[配套K12]2019版高考物理总复习 专题十 磁场习思用
【配套K12】(全国通用)2019版高考物理一轮复习备考精炼: 第十章 电磁感应 微专题74 法拉第

74 法拉第电磁感应定律 自感1.(多选)(2018·四川泸州一检)如图1甲所示,线圈两端a 、b 与一电阻R 相连,线圈内有垂直于线圈平面向里的磁场,t =0时起,穿过线圈的磁通量按图乙所示规律变化.下列说法正确的是( )图1A.t 02时刻,R 中电流方向由a 到b B.32t 0时刻,R 中电流方向由a 到b C .0~t 0时间内R 中的电流是t 0~2t 0时间内的12D .0~t 0时间内R 产生的焦耳热是t 0~2t 0时间内的122.(多选)(2017·山东淄博一模) 如图2甲所示,在竖直方向分布均匀的磁场中水平放置一个金属圆环,圆环所围面积为0.1 m 2,圆环电阻为0.2 Ω.在第1 s 内感应电流I 沿顺时针方向.磁场的磁感应强度B 随时间t 的变化规律如图乙所示(其中在4~5 s 的时间段呈直线).则( )图2A .在0~5 s 时间段,感应电流先减小再增大B .在0~2 s 时间段感应电流沿顺时针的方向,在2~5 s 时间段感应电流沿逆时针方向C .在0~5 s 时间段,圆环最大发热功率为5.0×10-4W D .在0~2 s 时间段,通过圆环横截面积的电荷量为0.5 C3.(多选)(2017·湖南株洲一模)用导线绕成一圆环,环内有一用同样导线折成的内接正方形线框,圆环与线框绝缘,如图3所示.把它们放在磁感应强度为 B 的匀强磁场中,磁场方向垂直于圆环平面(纸面)向里.当磁场均匀减弱时( )图3A .线框和圆环中的电流方向都为顺时针B .线框和圆环中的电流方向都为逆时针C .线框和圆环中的电流大小之比为1∶ 2D .线框和圆环中的电流大小之比为1∶24.(多选)(2018·福建三明一中模拟)如图4甲所示,一个匝数为n 的圆形线圈(图中只画了2匝),面积为S ,线圈的电阻为R ,在线圈外接一个阻值为R 的电阻和一个理想电压表,将线圈放入垂直线圈平面指向纸内的磁场中,磁感应强度随时间变化规律如图乙所示,下列说法正确的是( )图4A .0~t 1时间内P 端电势高于Q 端电势B .0~t 1时间内电压表的读数为n (B 1-B 0)St 1 C .t 1~t 2时间内R 上的电流为nB 1S2(t 2-t 1)RD .t 1~t 2时间内P 端电势高于Q 端电势5.(2017· 四川凉山州二诊)如图5所示,一横截面积为S 的N 匝线圈,与水平放置相距为d 、电容大小为C 的平行板电容器组成一电路,线圈放于方向竖直向上的的磁场中,有一质量为m 、带电荷量+q 的粒子在板间刚好可匀速运动(重力加速度为g ).则线圈中的磁场B 变化为( )图5A .减少,且ΔB Δt =mgdNSqB .增加,且ΔB Δt =mgdNSqC .减少,且ΔB Δt =mgdSqD .增加,且ΔB Δt =mgdSq6.(2017·北京海淀区模拟)如图6所示电路为演示自感现象的电路图,其中R 0为定值电阻,电源电动势为E 、内阻为r ,小灯泡的灯丝电阻为R (可视为不变),电感线圈的自感系数为L 、电阻为R L .电路接通并达到稳定状态后,断开开关S ,可以看到灯泡先是“闪亮”(比开关断开前更亮)一下,然后才逐渐熄灭,但实验发现“闪亮”现象并不明显.为了观察到断开开关S 时灯泡比开关断开前有更明显的“闪亮”现象,下列措施中一定可行的是( )图6A .撤去电感线圈中的铁芯,使L 减小B .更换电感线圈中的铁芯,使L 增大C .更换电感线圈,保持L 不变,使R L 增大D .更换电感线圈,保持L 不变,使R L 减小7.(多选)(2017·江西南昌三校第四次联考)如图7中a 所示是用电流传感器(相当于电流表,其内阻可以忽略不计)研究自感现象的实验电路,图中两个电阻的阻值均为R ,L 是一个自感系数足够大的自感线圈,其直流电阻值也为R .图b 是某同学画出的在t 0时刻开关S 切换前后,通过传感器的电流随时间变化的图象.关于这些图象,下列说法中正确的是( )图7A.图b中甲是开关S由断开变为闭合,通过传感器1的电流随时间变化的情况B.图b中乙是开关S由断开变为闭合,通过传感器1的电流随时间变化的情况C.图b中丙是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况D.图b中丁是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况8.(2018·广东东莞模拟)如图8所示,在竖直平面内有一金属环,环半径为0.5 m,金属环总电阻为2 Ω,在整个竖直平面内存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度为B=1 T,在环的最高点上方A点用铰链连接一长度为1.5 m、电阻为3 Ω的均匀导体棒AB,当导体棒AB摆到竖直位置时,导体棒B端的速度为3 m/s.已知导体棒下摆过程中紧贴环面且与金属环有良好接触,则导体棒AB摆到竖直位置时AB两端的电压大小为( )图8A.0.4 V B.0.65 VC.2.25 V D.4.5 V答案精析1.AC 2.BC 3.AC4.AC [0~t 1时间内,磁通量增大,根据楞次定律感应电流沿逆时针方向,线圈相当于电源,上端正极,下端负极,所以P 端电势高于Q 端电势,故A 正确; 0~t 1时间内线圈产生的感应电动势E =nΔΦΔt =n ΔB Δt S =n B 1-B 0t 1S ,电压表的示数等于电阻R 两端的电压U =IR =E2R·R =n (B 1-B 0)S2t 1,故B 错误; t 1~t 2时间内线圈产生的感应电动势E ′=nΔΦΔt =n B 1t 2-t 1S , 根据闭合电路的欧姆定律I ′=E ′2R =nB 1S2(t 2-t 1)R,故C 正确; t 1~t 2时间内,磁通量减小,根据楞次定律,感应电流沿顺时针方向,线圈相当于电源,上端负极,下端正极,所以P 端电势低于Q 端电势,故D 错误.] 5.A 6.D7.BC [开关S 由断开变为闭合,传感器2这一支路立即有电流,线圈这一支路,由于线圈阻碍电流的增加,通过线圈的电流要慢慢增加,所以干路电流(通过传感器1的电流)也要慢慢增加,故A 错误,B 正确.开关S 由闭合变为断开,通过传感器1的电流立即消失,而线圈这一支路,由于线圈阻碍电流的减小,该电流又通过传感器2,只是电流的方向与以前相反,所以通过传感器2的电流逐渐减小.故C 正确,D 错误.]8.B [当导体棒摆到竖直位置时,设导体棒与金属环上端的交点C ,由v =ωr 可得:C 点的速度为:v C =13v B =13×3 m/s=1 m/sAC 间电压为:U AC =E AC =BL AC ·v C 2=1×0.5×12V =0.25 VCB 段产生的感应电动势为:E CB =BL CB ·v C +v B 2=1×1×1+32V =2 V金属环两侧并联,电阻为:R =12 Ω=0.5 Ω,导体棒CB 段的电阻为:r =2 Ω 则CB 间电压为:U CB =R r +R E CB =0.50.5+2×2 V=0.4 V故AB两端的电压大小为:U AB=U AC+U CB=0.25 V+0.4 V=0.65 V]。
2019版高考物理(5年高考+3年模拟)(精品课件+高清PDF讲义)全国卷2地区通用版专题十 磁 场

A.0
导线中通电流 I 时,两电流在 a 点处的磁感应强度与匀强磁场的 磁感应强度的矢量和为 0,则两电流磁感应强度的矢量和为 - B 0 , 如图甲得 B = 3 3 B ㊂ P 中电流反向后,如图乙,B 合 = B = B 0 ,B 合 3 0 3 2 3 B ,故 C 项正确㊂ 3 0
3 2 3 B C. B D.2B 0 3 0 3 0 解析㊀ 本题考查安培定则㊁ 磁感应强度的矢量力㊂ 一根长为 L 的直导线,
二㊁磁感应强度 B 与电场强度 E 的比较
磁感应强度 B 物理意义 描述 磁 场 力 的 性 质 的 物 理量 B= F ,通电导线与 B 垂直 IL 电场强度 E
3. 安培力的方向: 用左手定则判定, 总是跟磁场方向垂直,
描述电场力的性质的 物理量 E= F q
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
㊀ ( 2017 课标Ⅲ,18, 6 分 ) 如图, 在磁感应强度大小为
场的叠加 单位
合磁感应强 度 等 于 各 磁 场 的磁感应强度的矢量和 1 T = 1 N / ( A㊃m)
㊀2
5 年高考 3 年模拟㊀ B 版( 教师用书)
A. mg 2IL B. 3 mg 2IL C. mg IL D. 3 mg IL
2019高考物理试题重点原创精品系列:专项10磁场(解析版)

2019高考物理试题重点原创精品系列:专项10磁场(解析版)【考点预测】磁场一般会以选项题和计算题两种形式出现,假设是选项题一般考查对磁感应强度、磁感线、安培力和洛仑兹力这些概念的理解,以及安培定那么和左手定那么的运用;假设是计算题主要考查安培力大小的计算,以及带电粒子在磁场中受到洛伦兹力和带电粒子在磁场中的圆周运动的分析判断和计算,尤其是带电粒子在电场、磁场中的运动问题对学生的空间想象能力、分析综合能力、应用数学知识处理物理问题的能力有较高的要求,仍是本考点的重点内容,有可能成为试卷的压轴题。
由于本考点知识与现代科技密切相关,在近代物理实验中有重大意义,因此考题还可能以科学技术的具体问题为背景,考查学生运用知识解决实际问题的能力和建模能力。
预测2018年的高考基础试题仍是重点考查法拉第电磁感应定律及楞次定律和电路等效问题、综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识、主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等、此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。
