +12∠A +12(∠A +∠ACB +∠ABC )=180°.∵∠A +∠ACB +∠ABC =180°,∴∠E +12∠A =90°. 方法总结:对于本题发现的结论要予以重视:图①中,∠E =12∠A ;图②中,∠E =90°-12∠A .考点六:多边形及其内角和多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形. 多边形的内角和与外角和1.性质:多边形的内角和等于(n -2)·180°;多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.(3).正n 边形:正n 边形的内角的度数为(n -2)·180°n ,外角的度数为360°n. 【例6】探究点一:多边形的概念【类型一】 多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D 的图形不是凸多边形.故选D. 方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A .14或15或16B .15或16C .14或16D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A. 方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线. 方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A .6B .7C .8D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A .等腰三角形B .长方形C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C. 方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.探究点一:多边形的内角和【类型一】利用内角和求边数一个多边形的内角和为540°,则它是( )A.四边形 B.五边形C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.。

中考解直角三角形知识点复习

中考解直角三角形知识点复习

中考解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半;3、直角三角形斜边上的中线等于斜边的一半4、勾股定理: 如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形;考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;3、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形;经典直角三角形:勾三、股四、弦五用它判断三角形是否为直角三角形的一般步骤是:1确定最大边不妨设为c ;2若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形其中c 为最大边; 若a 2+b 2>c 2,则此三角形为锐角三角形其中c 为最大边4. 勾股定理的作用:1已知直角三角形的两边求第三边; 2已知直角三角形的一边,求另两边的关系;3用于证明线段平方关系的问题; 4利用勾股定理,作出长为n 的线段 考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA,即b atan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值三角函数 30°45°60°sinα cos αtan α 1 cot α14、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A ; 2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4商弦切关系:tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,1正弦值随着角度的增大或减小而增大或减小;2余弦值随着角度的增大或减小而减小或增大;3正切值随着角度的增大或减小而增大或减小;4余切值随着角度的增大或减小而减小或增大 考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形; 2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为a,b,c 1三边之间的关系:222c b a =+勾股定理 2锐角之间的关系:∠A+∠B=90°3边角之间的关系:正弦sin,余弦cos,正切tan4 面积公式:h c 为c 边上的高考点五、解直角三角形 应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:1仰角:视线在水平线上方的角;俯角:视线在水平线下方的角;2坡面的铅直高度h 和水平宽度l 的比叫做坡度坡比;用字母i 表示,即hi l=;坡度一般写成1:m 的形式,如1:5i =等; 把坡面与水平面的夹角记作α叫做坡角,那么tan hi lα==; 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角;如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°;解直角三角形的基本类型及其解法公式总结2测量底部可以到达的物体的高度h =h 1+h 2=a 1tan α+tan β3测量底部不可到达的物体的高度1数学模型所用工具 应测数据 数量关系根据 理论 皮尺 侧倾器仰角α 俯角β 高度a tan α=x h 1 ,tan β=xah =a +h 1=a +a =a1+矩形的性质和直角三角形的边角关系俯角α 俯角β 高度 tan α=, tan β=xa∴x == ∴h =a -测量底部不可到达的物体的高度2数字模型 所用工具 应测距离 数量关系根据 原理皮尺侧倾器 仰角α, 仰角β 水平距离a 1 侧倾器高a 2tan α=xa h +11tan β=x h 1∴h 1=αββαtan tan tan tan 1-ah =a 2+h 1=a 2+αββαtan tan tan tan 1-a矩形的性质和直角三角形的边角关系仰角α 仰角β 高度atan α=, tan β= h =tan α=, tan β=、h =仰角α 仰角β 高度atan α=, tan β=h =第三部分 真题分类汇编详解2007-2012200719.本小题满分6分一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近参考数据:°≈925,°≈25, °≈910,°≈2200819.本小题满分6分在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米结果保留两个有效数字参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=200919.本小题满分6分在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰D DC BβC GEFhα β x h xaα βhAa x α βhaxαβ hx α β角37CGE ∠=°,已知测倾器高米,请你根据以上数据计算出古塔CD 的高度. 参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈ 201019.本小题满分6分小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.结果保留整数参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,解:201119.6分某商场准备改善原有楼梯的安全性能, 原来的40o 减至35o .已知原楼梯AB 长为5m,调整后的楼梯所占地 面CD 有多长结果精确到0.1m .参考数据:sin40o ≈,cos40o ≈≈,tan35o ≈ 201220.8分附历年真题标准答案:200719.本小题满分6分解:过C 作AB 的垂线,交直线AB 于点D,得到Rt△ACD 与Rt△BCD.设BD =x 海里,在Rt△BCD 中,tan∠CBD=CDBD,∴CD=x ·°.在Rt△ACD 中,AD =AB +BD =60+x 海里,tan∠A=CDAD,∴CD= 60+x ·°. ∴x·°=60+x·°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近. …………………………6′ 200819.本小题满分6分解:设CD 为x ,在Rt△BCD 中, 6.18==∠αBDC ,∵CDBCBDC =∠tan ,∴x BDC CD BC 34.0tan =∠⋅=. ········· 2′ 在Rt△ACD 中, 5.64==∠βADC , ∵CDACADC =∠tan ,∴x ADC CD AC 1.2tan =∠⋅=. ∵BC AC AB -=,∴x x 34.01.22-=. 1.14x ≈. 答:CD 长约为米. 200919.本小题满分6分B CD A CG EDBAF B37° 48°DC A 第19题图40o 35o ADBC解:由题意知CD AD ⊥,EF AD ∥, ∴90CEF ∠=°,设CE x =,在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CE CGE GE ∠=,则4tan tan 373CE x GE x CGE ===∠°∵EF FG EG =+,∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=米.答:古塔的高度约是39米. ························ 6分 201019.本小题满分6分解:设CD = x .在Rt △ACD 中,tan37ADCD︒=, 则34AD x =,∴34AD x =. 在Rt△BCD 中,tan48° = BD CD,则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分201119.本小题满分6分 201220.8分第19题图。