【考点定位】【三年真题】【2018高考试题解析】〔2018•重庆〕如下图,正方形区域MNPQ内有垂直纸面向里的匀强磁场、在外力作用下,一正方形闭合刚性导线框沿QN方向匀速运动,t=0时刻,其四个顶点M′、N′、P′、Q′恰好在磁场边界中点、以下图象中能反映线框所受安培力f的大小随时间t变化规律的是()ABCD【考点定位】磁场〔2018·广东〕15.质量和电量都相等的带电粒子M 和N ,以不同的速度率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图2种虚线所示,以下表述正确的选项是()A 、M 带负电,N 带正电B.M 的速度率小于N 的速率C.洛伦磁力对M 、N 做正功D.M 的运行时间大于N 的运行时间【答案】A【解析】由左手定那么可知M 带负电,N 带正电,故A 选项正确。
【配套K12】[学习]2019版高考物理总复习 专题十 磁场考题帮
![【配套K12】[学习]2019版高考物理总复习 专题十 磁场考题帮](https://img.taocdn.com/s3/m/2f9fd88e0029bd64783e2c7c.png)
专题十磁场题组1磁场的描述及安培力的应用1.[2017全国卷Ⅰ,9,6分][多选]如图,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反.下列说法正确的是 ()A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶D.L1、L2和L3单位长度所受的磁场作用力大小之比为∶∶12.[2017全国卷Ⅱ,21,6分][多选]某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉3.[2015江苏高考,4,3分]如图所示,用天平测量匀强磁场的磁感应强度.下列各选项所示的载流线圈匝数相同,边长MN相等,将它们分别挂在天平的右臂下方.线圈中通有大小相同的电流,天平处于平衡状态.若磁场发生微小变化,天平最容易失去平衡的是 ()A B C D4.[2014全国卷Ⅰ,15,6分]关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半5.[2014浙江高考,20,6分][多选]如图1所示,两根光滑平行导轨水平放置,间距为L,其间有竖直向下的匀强磁场,磁感应强度为B.垂直于导轨水平对称放置一根均匀金属棒.从t=0时刻起,棒上有如图2所示的持续交变电流I,周期为T,最大值为I m,图1中I所示方向为电流正方向.则金属棒()图1图2A.一直向右移动B.速度随时间周期性变化C.受到的安培力随时间周期性变化D.受到的安培力在一个周期内做正功6.[2013全国卷Ⅱ,17,6分]空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直于横截面.一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为()A. B.C. D.7.[2015重庆高考,7,15分]音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.如图是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为L,匝数为n,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为B,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P流向Q,大小为I.(1)求此时线圈所受安培力的大小和方向.(2)若此时线圈水平向右运动的速度大小为v,求安培力的功率.题组2带电粒子在磁场中的运动8.[2016全国卷Ⅱ,18,6分]一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()A. B. C.D.9.[2016全国卷Ⅲ,18,6分]平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O的距离为 ()A. B. C. D.10.[2016四川高考,4,6分]如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力,则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶211.[2015全国卷Ⅰ,14,6分]两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的()A.轨道半径减小,角速度增大B.轨道半径减小,角速度减小C.轨道半径增大,角速度增大D.轨道半径增大,角速度减小12.[2015全国卷Ⅱ,19,6分][多选]有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k倍.两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子()A.运动轨迹的半径是Ⅰ中的k倍B.加速度的大小是Ⅰ中的k倍C.做圆周运动的周期是Ⅰ中的k倍D.做圆周运动的角速度与Ⅰ中的相等13.[2014全国卷Ⅱ,20,6分][多选]如图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是()A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中运动轨迹的半径越小14.[2014全国卷Ⅰ,16,6分]如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比值为 ( )A.2B.C.1D.15.[2013全国卷Ⅰ,18,6分]如图,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力) ()A. B. C. D.16.[2017全国卷Ⅲ,24,12分]如图,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求:(不计重力)(1)粒子运动的时间;(2)粒子与O点间的距离.17.[2016北京高考,22,16分]如图所示,质量为m、电荷量为q的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动.不计带电粒子所受重力.(1)求粒子做匀速圆周运动的半径R和周期T;(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小.18.[2014山东高考,24,20分]如图甲所示,间距为d、垂直于纸面的两平行板P、Q间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示.t=0时刻,一质量为m、带电荷量为+q的粒子(不计重力),以初速度v0由Q板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当B0和T B取某些特定值时,可使t=0时刻入射的粒子经Δt时间恰能垂直打在P板上(不考虑粒子反弹).上述m、q、d、v0为已知量.图甲图乙(1)若Δt=T B,求B0;(2)若Δt=T B,求粒子在磁场中运动时加速度的大小;(3)若B0=,为使粒子仍能垂直打在P板上,求T B.题组3带电粒子在复合场、组合场中的运动19.[2017全国卷Ⅰ,16,6分]如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a、b、c电荷量相等,质量分别为m a、m b、m c.已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是 ()A.m a>m b>m cB.m b>m a>m cC.m c>m a>m bD.m c>m b>m a20.[2017天津高考,11,18分]平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动, Q点到y轴的距离为到x轴距离的2倍.粒子从坐标原点O 离开电场进入磁场,最终从x轴上的P点射出磁场, P点到y轴距离与Q点到y轴距离相等.不计粒子重力, 问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.21.[2016四川高考,11,19分]如图所示,图面内有竖直线DD',过DD'且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域Ⅰ有方向竖直向上的匀强电场和方向垂直于图面的匀强磁场B(图中未画出);区域Ⅱ有固定在水平地面上高h=2l、倾角α=π/4的光滑绝缘斜面,斜面顶端与直线DD'距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD'上,距地面高H=3l.零时刻,质量为m、带电荷量为q的小球P在K点具有大小v0=、方向与水平面夹角θ=π/3的速度,在区域Ⅰ内做半径r=3l/π的匀速圆周运动,经C点水平进入区域Ⅱ.某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电荷量对空间电磁场的影响.l已知,g 为重力加速度.(1)求匀强磁场的磁感应强度B的大小;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻t A;(3)若小球A、P在时刻t=β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向.22.[2016天津高考,11,18分]如图所示,空间中存在着水平向右的匀强电场,电场强度大小E=5 N/C,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B=0.5 T.有一带正电的小球,质量m=1×10-6 kg,电荷量q=2×10-6 C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10 m/s2.求:(1)小球做匀速直线运动的速度v的大小和方向;(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t.23.