初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初二全等三角形所有知识点总结和常考题知识点:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.常考题:一.选择题(共14小题)1.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点5.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°6.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.58.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积等于( )A .10B .7C .5D .410.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( )A .边角边B .角边角C .边边边D .边边角11.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:512.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,作射线OP 由作法得△OCP ≌△ODP 的根据是( )A .SASB .ASAC .AASD .SSS13.下列判断正确的是( )A .有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等14.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个二.填空题(共11小题)15.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.16.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.17.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.18.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.19.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.20.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD=cm.21.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是度.22.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.23.如图所示,将两根钢条AA′,BB′的中点O连在一起,使A A′,BB′可以绕着点O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是.24.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.25.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG ⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG=cm.三.解答题(共15小题)26.已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.27.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.28.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.29.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.30.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.31.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.32.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE 上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.33.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB边上一点.求证:BD=AE.34.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.35.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.36.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.37.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.38.如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.39.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.40.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•西宁)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等【分析】利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.【点评】本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.2.(2013•安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.(2014秋•江津区期末)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.(2007•中山)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项5.(2011•呼伦贝尔)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.【点评】本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.6.(2000•安徽)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.【点评】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.7.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC =S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.8.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5,∴S△BCE故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.(1998•南京)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC 最恰当的理由是( )A .边角边B .角边角C .边边边D .边边角【分析】由已知可以得到∠ABC=∠BDE ,又CD=BC ,∠ACB=∠DCE ,由此根据角边角即可判定△EDC ≌△ABC .【解答】解:∵BF ⊥AB ,DE ⊥BD∴∠ABC=∠BDE又∵CD=BC ,∠ACB=∠DCE∴△EDC ≌△ABC (ASA )故选B .【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.11.(2017•石家庄模拟)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C . 故选C .【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.12.(2009•鸡西)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,作射线OP 由作法得△OCP ≌△ODP 的根据是( )A.SAS B.ASA C.AAS D.SSS【分析】认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,于是两个三角形符合SSS判定方法要求的条件,答案可得.【解答】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;∴在△OCP和△ODP中,∴△OCP≌△ODP(SSS).