[2015山东高考,24,20分]如图所示,直径分别为D和2D的同心圆处于同一竖直面内,O 为圆心,GH为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m、电荷量为+q的粒子由小孔下方处静止释放,加速后粒子以竖直向上的速度v射出电场,由H点紧靠大圆内侧射入磁场.不计粒子的重力.(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为、,粒子运动一段时间后再次经过H点,求这段时间粒子运动的路程.24.[2014广东高考,36,18分]如图所示,足够大的平行挡板A1、A2竖直放置,间距6L.两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN为理想分界面.Ⅰ区的磁感应强度为B0,方向垂直纸面向外.A1、A2上各有位置正对的小孔S1、S2,两孔与分界面MN的距离均为L.质量为m、电荷量为+q的粒子经宽度为d的匀强电场由静止加速后,沿水平方向从S1进入Ⅰ区,并直接偏转到MN上的P点,再进入Ⅱ区.P点与A1板的距离是L的k倍.不计重力,碰到挡板的粒子不予考虑.(1)若k=1,求匀强电场的电场强度E;(2)若2<k<3,且粒子沿水平方向从S2射出,求出粒子在磁场中的速度大小v与k的关系式和Ⅱ区的磁感应强度B与k的关系式.25.[2014天津高考,12,20分]同步加速器在粒子物理研究中有重要的应用,其基本原理简化为如图所示的模型.M、N为两块中心开有小孔的平行金属板.质量为m、电荷量为+q的粒子A(不计重力)从M板小孔飘入板间,初速度可视为零.每当A进入板间,两板的电势差变为U,粒子得到加速,当A离开N板时,两板的电荷量均立即变为零.两板外部存在垂直纸面向里的匀强磁场,A在磁场作用下做半径为R的圆周运动,R远大于板间距离.A经电场多次加速,动能不断增大,为使R保持不变,磁场必须相应地变化.不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应.求:(1)A运动第1周时磁场的磁感应强度B1的大小;(2)在A运动第n周的时间内电场力做功的平均功率;(3)若有一个质量也为m、电荷量为+kq(k为大于1的整数)的粒子B(不计重力)与A同时从M 板小孔飘入板间,A、B初速度均可视为零,不计两者间的相互作用,除此之外,其他条件均不变.下图中虚线、实线分别表示A、B的运动轨迹.在B的轨迹半径远大于板间距离的前提下,请指出哪个图能定性地反映A、B的运动轨迹,并经推导说明理由.A B C D26.[2014福建高考,22,20分]如图,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L、宽为d、高为h,上下两面是绝缘板,前后两侧面M、N是电阻可忽略的导体板,两导体板与开关S和定值电阻R相连.整个管道置于磁感应强度大小为B,方向沿z轴正方向的匀强磁场中.管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道进、出口两端压强差的作用下,均以恒定速率v0沿x轴正向流动,液体所受的摩擦阻力不变.(1)求开关闭合前,M、N两板间的电势差大小U0 ;(2)求开关闭合前后,管道两端压强差的变化Δp;(3)调整矩形管道的宽和高,但保持其他量和矩形管道的横截面积S=dh不变,求电阻R可获得的最大功率P max及相应的宽高比的值.27.[2014四川高考,10,17分 ]在如图所示的竖直平面内,水平轨道CD和倾斜轨道GH与半径r= m的光滑圆弧轨道分别相切于D点和G点,GH与水平面的夹角θ=37°.过G点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B=1.25 T;过D 点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度E=1×104 N/C.小物体P1质量m=2×10-3 kg、电荷量q=+8×10-6 C,受到水平向右的推力F=9.98×10-3 N的作用,沿CD向右做匀速直线运动,到达D点后撤去推力.当P1到达倾斜轨道底端G点时,不带电的小物体P2在GH顶端静止释放,经过时间t=0.1 s与P1相遇.P1和P2与轨道CD、GH间的动摩擦因数均为μ=0.5,取g= 10 m/s2 ,sin 37°=0.6,cos 37°=0.8,物体电荷量保持不变,不计空气阻力.求:(1)小物体P1在水平轨道CD上运动速度v的大小;(2)倾斜轨道GH的长度s.28.[2013天津高考,11,18分]一圆筒的横截面如图所示,其圆心为O.筒内有垂直于纸面向里的匀强磁场,磁感应强度为B.圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷.质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圆筒发生两次碰撞后仍从S孔射出.设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:(1)M、N间电场强度E的大小;(2)圆筒的半径R;(3)保持M、N间电场强度E不变,仅将M板向上平移d,粒子仍从M板边缘的P处由静止释放,粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n.29.[2013安徽高考,23,16分]如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀强电场,方向沿y轴正方向;在第Ⅳ象限的正三角形abc区域内有匀强磁场,方向垂直于xOy平面向里,正三角形边长为L,且ab边与y轴平行.一质量为m、电荷量为q的粒子从y 轴上的P(0,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,0)点进入第Ⅳ象限,又经过磁场从y轴上的某点进入第Ⅲ象限,且速度与y轴负方向成45°角.不计粒子所受的重力.求:(1)电场强度E的大小;(2)粒子到达a点时速度的大小和方向;(3)abc区域内磁场的磁感应强度B的最小值.题组4带电粒子在电磁场中运动的实际应用30.[2016全国卷Ⅰ,15,6分]现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比值约为()A.11B.12C.121D.14431.[2017江苏高考,15,16分]一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m和m,图中虚线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N点的最小距离x;(2)在图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d;(3)若考虑加速电压有波动,在(U0-ΔU)到(U0+ΔU)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件.32.[2016浙江高考,25,22分]为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”.在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转.扇形聚焦磁场分布的简化图如图所示,圆心为O的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布.峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B,谷区内没有磁场.质量为m,电荷量为q的正离子,以不变的速率v旋转,其闭合平衡轨道如图中虚线所示.(1)求闭合平衡轨道在峰区内圆弧的半径r,并判断离子旋转的方向是顺时针还是逆时针;(2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T;(3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B',新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B'和B的关系.已知:sin(α±β)=sin αcos β±cos αsinβ,cos α=1-2sin2.33.[2015重庆高考,9,18分]如图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN和M'N'是间距为h的两平行极板,其上分别有正对的两个小孔O和O',O'N'=ON=d,P为靶点,O'P=kd(k为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为U.质量为m、带电荷量为q的正离子从O点由静止开始加速,经O'进入磁场区域.当离子打到极板上O'N'区域(含N'点)或外壳上时将会被吸收.两虚线之间的区域无电场和磁场存在,离子可匀速穿过.忽略相对论效应和离子所受的重力.求:(1)离子经过电场仅加速一次后能打到P点所需的磁感应强度大小;(2)能使离子打到P点的磁感应强度的所有可能值;(3)打到P点的能量最大的离子在磁场中运动的时间和在电场中运动的时间.34.[2014浙江高考,25,22分]离子推进器是太空飞行器常用的动力系统.某种推进器设计的简化原理如图1所示,截面半径为R的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M从右侧喷出.Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B,在离轴线处的C点持续射出一定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O点和C点的连线成α角(0<α≤90°).推进器工作时,向Ⅰ区注入稀薄的氙气.电子使氙气电离的最小速率为v0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M;电子质量为m,电荷量为e.(电子碰到器壁即被吸收,不考虑电子间的碰撞)图1图2(1)求Ⅱ区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断Ⅰ区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v的范围;(4)要取得好的电离效果,求射出的电子最大速率v max与α角的关系.一、选择题(每小题6分,共48分)1.[2018河北承德二中第一次月考,8][多选]如图所示,在磁感应强度大小为B0、平行P、Q 连线向右的匀强磁场中,两长直导线P和Q垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里的电流I时,纸面内与两导线距离均为l的a点处的磁感应强度为2B0.下列说法正确的是()A.两导线中的电流在a点处产生的磁感应强度大小为3B0B.P中电流在a点处产生的磁感应强度大小为B0C.若在a点处垂直纸面放一长度为L、电流为I的导线,则该导线所受的安培力大小一定为B0ILD.若使P中的电流反向、其他条件不变,则a点处磁感应强度大小为B02.[2018甘肃重点中学高三第一次联考,6][多选]如图所示,空间有一垂直纸面向外的磁感应强度为B=0.5 T的匀强磁场,一质量为M=0.2 kg且足够长的绝缘木板静止在光滑水平面上,在木板左端放置一质量为m=0.1 kg、电荷量为q=0.2 C的带正电滑块,滑块与绝缘木板之间动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对木板施加方向水平向左、大小为F=0.6 N的恒力,g取10 m/s2.则滑块( )A.开始做匀加速运动,然后做加速度减小的加速运动,最后做匀速直线运动B.一直做加速度为2 m/s2的匀加速运动,直到飞离木板为止C.速度为6 m/s时开始减速D.最终做速度为10 m/s的匀速运动3.[2018湖北部分重点中学高三起点考试,3]如图所示,含有H He的带电粒子束从小孔O1处射入速度选择器,沿直线O1O2运动的粒子在小孔O2处射出后垂直进入偏转磁场,最终打在P1、P2两点.则()A.粒子在偏转磁场中运动的时间都相等B.打在P1点的粒子是HeC.打在P2点的粒子是H和HeD.O2P2的长度是O2P1长度的4倍4.[2018河北廊坊期末,9][多选]如图所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长的固定绝缘杆MN,小球P套在杆上,已知P的质量为m、电荷量为+q,电场强度为E,磁感应强度为B,P与杆间的动摩擦因数为μ,重力加速度为g.小球由静止开始下滑直到稳定运动的过程中()A.小球的加速度一直减小B.小球的机械能和电势能的总和保持不变C.下滑加速度为最大加速度一半时的速度可能是v=D.下滑加速度为最大加速度一半时的速度可能是v=5.[2018安徽四校高三第一次摸底考试,5]如图所示的天平可用来测定磁感应强度.天平的右臂下面挂有一个矩形线圈,宽l=10 cm,共N=9匝,线圈的下部悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流I=0.10 A (方向如图)时,在天平左、右两边加上质量各为m1、m2的砝码,天平平衡.当电流反向(大小不变)时,左边再加上质量为m=4.32 g的砝码后,天平重新平衡.重力加速度g取10 m/s2,由此可知()A.磁感应强度的方向垂直纸面向外,大小为0.24 T。
2019版高考物理江苏版一轮配套讲义:专题十 磁场 含解析 精品

专题十磁场【考纲解读】分析解读安培力的计算限于直导线跟匀强磁场平行或垂直两种情况,带电粒子在匀强磁场中的运动计算限于带电粒子的速度与磁感应强度平行或垂直两种情况。
高考对本专题内容考查命题频率极高,常以选择题和计算题两种形式出题,选择题一般考查磁场的基础知识和基本规律,一般难度不大;计算题主要是考查安培力、带电粒子在磁场中的运动与力学、电学、能量知识的综合应用,难度较大,较多是高考的压轴题。
命题趋势:(1)磁场的基础知识及规律的考查;(2)安培力、洛仑兹力的考查;(3)带电粒子在有界磁场中的临界问题,在组合场、复合场中的运动问题;(4)磁场与现代科学知识的综合应用如速度选择器、回旋加速器、质谱仪、霍尔效应等。
需要较强的空间想象能力和运用数学知识解决物理问题的能力。
【命题探究】核心考点审题结果思路分析解答过程【五年高考】考点一磁场、安培力1.(2017江苏单科,1,3分)如图所示,两个单匝线圈a、b的半径分别为r和2r。
圆形匀强磁场B 的边缘恰好与a线圈重合,则穿过a、b两线圈的磁通量之比为()A.1∶1B.1∶2C.1∶4D.4∶1答案A2.(2015江苏单科,4,3分)如图所示,用天平测量匀强磁场的磁感应强度。
下列各选项所示的载流线圈匝数相同,边长MN相等,将它们分别挂在天平的右臂下方。
线圈中通有大小相同的电流,天平处于平衡状态。
若磁场发生微小变化,天平最容易失去平衡的是()答案A3.(2017课标Ⅱ,21,6分)(多选)某同学自制的简易电动机示意图如图所示。
矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴。
将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方。
为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉答案AD4.(2016北京理综,17,6分)中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。
【配套K12】新课标2019届高考物理一轮复习第9章磁场第二节磁吃运动电荷的作用达标诊断高效训练

第二节 磁场对运动电荷的作用(建议用时:60分钟)一、单项选择题1.一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动.则下列能表示运动周期T 与半径R 之间的关系图象的是( )解析:选D.带电粒子在匀强磁场中做匀速圆周运动时,qvB =m v 2R ⇒R =mvqB ,由圆周运动规律,T =2πR v =2πmqB,可见粒子运动周期与半径无关,故D 项正确.2.(2018·贵州遵义模拟)如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B 和2B .一带正电粒子(不计重力)以速度v 从磁场分界线MN 上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN 成60°角,经过t 1时间后粒子进入到磁场区域Ⅱ,又经过t 2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则( )A .ω1∶ω2=1∶1B .ω1∶ω2=2∶1C .t 1∶t 2=1∶1D .t 1∶t 2=2∶1解析:选D.粒子在区域Ⅰ、Ⅱ中运动的周期分别为T 1=2πm qB 、T 2=πm qB ,结合ω=2πT得ω1∶ω2=1∶2,A 、B 错误;t 1=2×60°360°T 1,t 2=2×60°360°T 2,得t 1∶t 2=2∶1,D 正确,C 错误. 3.(2018·衡阳联考)如图所示,矩形虚线框MNPQ 内有一匀强磁场,磁场方向垂直纸面向里.a 、b 、c 是三个质量和电荷量都相等的带电粒子,它们从PQ 边上的中点沿垂直于磁场的方向射入磁场,图中画出了它们在磁场中的运动轨迹.粒子重力不计.下列说法正确的是( ) A .粒子a 带负电 B .粒子c 的动能最大C .粒子b 在磁场中运动的时间最长D .粒子b 在磁场中运动时的向心力最大解析:选D.由左手定则可知,a 粒子带正电,故A 错误;由qvB =m v 2r ,可得r =mvqB,由图可知粒子c 的轨迹半径最小,粒子b 的轨迹半径最大,又m 、q 、B 相同,所以粒子c 的速度最小,粒子b 的速度最大,由E k =12mv 2,知粒子c 的动能最小,根据洛伦兹力提供向心力有F向=qvB ,则可知粒子b 的向心力最大,故D 正确、B 错误;由T =2πmqB,可知粒子a 、b 、c的周期相同,但是粒子b 的轨迹所对的圆心角最小,则粒子b 在磁场中运动的时间最短,故C 错误.4.(2018·吉林长春质检)如图所示,有一个正方形的匀强磁场区域abcd ,e 是ad 的中点,f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的带电粒子,恰好从e 点射出,则( ) A .如果粒子的速度增大为原来的二倍,将从d 点射出 B .如果粒子的速度增大为原来的二倍,将从f 点射出C .如果粒子的速度不变,磁场的磁感应强度变为原来的2倍,也将从d 点射出D .只改变粒子的速度使其分别从e 、d 、f 点射出时,在e 点射出所用时间最短 解析:选A.如图所示,根据几何关系可以看出,当粒子从d 点射出时,轨道半径增大为原来的二倍,由半径公式R =mv qB可知,速度也增大为原来的二倍,选项A 正确,选项B 、C 错误;由粒子的周期T =2πmqB,可知粒子的周期与速度无关,在磁场中的运动时间取决于其轨迹圆弧所对应的圆心角,所以从e 、d 射出时所用时间相等,从f 点射出时所用时间最短,选项D 错误. 5.(2018·辽宁葫芦岛六校联考)如图所示,在一个半径为R 的半圆区域内有垂直纸面向外的匀强磁场,磁感应强度大小为B .O 点是该半圆的圆心,OP 是垂直于直线边界的半径.两个完全相同的质量为m 、电量为+q 的基本粒子以相同的速率v 分别从O 点沿OP 和从P 点沿PO 射入磁场区域,对于两个粒子的运动情况下列分析正确的是( ) A .从O 点沿OP 射入磁场的粒子将向上偏转 B .两粒子通过磁场的时间相等 C .如果v <qBR 2m ,则从O 点沿OP 射入磁场的粒子通过磁场的时间为πm qB D .如果v =qBRm,则从O 点沿OP 射入磁场的粒子通过磁场的时间较长 解析:选C.