故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(2002•河南)下列判断正确的是()A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等【分析】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,对比选项进行分析.【解答】解:A、只有两个三角形同为锐角三角形或者钝角三角形或者直角三角形时,才能成立;B、30°角没有对应关系,不能成立;C、如果这个角是直角,此时就不成立了;D、符合全等三角形的判断方法:AAS或者ASA.故选D.【点评】本题要求对全等三角形的几种判断方法熟练运用,会对特殊三角形全等进行分析判断.14.(2006•十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.二.填空题(共11小题)15.(2006•芜湖)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.16.(2013•邵东县模拟)如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.注意分析思路,培养自己的分析能力.17.(2016秋•宁城县期末)如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.18.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.【分析】先利用三角形的内角和定理求出∠A=70°,然后根据全等三角形对应边相等解答.【解答】解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.【点评】本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.19.(2009•杨浦区二模)如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去玻璃店.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.【点评】这是一道考查全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.20.(2015秋•西区期末)如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD=4cm.【分析】先根据平行线的性质求出∠ADE=∠EFC,再由ASA可求出△ADE≌△CFE,根据全等三角形的性质即可求出AD的长,再由AB=9cm即可求出BD的长.【解答】解:∵AB∥CF,∴∠ADE=∠EFC,∵∠AED=∠FEC,E为DF的中点,∴△ADE≌△CFE,∴AD=CF=5cm,∵AB=9cm,∴BD=9﹣5=4cm.故填4.【点评】本题考查的是平行线的性质、全等三角形的判定定理及性质,比较简单.21.(2009秋•南通期末)在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是35度.【分析】过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°﹣35°=55°,即可求得∠EAB的度数.【解答】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,即∠CDA=110°,∠DAB=70°,∴∠EAB=35°.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(2012秋•合肥期末)如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=50度.【分析】先运用三角形内角和定理求出∠C,再运用全等三角形的对应角相等来求∠AED.【解答】解:∵在△ABC中,∠C=180﹣∠B﹣∠BAC=50°,又∵△ABC≌△ADE,∴∠AED=∠C=50°,∴∠AED=50度.故填50【点评】本题考查的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要识记的内容.23.(2015秋•蒙城县期末)如图所示,将两根钢条AA′,BB′的中点O连在一起,使A A′,BB′可以绕着点O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是SAS.【分析】已知二边和夹角相等,利用SAS可证两个三角形全等.【解答】解:∵OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△OAB≌△OA′B′(SAS)所以理由是SAS.【点评】本题考查了三角形全等的应用;根据题目给出的条件,要观察图中有哪些相等的边和角,然后判断所选方法,题目不难.24.(2011•河南)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为4.【分析】根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.【点评】本题主要考查了直线外一点到直线的距离垂线段最短、角平分线的性质,解题的关键在于确定好DP垂直于BC.25.(2015•鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= 4cm.【分析】如图,作MD⊥BC于D,延长DE交BG的延长线于E,构建等腰△BDM、全等三角形△BED和△MHD,利用等腰三角形的性质和全等三角形的对应边相等得到:BE=MH,所以BG=MH=4.【解答】解:如图,作MD⊥BC于D,延长MD交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22.5°,∵BG⊥MG,∴∠BGM=90°,∴∠GBM=90°﹣22.5°=67.5°,∴∠GBH=∠EBM﹣∠ABC=22.5°.∵MD∥AC,∴∠BMD=∠A=45°,∴△BDM为等腰直角三角形∴BD=DM,而∠GBH=22.5°,∴GM平分∠BMD,而BG⊥MG,∴BG=EG,即BG=BE,∵∠MHD+∠HMD=∠E+∠HMD=90°,∴∠MHD=∠E,∵∠GBD=90°﹣∠E,∠HMD=90°﹣∠E,∴∠GBD=∠HMD,∴在△BED和△MHD中,,∴△BED≌△MHD(AAS),∴BE=MH,∴BG=MH=4.故答案是:4.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.三.解答题(共15小题)26.(2008•北京)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.【分析】根据AB∥ED推出∠B=∠E,再利用SAS判定△ABC≌△CED从而得出AC=CD.【解答】证明:∵AB∥ED,∴∠B=∠E.在△ABC和△CED中,,∴△ABC≌△CED.∴AC=CD.【点评】本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显.27.(2007•北京)已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.【分析】根据角平分线的性质得出∠AOP=∠COP,∠BOP=∠DOP,从而推出∠AOB=∠COD,再利用SAS判定其全等从而得到AB=CD.【解答】证明:∵OP是∠AOC和∠BOD的平分线,∴∠AOP=∠COP,∠BOP=∠DOP.∴∠AOB=∠COD.在△AOB和△COD中,.∴△AOB≌△COD.∴AB=CD.【点评】本题考查三角形全等的判定方法,以及全等三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题比较简单,读已知时就能想到要用全等来证明线段相等.28.(2014•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC 于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.29.(2013•常州)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.【分析】根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.【解答】证明:∵C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B.【点评】本题考查了全等三角形的判定与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.30.(2008•重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.【分析】(1)由CF平分∠BCD可知∠BCF=∠DCF,然后通过SAS就能证出△BFC ≌△DFC.(2)要证明AD=DE,连接BD,证明△BAD≌△BED则可.AB∥DF⇒∠ABD=∠BDF,又BF=DF⇒∠DBF=∠BDF,∴∠ABD=∠EBD,BD=BD,再证明∠BDA=∠BDC则可,容易推理∠BDA=∠DBC=∠BDC.。

三角形 知识点+考点+典型例题(含答案)

三角形  知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

中考数学复习----《等边三角形》知识点总结与练习题(含答案解)

中考数学复习----《等边三角形》知识点总结与练习题(含答案解)

中考数学复习----《等边三角形》知识点总结与练习题(含答案解) 知识点总结1. 等边三角形的概念:三条边都相等的三角形是等边三角形。

2. 等边三角形的性质:①等边三角形的三条边都相等,三个角也相等,且三个角都等于60°。

②等边三角形三条边都存在“三线合一”③等腰三角形是一个轴对称图形,有三条对称轴。

④等腰三角形的面积等于243a (a 为等腰三角形的边长)。

3. 等腰三角形的判定:①三条边都相等的三角形是等边三角形。

②三个角都相等(两个角是60°)的三角形是等腰三角形。

③底和腰相等的等腰三角形是等边三角形。

④有一个角是60°的等腰三角形是等边三角形。

练习题1、(2022•鞍山)如图,直线a ∥b ,等边三角形ABC 的顶点C 在直线b 上,∠2=40°,则∠1的度数为( )A .80°B .70°C .60°D .50°【分析】先根据等边三角形的性质得到∠A =60°,再根据三角形内角和定理计算出∠3=80°,然后根据平行线的性质得到∠1的度数.【解答】解:∵△ABC 为等边三角形,∴∠A =60°,∵∠A +∠3+∠2=180°,∴∠3=180°﹣40°﹣60°=80°,∵a∥b,∴∠1=∠3=80°.故选:A.2、(2022•绵阳)下列关于等边三角形的描述不正确的是()A.是轴对称图形B.对称轴的交点是其重心C.是中心对称图形D.绕重心顺时针旋转120°能与自身重合【分析】根据等边三角形的性质,轴对称图形的定义,中心对称图形的定义进行判断即可.【解答】解:等边三角形是轴对称图形,每条边的高线所在的直线是其对称轴,故A选项不符合题意;三条高线的交点为等边三角形的重心,∴对称轴的交点是其重心,故B选项不符合题意;等边三角形不是中心对称图形,故C选项符合题意;等边三角形绕重心顺时针旋转120°能与自身重合,故D选项不符合题意,故选:C.3、(2022•海南)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°【分析】先根据等边三角形的性质可得∠A=∠B=∠C=60°,由三角形外角的性质可得∠AEF的度数,由平行线的性质可得同旁内角互补,可得结论.【解答】解:∵△ABC是等边三角形,∴∠A=60°.对于△AEF,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°﹣60°=80°,∴∠DEB=∠AEF=80°,∵m∥n,∴∠2+∠DEB=180°,∴∠2=180°﹣80°=100°,故选:B.4、(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=3,则△AOB与△BOC的面积之和为()A .43B .23C .433D .3【分析】将△AOB 绕点B 顺时针旋转60°得△CDB ,连接OD ,可得△BOD 是等边三角形,再利用勾股定理的逆定理可得∠COD =90°,从而解决问题.【解答】解:将△AOB 绕点B 顺时针旋转60°得△CDB ,连接OD ,∴OB =BD ,∠OBD =60°,CD =OA =2,∴△BOD 是等边三角形,∴OD =OB =1,∵OD 2+OC 2=12+()2=4,CD 2=22=4,∴OD 2+OC 2=CD 2,∴∠DOC =90°,∴△AOB 与△BOC 的面积之和为S △BOC +S △BCD =S △BOD +S △COD =×12+=, 故选:C .。