根据左手定则可得从O 点沿OP 射入磁场的粒子受到向下的洛伦兹力,将向下偏转,A 错误;由于两粒子轨迹的圆心角不同,所以所用时间不同,B 错误;若从O 点沿OP 射入磁场的粒子恰好从正下方射出磁场,则有R 2=mv Bq ,解得v =qBR2m ,速度增大,则半径增大,所以若v <qBR 2m ,则粒子都是从O 点正下方射出磁场,故所用时间为t =180°360°·2πm Bq =πm Bq,C 正确;如果v =qBRm,从O 点沿OP 射入磁场的粒子的圆心角为60°,从P 点沿PO 射入磁场的粒子所对应的圆心角大于60°,故从P 点沿PO 射入磁场的粒子通过磁场的时间较长,D 错误. 二、多项选择题6.(2018·浙江温州中学模拟)如图所示,范围足够大、磁感应强度为B的匀强磁场垂直于xOy 平面向里,两质量相等的粒子带等量异种电荷,它们从x 轴上关于O 点对称的两点同时由静止释放,运动过程中未发生碰撞,不计粒子所受的重力.则( ) A .两粒子沿x 轴做圆周运动B .运动过程中,若两粒子间的距离等于初始位置间的距离时,它们的速度均为零C .运动过程中,两粒子间的距离最小时,它们的速度沿x 轴方向的分量v x 可能不为零D .若减小磁感应强度,再从原处同时由静止释放两粒子,它们可能会发生碰撞解析:选BD.两个粒子在相互的库仑引力作用下,从静止开始加速,都受到向上的洛伦兹力而向上偏转,做曲线运动,但不是圆周运动,故A 错误;两个粒子的速度大小情况相同.若两粒子间的距离等于初始位置间的距离时,静电力对两个粒子做功为0,根据动能定理可知它们的速度均为零,故B 正确;从开始运动到距离最小的过程,静电力一直做正功,动能都增大,速度与x 轴的夹角不断增大,沿y 轴方向的速度分量v y 不断增大;当距离最小后,两者距离增大,此时它们的速度沿x 轴方向的分量v x 为零,它们的速度沿y 轴方向的分量v y 最大,故C 错误;若减小磁感应强度,由公式r =mvqB分析可知,轨迹的曲率半径变大,可能发生碰撞.故D 正确.7.(2018·日照模拟)如图所示,以O 为圆心的圆形区域内,存在方向垂直纸面向外的匀强磁场.磁场边界上的A 点有一粒子发射源,沿半径AO 方向发射出速率不同的同种粒子(粒子重力不计),垂直进入磁场.下列说法正确的是( )A .速率越大的粒子在磁场中运动的时间越长B .速率越大的粒子在磁场中运动的偏转角越小C .速率越大的粒子在磁场中运动的向心加速度越大D .速率越大的粒子在磁场中运动的角速度越大解析:选BC.根据r =mv qB可知,速度大的粒子的运动半径较大,运动圆弧对应的圆心角越小,在磁场中运动的偏转角越小,据T =2πm qB =2πω可知,粒子的周期和角速度与粒子的速率无关.根据t =θ2πT ,则运动时间越小,故A 、D 错误,B 正确;根据qvB =ma 可知,速率越大的粒子在磁场中运动的向心加速度越大,选项C 正确.8.(2018·内蒙古奋斗中学模拟)如图所示,直角三角形ABC 区域中存在一匀强磁场,比荷相同的两个粒子(不计重力)沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( ) A .从P 点射出的粒子速度大 B .从Q 点射出的粒子向心加速度大 C .从P 点射出的粒子角速度大 D .两个粒子在磁场中运动的时间一样长解析:选BD.粒子的运动轨迹如图所示,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,洛伦兹力提供向心力:qvB =m v 2r ,轨迹半径r =mvqB ,两粒子比荷相等,r P <r Q ,所以v P <v Q ,故A 错误;向心加速度a =v 2r =qvBm,v P <v Q ,所以a P <a Q ,故B 正确;粒子在磁场中做圆周运动的周期T =2πr v =2πm qB ,角速度ω=2πT =qB m,两粒子比荷相等,所以周期相等、角速度相等,故C 错误;根据几何关系可知,粒子在磁场中偏转的圆心角相等,粒子在磁场中运动的时间t =θ2πT =θmqB ,所以粒子在磁场中运动的时间相等,故D 正确.三、非选择题9.(2018·长沙质检)如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60 T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 距离l =16 cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106m/s ,已知α粒子的比荷qm=5.0×107C/kg ,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度.解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨道半径,有qvB =m v 2R由此得R =mv qB代入数值得R =10 cm 可见R <l <2R .因朝不同方向发射的α粒子的圆轨迹都过S ,由此可知,某一圆轨迹在图中N 左侧与ab 相切,则此切点P 1就是α粒子能打中的左侧最远点.NP 1=R 2-(l -R )2=8 cm再考虑N 的右侧,任何α粒子在运动中离S 的距离不可能超过2R ,以2R 为半径、S 为圆心作圆,交ab 于N 右侧的P 2点,此即右侧能打到的最远点. 由图中几何关系得NP 2=(2R )2-l 2=12 cm 所求长度为P 1P 2=NP 1+NP 2 代入数值得P 1P 2=20 cm. 答案:20 cm10.(2018·珠海检测)如图所示,在平面直角坐标系xOy 的第四象限有垂直纸面向里的匀强磁场,一质量为m =5.0×10-8kg 、电量为q =1.0×10-6C 的带电粒子.从静止开始经U 0=10 V 的电压加速后,从P 点沿图示方向进入磁场,已知OP =30 cm ,(粒子重力不计,sin 37°=0.6,cos 37°=0.8),求:(1)带电粒子到达P 点时速度v 的大小;(2)若磁感应强度B =2.0 T ,粒子从x 轴上的Q 点离开磁场,求OQ 的距离; (3)若粒子不能进入x 轴上方,求磁感应强度B ′满足的条件. 解析:(1)对带电粒子的加速过程,由动能定理qU 0=12mv 2代入数据得:v =20 m/s.(2)带电粒子仅在洛伦兹力作用下做匀速圆周运动,有:qvB =mv 2R 得R =mv qB代入数据得:R =0.50 m 而OPcos 53°=0.50 m 故圆心一定在x 轴上,轨迹如图甲所示.由几何关系可知:OQ =R +R sin 53° 故OQ =0.90 m.(3)带电粒子不从x 轴射出(如图乙),由几何关系得:OP >R ′+R ′cos 53° R ′=mv qB ′解得:B ′>163 T ≈5.33 T(取“≥”也可以).答案:(1)20 m/s (2)0.90 m (3)见解析11.(2018·湖南长沙长郡中学模拟)如图所示,ABCD 为边长为2a 的正方形,O 为正方形中心,正方形区域左、右两对称部分中分别存在方向垂直ABCD 平面向里和向外的匀强磁场.一个质量为m 、电荷量为q 的带正电粒子从B 点处以速度v 垂直磁场方向射入左侧磁场区域,速度方向与BC 边夹角为15°,粒子恰好经过O 点,已知cos 15°=6+24,粒子重力不计.(1)求左侧磁场的磁感应强度大小;(2)若粒子从CD 边射出,求右侧磁场的磁感应强度大小的取值范围.解析:(1)粒子从B 点射入左侧磁场,运动轨迹如图1所示,△BO 1O 为等边三角形,由几何关系可得轨迹半径r 1=2a ,粒子在左侧磁场中运动,有qvB 1=mv 2r 1,得B 1=2mv2qa.(2)当右侧磁场磁感应强度大小B 2=B 1时,粒子从D 点射出,运动轨迹如图2所示,这是粒子从CD 边射出的最小磁感应强度,当磁感应强度增大时,粒子在右侧磁场中运动的轨迹半径减小,当运动轨迹与CD 边相切时,磁感应强度最大,轨迹如图3所示:由几何关系可知:r 2+r 2cos 15°=a 得:r 2=4a 6+2+4粒子在右侧磁场中运动,有:qvB 2m =mv 2r 2,得:B 2m =(6+2+4)mv4qa若粒子从CD 边射出,右侧磁场磁感应强度大小的范围为:2mv 2qa ≤B 2≤(6+2+4)mv4qa. 答案:(1)2mv 2qa (2) 2mv 2qa ≤B 2≤(6+2+4)mv 4qa。
【配套K12】[学习]2019年高考物理一轮复习 第九章 磁场 第1讲 磁场及其对电流的作用学案1
第1讲磁场及其对电流的作用微知识1 磁场、磁感应强度1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用。
(2)方向:小磁针的N极所受磁场力的方向。
2.磁感应强度(1)物理意义:描述磁场的强弱和方向。
(2)大小:B=FIL(通电导线垂直于磁场)。
(3)方向:小磁针静止时N极的指向。
(4)单位:特斯拉(T)。
3.匀强磁场(1)定义:磁感应强度的大小处处相等、方向处处相同的磁场称为匀强磁场。
(2)特点:匀强磁场中的磁感线是疏密程度相同的、方向相同的平行直线。
微知识2 磁感线通电直导线和通电线圈周围磁场的方向1.磁感线(1)磁感线:在磁场中画出一些有方向的曲线,使曲线上各点的切线方向跟这点的磁感应强度方向一致。
(2)条形磁铁和蹄形磁铁的磁场磁感线分布(如图所示)条形磁铁2.电流的磁场微知识3 安培力1.安培力的大小当磁感应强度B的方向与导线方向成θ角时,F=BIL sinθ,这是一般情况下的安培力的表达式,以下是两种特殊情况:(1)磁场和电流垂直时:F=BIL。
(2)磁场和电流平行时:F=0。
2.安培力的方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内。
让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。
(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面。
一、思维辨析(判断正误,正确的画“√”,错误的画“×”。
)1.磁场中某点磁感应强度的方向,跟放在该点的试探电流元所受磁场力的方向一致。