解三角形知识点总结及典型例题

课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。

中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。

初二三角形知识点总结和常考题

初二三角形知识点总结和常考题一、三角形的基本概念。

1. 定义。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形的边、顶点、内角。

- 组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

3. 三角形的表示方法。

- 三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

二、三角形的分类。

1. 按角分类。

- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形。

直角三角形可以用符号“Rt△”表示,直角所对的边叫做斜边,另外两条边叫做直角边。

- 钝角三角形:有一个角是钝角的三角形。

2. 按边分类。

- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形。

相等的两边叫做腰,另外一边叫做底边;两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

等腰三角形中,三边都相等的三角形叫做等边三角形(也叫正三角形)。

三、三角形的三边关系。

1. 定理。

- 三角形两边的和大于第三边。

2. 推论。

- 三角形两边的差小于第三边。

四、三角形的高、中线与角平分线。

1. 高。

- 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形的三条高所在直线相交于一点。

2. 中线。

- 在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线相交于一点,这点叫做三角形的重心。

3. 角平分线。

- 在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线相交于一点。

五、三角形的内角和定理及推论。

1. 内角和定理。

- 三角形三个内角的和等于180°。

2. 推论。

- 直角三角形的两个锐角互余。

- 有两个角互余的三角形是直角三角形。

六、三角形的外角。

1. 定义。

- 三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

《常考题》初中八年级数学上册第十一章《三角形》知识点复习(含答案解析)

一、选择题1.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条 2.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm 3.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .6 4.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE ∠的度数是( )A .50°B .25°C .30°D .35°5.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 6.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m 7.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 8.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( ) A .15B .20C .30D .40 9.如果一个三角形的两边长分别为4和7,则第三边的长可能是( ) A .3B .4C .11D .12 10.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm 11.正十边形每个外角等于( )A .36°B .72°C .108°D .150° 12.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30° 13.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75° 14.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( ) A .4、5、6 B .3、4、5 C .2、3、4 D .1、2、3 15.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A.72米B.80米C.100米D.64米二、填空题16.如图1,ABC纸片面积为24,G为ABC纸片的重心,D为BC边上的一个四等<)连结CG,DG,并将纸片剪去GDC,则剩下纸片(如图2)的面分点(BD CD积为__________.17.如图,C为∠AOB的边OA上一点,过点C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H,若∠EFD=α,现有以下结论:①∠COF=α;②∠AOH =180°﹣2α;③CH⊥CD;④∠OCH=2α﹣90°.其中正确的是__(填序号).18.如果三角形两条边分别为3和5,则周长L的取值范围是________∠的度19.如图,飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,那么APB数为______°.20.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD =3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.21.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______.22.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.23.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.24.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.25.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.26.如图,线段AD ,BE ,CF 两两相交于点H ,I ,G ,分别连接AB ,CD ,EF .则A B C D E F ∠+∠+∠+∠+∠+∠=____.三、解答题27.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C . (1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.28.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).29.如图所示,已知AD ,AE 分别是△ABC 的高和中线,AB =3cm ,AC =4 cm ,BC=5 cm ,∠CAB =90°.(1)求AD 的长.(2)求△ABE 的面积.30.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.。

直角三角形的性质经典题 - (有答案有知识点归纳)

第1章直角三角形1.1 直角三角形的性质和判定(Ι)第1课时直角三角形的性质和判定要点感知1直角三角形的性质:(1)直角三角形的两个锐角__________.(2)直角三角形斜边上的中线等于斜边的__________.预习练习1-1在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120°B.90°C.60°D.30°1-2 如图,在Rt△ABC中,∠ACB=90°,AB=10 cm,点D为AB的中点,则CD=__________cm.要点感知2 直角三角形的判定:有两个角__________的三角形是直角三角形.预习练习2-1在△ABC中,∠A=70°,∠B=20°,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定知识点1 直角三角形的两个锐角互余1.若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是( )A.24°B.34°C.44°D.46°2.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于( )A.60°B.75°C.90°D.105°3.如图,在△ABC中,CE、BF是两条高,若∠A=65°,∠BCE=35°,则∠ABF的度数是__________,∠FBC的度数是__________.4.过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较小的角的度数是__________.知识点2 有两个角互余的三角形是直角三角形5.若一个三角形的三个内角的度数之比为1∶2∶3,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.下列条件:(1)∠A=25°,∠B=65°;(2)3∠A=2∠B=∠C;(3)∠A=5∠B;(4)2∠A=3∠B=4∠C中,其中能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个知识点3 直角三角形斜边上的中线等于斜边的一半7.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC=( )A.30°B.40°C.45°D.60°8.如果一个三角形一边的中线等于这边的一半,那么这个三角形为__________三角形.9.如图,Rt△ABC中,DC是斜边AB上的中线,EF 过点C且平行于AB.若∠BCF=35°,求∠ACD的度数.10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有( )A.0个B.1个C.2个D.3个11.如图,AB∥DF,AC⊥BC于点C,BC与DF交于点E,若∠A=20°,则∠CEF等于( )A.110°B.100°C.80°D.70°12.如果一个三角形的一个内角等于其他两个内角的差,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定13.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为( )A.3B.3.5C.4D.4.514.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是__________.15.如图,在△ABC中,∠B=∠C,D、E分别是BC、AC的中点,AB=8,求DE的长.16.如图,在△ACD与△ABC中,∠ABC=∠ADC=90°,E是AC的中点.(1)试说明DE=BE;(2)图中有哪些等腰三角形,请写出来.(不需要证明)17.如图,AD∥BC,∠DAB和∠ABC的平分线相交于AB. CD边上的一点E,F为AB边的中点.求证:EF=1218.如图,已知M是Rt△ABC斜边AB的中点,CD=BM,DM与CB的延长线交于点E.求证:∠E=1∠A.2详细答案在后面,所有题目都有答案,所有大题都有规范详细过程,同学们可以模仿学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形知识点总复习附答案一、选择题1.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为()A.1 B.34C.23D.12【答案】D【解析】【分析】由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.【详解】∵AD是△ABC角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=4,AC=3,∴BG=1,∵AE是△ABC中线,∴BE=CE,∴EF为△CBG的中位线,∴EF=12BG=12,故选:D.【点睛】此题考查等腰三角形的判定和性质、三角形的中位线性质定理,解题关键在于掌握三角形的中位线平行于第三边,并且等于第三边的一半.2.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cm A.6 B.8 C5D.5【答案】B【解析】【分析】根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.【详解】设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°,解得x=30°,即∠A=30°,∠C=3×30°=90°,此三角形为直角三角形,故AB=2BC=2×4=8cm,故选B.【点睛】本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.3.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为()A.30 B.36 C.45 D.72【答案】B【解析】【分析】由CA=CB,可以设∠A=∠B=x.想办法构建方程即可解决问题;【详解】解:∵CA=CB,∴∠A=∠B,设∠A=∠B=x.∵DF=DB,∴∠B=∠F=x,∵AD=AE,∴∠ADE=∠AED=∠B+∠F=2x,∴x+2x+2x=180°,∴x=36°,故选B.【点睛】本题考查等腰三角形的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,△ABC 中,AB =AC =10,BC =12,D 是BC 的中点,DE ⊥AB 于点E ,则DE 的长为( )A .65B .85C .125D .245【答案】D【解析】【分析】连接AD ,根据已知等腰三角形的性质得出AD ⊥BC 和BD=6,根据勾股定理求出AD ,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC ,D 为BC 的中点,BC=12, ∴AD ⊥BC ,BD=DC=6, 在Rt △ADB 中,由勾股定理得:22221068AB BD =+=, ∵S △ADB=12×AD×BD =12×AB×DE , ∴DE=8624105AD BD AB ⨯⨯==, 故选D .【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD 的长是解此题的关键.5.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD == ∴226BD AB AD =-=∵四边形ABCD 是平行四边形 ∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =3OD = ∴2221OA AD OD += ∴21OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.6.下列长度的三条线段能组成三角形的是( )A .2, 2,5B .3,3C .3,4,8D .4,5,6【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】根据三角形三边关系可知,三角形两边之和大于第三边.A、2+2=4<5,此选项错误;B、1+3<3,此选项错误;C、3+4<8,此选项错误;D、4+5=9>6,能组成三角形,此选项正确.故选:D.【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.7.如图,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE, CE,如图:在射线AD上取点F连接BF, CF,如图,依此规律,第n个图形中全等三角形的对数是()A.n B.2n-1 C.(1)2n nD.3(n+1)【答案】C【解析】【分析】根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对全等三角形;图3中有6对全等三角形,根据数据可分析出第n个图形中全等三角形的对数.【详解】∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,AB=AC,∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n 个图形中全等三角形的对数是()12n n +.故选C.【点睛】考查全等三角形的判定,找出数字的变化规律是解题的关键.8.(11·十堰)如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个。