(×) 2.磁感线是客观存在的,磁感线上某点的切线方向表示该点的磁场方向。
(×)3.通电导线放入磁场中,若不受安培力,说明该处磁感应强度为零。
(×)4.垂直磁场放置的线圈面积减小时,穿过线圈的磁通量可能增大。
(√)5.安培力可能做正功,也可能做负功。
(√)二、对点微练1.(电流的磁场及磁场的性质)下列关于小磁针在磁场中静止时的指向,正确的是( )解析根据在磁体外部同名磁极相互排斥可知选项A错;应用安培定则可知环形电流中心线上的磁场方向由右向左,小磁针N极受到的磁场力向左,选项B错;根据安培定则可知通电螺线管内部磁场向右,内部小磁针N极受到的磁场力向右,选项C对;根据安培定则可知通电直导线右边磁场向里,小磁针N极应向里,选项D错。
配套K122019版高考物理大一轮复习第9单元磁场学案
第9单元磁场第24讲磁场的描述磁场对电流的作用一、磁场、磁感应强度1.磁场(1)基本性质:对放入其中的磁体或运动电荷(电流)有,磁体、电流之间都是通过发生相互作用的.(2)方向:小磁针静止时所指的方向.2.磁感应强度(1)物理意义:表示磁场的物理量.(2)定义式:.单位:特斯拉,简称特,符号是T.(3)方向:小磁针静止时所指方向.3.几种常见的磁场图24-1二、安培力 1.安培力的大小(1)磁场和电流垂直时,F= . (2)磁场和电流平行时,F= . 2.安培力的方向用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向 的方向,这时 所指的方向就是通电导线在磁场中所受安培力的方向. 【思维辨析】(1)磁场是客观存在的,磁感线实际上是不存在的,磁感线上各点的切线方向表示该点的磁场方向. ( ) (2)磁场中某点磁感应强度的方向,跟放在该点的试探电流元所受磁场力的方向一致. ( ) (3)相邻两条磁感线之间的空白区域磁感应强度为零. ( )(4)将通电导线放入磁场中,若不受安培力,说明该处磁感应强度为零. ( ) (5)通电导线在磁感应强度越大的地方所受安培力越大. ( ) 【思维拓展】有人根据B=提出:磁场中某点的磁感应强度B 跟磁场力F 成正比,跟电流I 和导线长度L 的乘积IL 成反比,这种说法有什么问题?考点一 磁感应强度、磁场的叠加 考向一 磁感应强度的理解(1)磁感应强度由磁场本身决定,因此不能根据定义式B=认为B 与F 成正比,与IL 成反比.(2)测量磁感应强度时小段通电导线必须垂直磁场放入,如果平行磁场放入,则其所受安培力为零,但不能说该点的磁感应强度为零.(3)磁感应强度是矢量,其方向为放入其中的小磁针静止时N 极的指向.1 关于磁感应强度B ,下列说法中正确的是 ( )A .磁场中某点B 的大小,跟放在该点的试探电流元的情况有关B .磁场中某点B 的方向,跟放在该点的试探电流元受到磁场力的方向一致C .若在磁场中某点的试探电流元不受磁场力作用,该点B 为零D .长度为L 、电流为I 的导线在磁场中受力为F ,则磁感应强度B 大于或等于 考向二 磁感应强度B 与电场强度E 的比较B=磁感线切线方向小磁针电场线切线方正电荷受力方2 (多选)下列说法中正确的是 ( )A .电荷在某处不受电场力的作用,则该处电场强度为零B .一小段通电导线在某处不受磁场力作用,则该处磁感应强度一定为零C .电场中某点电场的强弱,用一个检验电荷放在该点时受到的电场力与检验电荷本身电荷量的比值表征D .磁场中某点磁场的强弱,用一小段通电导线放在该点时受到的磁场力与该小段导线长度和电流乘积的比值表征考向三 电流的磁场及安培定则3 如图24-2所示,直导线AB 、螺线管E、电磁铁D 三者相距较远,其磁场互不影响,当开关S 闭合后,则小磁针北极N(黑色一端)指示磁场方向正确的是 ( )图24-2A .aB .bC .cD .d 考向四 磁场的叠加解决磁感应强度叠加问题的思路和步骤:(1)根据安培定则确定各导线在某点产生的磁场方向; (2)判断各分磁场的磁感应强度大小关系;(3)根据矢量合成法则确定合磁感应强度的大小和方向.两分矢量在同一直线上,则同向相加,反向相减,两分矢量不在同一直线上,根据平行四边形定则,以两分矢量为邻边,作平行四边形,对角线为合矢量.4 [2017·全国卷Ⅲ] 如图24-3所示,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零.如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为 ( )图24-3A .0B .B 0C.B0D.2B0考点二安培力的大小与方向1.用公式F=BIL计算安培力大小时应注意(1)B与I垂直.(2)L是有效长度.①公式F=ILB中L指的是“有效长度”.当B与I垂直时,F最大,F=ILB;当B与I平行时,F=0.②弯曲导线的有效长度L等于在垂直磁场平面内的投影两端点所连线段的长度(如图24-4所示),相应的电流方向沿L由始端流向末端.图24-4③闭合线圈通电后,在匀强磁场中受到的安培力的矢量和为零.2.方向:根据左手定则判断.5 (多选)[2017·全国卷Ⅰ]如图24-5所示,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反,下列说法正确的是()图24-5A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶D.L1、L2和L3单位长度所受的磁场作用力大小之比为∶1式题如图24-6所示,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd的长度均为L,且∠abc=∠bcd=150°.流经导线的电流为I,方向如图中箭头所示.导线abcd所受到的安培力的合力()图24-6A.方向沿纸面向上,大小为(-1)ILBB.方向沿纸面向上,大小为(+1)ILBC.方向沿纸面向下,大小为(+1)ILBD.方向沿纸面向下,大小为(-1)ILB考点三安培力作用下导体的运动判定导体运动情况的基本思路判定通电导体在安培力作用下的运动或运动趋势,首先必须弄清楚导体所在位置的磁场磁感线分布情况,然后利用左手定则准确判定导体的受力情况,进而确定导体的运动方向或运动趋势的方向.6 一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图24-7所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将()图24-7A.不动B.顺时针转动C.逆时针转动D.在纸面内平动■规律总结五种常用判定方法安培力方向在特殊位置安培力方向同向电流互相吸引反向电流互相排斥考点四安培力作用下的平衡与加速(1)选定研究对象;(2)变三维为二维,如侧视图、剖面图或俯视图等,并画出平面受力分析图,其中安培力的方向要注意F安⊥B、F安⊥I;(3)列平衡方程或牛顿第二定律方程进行求解.7 [2015·全国卷Ⅰ]如图24-8所示,一长为10 cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1 T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘.金属棒通过开关与一电动势为12 V的电池相连,电路总电阻为2 Ω.已知开关断开时两弹簧的伸长量均为0.5 cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 cm,重力加速度大小取10 m/s2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.图24-8式题1 (多选)[2016·广州三模]如图24-9所示,质量为m、长度为L的直导线用两绝缘细线悬挂于O、O',并处于匀强磁场中,当导线中通以沿x轴正方向的电流I,且导线保持静止时,悬线与竖直方向夹角为θ,则磁感应强度方向和大小可能为(重力加速度为g) ()图24-9A.z轴正方向,tan θB.y轴正方向,C.z轴负方向,tan θD.沿悬线向上,sin θ式题2 (多选)我国未来的航母将采用自行研制的电磁弹射器.电磁弹射系统由电源、强迫储能装置、导轨和脉冲发生器等组成.其工作原理如图24-10所示,利用与飞机前轮连接的通电导体在两平行金属导轨的强电流产生的磁场中受到安培力的作用加速获得动能.设飞机质量m=1.8×104 kg,起飞速度为v=70 m/s,起飞过程中所受平均阻力恒为机重的,在没有电磁弹射器的情况下,飞机从静止开始在恒定的牵引力作用下运动,起飞距离为l=210 m;在电磁弹射器与飞机发动机(牵引力不变)同时工作的情况下,起飞距离减为,则(g取10 m/s2) ()图24-10A.在没有电磁弹射器的情况下,飞机所受牵引力F=2.46×105 NB.在没有电磁弹射器的情况下,飞机所受牵引力F=2.1×105 NC.在电磁弹射器与飞机发动机同时工作时,若只增大电流,则起飞的距离将更小D.在电磁弹射器与飞机发动机同时工作时,电磁弹射器对飞机所做的功W=2.94×108 J第25讲磁场对运动电荷的作用一、洛伦兹力1.定义:磁场对的作用力.2.大小:当v⊥B时,F= ;当v∥B时,F= .3.方向:用定则来判断.(1)判定方法:应用左手定则,注意四指应指向正电荷运动的方向或负电荷运动的.(2)方向特点:f⊥B,f⊥v,即f垂直于决定的平面.4.通电导体所受的安培力是导体内所有运动电荷所受的的宏观表现.二、带电粒子在匀强磁场中(不计重力)的运动1.若v∥B,带电粒子以入射速度v做运动.2.若v⊥B,带电粒子在垂直于磁感线的平面内,以入射速度v做运动.3.基本公式(1)轨迹半径公式:r= .(2)周期公式:T== .【思维辨析】(1)运动的电荷在磁场中一定会受到磁场力的作用.()(2)洛伦兹力的方向在特殊情况下可能与带电粒子的速度方向不垂直.()(3)公式T=说明带电粒子在匀强磁场中的运动周期T与v成反比.()(4)由于安培力是洛伦兹力的宏观表现,所以洛伦兹力可能做功.()(5)带电粒子在匀强磁场中做匀速圆周运动时,其运动半径与带电粒子的比荷有关.()考点一洛伦兹力的理解与计算考向一洛伦兹力的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)用左手定则判断洛伦兹力方向,应注意区分正、负电荷.