下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材料损耗速度与流经其表面水的数量成正比,则更换最慢一个三角形材料使用的时间约为更换一个三角形材料使用时间的8倍,其中正确的判断有( )A .1个B .2个C .3个D .4个【答案】C 【解析】根据出水量假设出第一次分流都为1,可以得出下一次分流的水量,依此类推得出最后得出每个出水管的出水量,进而得出答案.解:根据图示可以得出:①根据图示出水口之间存在不同,故此选项错误;②2号出口的出水量与4号出口的出水量相同;根据第二个出水口的出水量为:[(21+21)÷2+41]÷2+81=21, 第4个出水口的出水量为:[(21+21)÷2+41]÷2+81=21, 故此选项正确;③1,2,3号出水口的出水量之比约为1:4:6;根据第一个出水口的出水量为:81,第二个出水口的出水量为:[(21+21)÷2+41]÷2+81=21,第三个出水口的出水量为:83+83=43,∴1,2,3号出水口的出水量之比约为1:4:6;故此选项正确;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的8倍.∵1号与5号出水量为81,此处三角形材料损耗速度最慢,第一次分流后的水量为1(即净化塔最上面一个等腰直角三角形两直角边的水量为1),∴净化塔最上面的三角形材料损耗最快, 故更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的8倍.故此选项正确;故正确的有3个.故选:C .此题主要考查了可能性的大小问题,根据题意分别得出各出水口的出水量是解决问题的关键.9.长度分别为2,7,x 的三条线段能组成一个三角形,的值可以是( )A .4B .5C .6D .9 【答案】C【解析】【分析】根据三角形的三边关系可判断x 的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x <7+2,即5<x <9.因此,本题的第三边应满足5<x <9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x <9,只有6符合不等式,故选C .【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.10.如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A .23B .13C .4D .32【答案】B【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:OB= 22+=BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.11.如图,已知AE=AD,AB=AC,EC=DB,下列结论:①∠C=∠B;②∠D=∠E;③∠EAD=∠BAC;④∠B=∠E;其中错误的是()A.①②B.②③C.③④D.只有④【答案】D【解析】【分析】【详解】解:因为AE=AD,AB=AC,EC=DB;所以△ABD≌△ACE(SSS);所以∠C=∠B,∠D=∠E,∠EAC=∠DAB;所以∠EAC-∠DAC=∠DAB-∠DAC;得∠EAD=∠CAB.所以错误的结论是④,【点睛】此题考查了全等三角形的判定方法,根据已知条件利用SSS证明两个三角形全等,还考查了全等三角形的性质:全等三角形的对应角相等,全等三角形的对应边相等.12.如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△AOE;④OE=14BC,成立的个数有()A.1个B.2个C.3个D.4【答案】C【解析】【分析】利用平行四边形的性质可得∠ABC=∠ADC=60°,∠BAD=120°,利用角平分线的性质证明△ABE是等边三角形,然后推出AE=BE=12BC,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=12 BC,∴AE=BE=12 BC,∴AE=CE,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,∴S△ABC=12AB•AC,故②错误;∵BE=EC,∴E为BC中点,O为AC中点,∴S△ABE=S△ACE=2 S△AOE,故③正确;∵四边形ABCD是平行四边形,∴AC=CO,∵AE=CE,∴EO⊥AC,∵∠ACE=30°,∴EO=12 EC,∵EC=12 AB,∴OE=14BC,故④正确;故正确的个数为3个,故选:C.【点睛】此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE是等边三角形是解题关键.13.如图,正方体的棱长为6cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9 B.310C.326D.12【答案】B【解析】【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22++=.(36)3310故选:B.