(4)洛伦兹力一定不做功.(5)运动电荷在磁场中不一定受洛伦兹力作用.1 [2017·重庆南开中学期末]四根等长的导线固定在正方体的四条沿x轴方向的棱上,并通以等大的电流,方向如图25-1所示.正方体的中心O处有一粒子源在不断地沿x轴负方向喷射电子,则电子刚被喷射出时受到的洛伦兹力方向为()图25-1A.沿y轴负方向B.沿y轴正方向C.沿z轴正方向D.沿z轴负方向式题 (多选)[2017·四川乐山二调]如图25-2所示,匀强磁场的方向竖直向下.磁场中有光滑的水平桌面,在桌面上平放着内壁光滑、底部有带电小球的试管.在垂直于试管的水平拉力F作用下,试管向右匀速运动,带电小球能从试管口处飞出.关于带电小球及其在离开试管前的运动,下列说法中正确的是()图25-2A.小球带负电B.小球运动的轨迹是一条抛物线C.洛伦兹力对小球做正功D.要保持试管匀速运动,拉力F应逐渐增大考向二洛伦兹力与电场力的比较2 (多选)带电小球以一定的初速度v0竖直向上抛出,能够达到的最大高度为h1;若加上水平方向的匀强磁场,且保持初速度仍为v0,小球上升的最大高度为h2;若加上水平方向的匀强电场,且保持初速度仍为v0,小球上升的最大高度为h3;若加上竖直向上的匀强电场,且保持初速度仍为v0,小球上升的最大高度为h4,如图25-3所示.不计空气阻力,则()图25-3A.一定有h1=h3B.一定有h1<h4C.h2与h4无法比较D.h1与h2无法比较考点二带电粒子在有界匀强磁场中的运动考向一直线边界磁场带电粒子在直线边界磁场中的运动(进、出磁场具有对称性,如图25-4所示).图25-43 (多选)如图25-5所示,在平板PQ上方有一匀强磁场,磁场方向垂直纸面向里.某时刻有a、b、c三个电子(不计重力)分别以大小相等、方向如图所示的初速度v a、v b和v c经过平板PQ上的小孔O射入匀强磁场.这三个电子打到平板PQ上的位置到小孔O的距离分别是l a、l b和l c,电子在磁场中运动的时间分别为t a、t b和t c,整个装置放在真空中,则下列判断正确的是()图25-5A.l a=l c<l bB.l a<l b<l cC.t a<t b<t cD.t a>t b>t c考向二平行边界磁场带电粒子在平行边界磁场中的运动(存在临界条件,如图25-6所示).图25-64 (多选)如图25-7所示,宽d=4 cm的有界匀强磁场,纵向范围足够大,磁场方向垂直纸面向里.现有一群正粒子从O点以相同的速率在纸面内沿不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径为r=10 cm,则()图25-7A.右边界-8 cm<y<8 cm有粒子射出B.右边界0<y<8 cm有粒子射出C.左边界y>16 cm有粒子射出D.左边界0<y<16 cm有粒子射出考向三圆形边界磁场带电粒子在圆形边界磁场中的运动(沿径向射入必沿径向射出,如图25-8所示).图25-85 [2017·全国卷Ⅱ]如图25-9所示,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P点,在纸面内沿不同方向射入磁场.若粒子射入速率为v1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v2∶v1为()图25-9A.■方法技巧(1)圆心的确定方法①已知入射点、出射点、入射方向和出射方向时,可过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图25-10甲所示,P为入射点,M为出射点).图25-10②已知入射方向、入射点和出射点的位置时,可以过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).(2)在磁场中运动时间的确定方法①利用轨迹圆弧对应的圆心角θ计算时间:t=T;②利用轨迹弧长L与线速度v计算时间:t=.考点三带电粒子在磁场中运动的临界问题解决带电粒子在磁场中的临界问题的关键(1)以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,运用动态思维,寻找临界点,确定临界状态,由磁场边界和题设条件画好轨迹、定好圆心,建立几何关系.(2)寻找临界点常用的结论:①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.③当速度v变化时,圆心角越大,运动时间越长.6 (多选)如图25-11所示,正三角形ABC区域内存在垂直纸面的匀强磁场(未画出),磁感应强度为B=,△ABC的边长为L,O为BC边的中点.大量质量为m、速度为v0的粒子从O点沿不同的方向垂直于磁场方向射入该磁场区域(不计粒子重力),则从AB边和AC边射出的粒子在磁场中的运动时间可能为()图25-11A.式题 [2016·石家庄调研]如图25-12所示,在xOy平面的第一象限内,x=4d处平行于y轴放置一个长l=4d的粒子吸收板AB,在AB左侧存在垂直纸面向外的磁感应强度为B的匀强磁场.在原点O处有一粒子源,可沿y轴正方向射出质量为m、电荷量为+q的不同速率的带电粒子,不计粒子的重力.(1)若射出的粒子能打在AB板上,求粒子速率v的范围;(2)若在点C(8d,0)处放置一粒子回收器,在B、C间放一挡板(粒子与挡板碰撞无能量损失),为回收恰从B点进入AB右侧区域的粒子,需在AB右侧加一垂直纸面向外的匀强磁场(图中未画出),求此磁场磁感应强度的大小和此类粒子从O点发射到进入回收器所用的时间.图25-12带电粒子在组合场中的运动热点一回旋加速器、质谱仪考向一质谱仪(1)构造:如图Z8-1所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图Z8-1(2)原理:带电粒子由静止开始在加速电场中被加速,根据动能定理得qU=mv2.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律得qvB=m.由以上两式可得出需要研究的物理量,如粒子轨道半径r=.1 如图Z8-2所示为质谱仪的示意图.速度选择器部分的匀强电场的场强为E=1.2×105 V/m,匀强磁场的磁感应强度为B1=0.6 T;偏转分离器的磁场的磁感应强度为B2=0.8 T.已知质子质量为1.67×10-27 kg,求:(1)能沿直线通过速度选择器的粒子的速度大小.(2)质子和氘核以相同速度进入偏转分离器后打在照相底片上的点之间的距离d.图Z8-2考向二回旋加速器(1)构造:如图Z8-3所示,D1、D2是半圆形金属盒,D形盒的缝隙处接交流电源.D形盒处于匀强磁场中.图Z8-3(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB=,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.2 [2017·四川绵阳南山中学月考] 回旋加速器的核心部分是真空室中的两个相距很近的D 形金属盒,把它们放在匀强磁场中,磁场方向垂直于盒面向下,连接好高频交流电源后,两盒间的窄缝中能形成匀强电场,带电粒子在磁场中做圆周运动,每次通过两盒间的窄缝时都能被加速,直到达到最大圆周半径时通过特殊装置引出.如果用同一回旋加速器分别加速氚核H)和α粒子He),比较它们所需的高频交流电源的周期和引出时的最大动能,下列说法正确的是()图Z8-4A .加速氚核的交流电源的周期较大;氚核获得的最大动能较大B .加速氚核的交流电源的周期较小;氚核获得的最大动能较大C .加速氚核的交流电源的周期较大,氚核获得的最大动能较小D .加速氚核的交流电源的周期较小;氚核获得的最大动能较小热点二 带电粒子在组合场中的运动(1)带电粒子在电场和磁场的组合场中运动,实际上是将粒子在电场中的加速与偏转,跟磁偏转两种运动有效组合在一起,有效区别电偏转和磁偏转,寻找两种运动的联系和几何关系是解题的关键.当带电粒子连续通过几个不同的场区时,粒子的受力情况和运动情况也发生相应的变化,其运动过程则由几种不同的运动阶段组成.(2)“电偏转”和“磁偏转”的比较,=y=t=不变变化3 (18分)[2017·天津卷]平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图Z8-5所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q 点到y轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.图Z8-5【规范步骤】(1)粒子在电场中由Q到O做运动,设O点速度v与+x方向夹角为α,Q点到x轴的距离为L,到y轴的距离为2L,粒子的加速度为a,运动时间为t,根据类平抛运动的规律,有图Z8-6x方向:2L= (2分)y方向:L= (2分)粒子到达O点时沿y轴方向的分速度为v y= (2分)由tan α= (1分)解得tan α= ,即α= (1分)粒子到达O点时的速度大小为v= (2分)(2)设电场强度为E,粒子电荷量为q,质量为m,粒子在电场中运动的加速度a= (2分)设磁感应强度大小为B,粒子做匀速圆周运动的半径为R,洛伦兹力提供向心力,有qvB= (2分)根据几何关系可知R= (2分)联立可得= (2分)式题1 (多选)[2017·湖南衡阳一联]如图Z8-7所示,某带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两块平行导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直、磁感应强度为B的匀强磁场中,设粒子射入磁场和射出磁场的M、N两点间的距离为s(不计重力,不考虑边缘效应).下列说法正确的是()图Z8-7A.若仅将水平放置的平行板间距增大,则s减小B.若仅增大磁感应强度B,则s减小C.若仅增大U1,则s增大D.若仅增大U2,则s增大式题2 [2017·辽宁实验中学月考]如图Z8-8所示,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限磁场的磁感应强度大小为B,第三、四象限磁场磁感应强度大小相等.