【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.4,1, 点D的坐标为14.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为()()0,1,则菱形ABCD的周长等于()A5B.3C.45D.20【答案】C【解析】【分析】如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC、BD,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.15.如图,在ABC ∆中,AB AC =,分别是以点A ,点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若40A ∠=︒,则DBC ∠=( )A .40︒B .30︒C .20︒D .10︒【答案】B【解析】【分析】 根据题意,DE 是AB 的垂直平分线,则AD=BD ,40ABD A ==︒∠∠,又AB=AC ,则∠ABC=70°,即可求出DBC ∠.【详解】解:根据题意可知,DE 是线段AB 的垂直平分线,∴AD=BD ,∴40ABD A ==︒∠∠,∵AB AC =, ∴1(18040)702ABC ∠=⨯︒-︒=︒, ∴704030DBC ∠=︒-︒=︒;故选:B.【点睛】 本题考查了垂直平分线的性质,等腰三角形的性质,以及三角形的内角和,解题的关键是熟练掌握所学的性质,正确求出DBC ∠的度数.16.如图,在平面直角坐标系中,已知点A (﹣2,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的正半轴于点C ,则点C 的横坐标介于( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间【答案】B【解析】【分析】 先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC 的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB 222+313=∴AC =AB 13,∴OC 132,∴点C 132,0),∵3134<< ,∴11322<< ,即点C 的横坐标介于1和2之间,故选:B .【点睛】本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.17.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形 C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .18.如图,已知A ,D,B,E 在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC ≌△DEF 的是( )A.BC = EF B.AC//DF C.∠C = ∠F D.∠BAC = ∠EDF 【答案】C【解析】【分析】根据全等三角形的判定方法逐项判断即可.【详解】∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且AC = DF,∴当BC = EF时,满足SSS,可以判定△ABC≌△DEF;当AC//DF时,∠A=∠EDF,满足SAS,可以判定△ABC≌△DEF;当∠C = ∠F时,为SSA,不能判定△ABC≌△DEF;当∠BAC = ∠EDF时,满足SAS,可以判定△ABC≌△DEF,故选C.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.19.如图,AD∥BC,∠C =30°,∠ADB:∠BDC= 1:2,则∠DBC的度数是( )A.30°B.36°C.45°D.50°【答案】D【解析】【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【详解】∵AD∥BC,∠C=30°∴∠ADC=150°,∠ADB=∠DBC∵∠ADB:∠DBC=1:2∴∠ADB=13×150°=50°,故选D. 【点睛】 熟练掌握平行线的性质是本题解题的关键.20.如图,在四边形ABCD 中,,90,5,10AD BC ABC AB BC ∠=︒==P ,连接,AC BD ,以BD 为直径的圆交AC 于点E .若3DE =,则AD 的长为( )A .55B .45C .35D .25【答案】D【解析】 【分析】先判断出△ABC 与△DBE 相似,求出BD ,最后用勾股定理即可得出结论.【详解】如图1,在Rt △ABC 中,AB=5,BC=10,∴AC=55,连接BE ,∵BD 是圆的直径,∴∠BED=90°=∠CBA ,∵∠BAC=∠EDB ,∴△ABC ∽△DEB ,∴AB AC DE DB= , ∴5355DB= , ∴DB=35在Rt △ABD 中,2225BD AB -,故选:D .【点睛】此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.。

相关文档
最新文档