一带正电的粒子从P(-d,0)点沿与x轴正方向成α=60°角的方向平行于xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直于y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射时的方向相同,不计粒子重力,求:(1)粒子从P点入射时的速度v0;(2)第三、四象限磁感应强度的大小B'.图Z8-8热点三带电粒子在交变电、磁场中的运动解决带电粒子在交变电、磁场中的运动问题的基本思路4 如图Z8-9甲所示,在xOy平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向,沿y轴正方向电场强度为正).在t=0时刻由原点O发射初速度大小为v0、方向沿y轴正方向的带负电粒子.已知v0、t0、B0,粒子的比荷为,不计粒子的重力.(1)求t=t0时,粒子的位置坐标;(2)若t=5t0时粒子回到原点,求0~5t0时间内粒子距x轴的最大距离.图Z8-9式题如图Z8-10甲所示,M、N为竖直放置且彼此平行的两块平板,板间距离为d,两板中央各有一个小孔O、O',且两小孔正对,在两板间有垂直于纸面方向的磁场(未画出),磁感应强度随时间的变化规律如图乙所示.有一束正离子在t=0时垂直于M板从小孔O射入磁场.已知正离子的质量为m,电荷量为q,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T0,不考虑由于磁场变化而产生的电场的影响,不计离子所受重力.(1)求磁感应强度B0的大小;(2)要使正离子从O'孔垂直于N板射出磁场,求正离子射入磁场时的速度v0的可能值.图Z8-101.[2017·全国卷Ⅲ]如图Z8-11所示,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力):(1)粒子运动的时间;(2)粒子与O点间的距离.图Z8-112.[2017·江苏卷]一台质谱仪的工作原理如图Z8-12所示.大量的甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m和m,图中虚线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N点的最小距离x;(2)在图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d;(3)若考虑加速电压有波动,在(U0-ΔU)到(U0+ΔU)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件.图Z8-123.[2017·昆明期末]如图Z8-13所示,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹角.一质量为m、电荷量为q(q>0)的粒子以初速度v0从y轴上的P点沿y轴正方向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过一段时间T0,磁场的方向变为垂直于纸面向里,大小不变.不计重力.(1)求粒子从P点出发至第一次到达x轴时所需时间;(2)若要使粒子能够回到P点,求电场强度的最大值.图Z8-13。
教育最新2019年版本高考物理专题复习:磁场(学生版)-Word版
第九章 磁场(附参考答案)第一节 磁场基本性质一、磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.3.磁场方向:规定小磁针在磁场中N 极受力的方向(或者小磁针在磁场中静止时N 极的指向)即为该位置处的磁场方向.二、磁感线为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向 的曲线.1.疏密表示磁场的强弱.2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.3.是闭合的曲线,在磁体外部由N 极至S 极,在磁体的内部由S 极至N 极.磁线不相切不相交。
4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.5.通电直导线的磁场(安培定则):姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·*熟记常用的几种磁场的磁感线:三、磁感应强度1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场作用力为零。
2.在磁场中垂直于磁场方向的通电导线受到的磁场力F 跟电流强度I 和导线长度l 的乘积Il 的比值,叫做通电导线所在处的磁感应强度.①表示磁场强弱的物理量.是矢量.②大小:B=F/Il (电流方向与磁感线垂直时的公式).③方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N 极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.④单位:牛/安米,也叫特斯拉,国际单位制单位符号T .⑤点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. ⑥匀强磁场的磁感应强度处处相等.⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.例1.、以下说法正确的是:( )A .由ILF B 可知,磁感应强度B 与一小段通电直导线受到的磁场力F 成正比 B .一小段通电直导线受到的磁场力的方向就是磁场的方向C .一小段通电直导线在某处不受磁场力,该处的磁感应强度一定为零D .磁感应强度为零处,一小段通电直导线在该处一定不受磁场力例2.、如图所示,正四棱柱abed 一a'b'c'd'的中心轴线00'处有一无限长的载流直导线,对该电流的磁场,下列正确的是( )A.同一条侧棱上各点的磁感应强度都相等B.四条侧棱上的磁感应强度都相同C.在直线ab 上,从a 到b ,磁感应强度是先增大后减小D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大例3.、如图所示,两根导线a 、b 中电流强度相同.方向如图所示,则离两导线等距离的P 点,磁场方向如何?练习1。
配套K12新课标2019届高考物理一轮复习第10章电磁感应章末过关检测十
第10章 电磁感应章末过关检测(十)(建议用时:60分钟 满分:100分)一、单项选择题(本题共5小题,每小题6分,共30分.在每小题给出的四个选项中,只有一个选项正确)1.(2018·河南信阳质检)如图所示,一边长为L 、质量为m 、电阻为R 的正方形金属线框竖直放置在磁场中,磁场方向垂直方框平面向里,磁感应强度B 的大小沿y 轴的变化规律为B =B 0+ky (k 为常数且大于零),在x 轴方向上的磁感应强度相同.现将线框从图示位置水平向右抛出,已知重力加速度为g ,磁场区域足够大,不计空气阻力,则( )A .线框将一直做曲线运动B .线框最终将做直线运动C .线框最终的速度等于mgR k 2L 4D .线框中产生的感应电流沿顺时针方向解析:选B.由楞次定律得,线框中感应电流方向为逆时针方向,D 错误;线框中产生的电动势为:E =B 下Lv y -B 上Lv y =(B 下-B 上)Lv y线框中的电流为:I =E R,又据题有:B 下-B 上=k Δy =kL 解得:I =kL 2v y R, 根据对称性可知,线框在水平方向所受合力为0,沿水平方向做匀速运动,设线框在竖直方向的最大速度为v y m ,线框中最大的感应电流为I m ,则有:mg =(B 下-B 上)LI m ,I m =kL 2v y m R, 解得v y m =mgR k 2L 4,即最终竖直方向上做匀速直线运动,根据平行四边形定则知,最终线框做匀速直线运动,速度v =v 20+v 2y m >mgR k 2L 4,故A 、C 错误,B 正确. 2.(2018·贵州七校联考)如图所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一定值电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内).现对MN 施力使它沿导轨方向以速度v (如图)做匀速运动.令U 表示MN 两端电压的大小,则( )A .U =12Blv ,流过定值电阻R 的感应电流由b 到d B .U =12Blv ,流过定值电阻R 的感应电流由d 到b C .U =Blv ,流过定值电阻R 的感应电流由b 到dD .U =Blv ,流过定值电阻R 的感应电流由d 到b解析:选A.由右手定则可知,通过MN 的电流方向为N →M ,电路闭合,流过电阻R 的电流方向由b 到d ,B 、D 项错误;导体杆切割磁感线产生的感应电动势E =Blv ,导体杆为等效电源,其电阻为等效电源内电阻,由闭合电路欧姆定律和部分电路欧姆定律可知,U =IR =E2R ·R =12Blv ,A 项正确,C 项错误. 3.(2018·安徽蚌埠检测)如图甲所示,bacd 为导体做成的框架,其平面与水平面成θ角,质量为m 的导体棒PQ 与ab 、cd 接触良好,回路的电阻为R ,整个装置放于垂直框架平面的变化的磁场中,磁感应强度B 的变化情况如图乙所示,PQ 始终静止,则0~t 2内(t =0时刻,安培力大于mg sin θ),PQ 受到的摩擦力F f 的分析情况正确的是( )A .F f 先减小后增大,且在t 1时刻为零B .F f 先减小后增大,且在t 1时刻F f =mg sin θC .F f 先增大后减小,且在t 1时刻为最大值D .F f 先增大后减小,且在t 1时刻F f =mg sin θ解析:选B.0~t 1,PQ 平衡,无论磁感应强度的方向向哪,都有F 安=mg sin θ+F f ,随着磁感应强度的减小,安培力减小,静摩擦力向下先减小后反向增大,t 1时刻,安培力为零,静摩擦力沿框架向上,F f =mg sin θ;t 1以后,安培力方向向下,mg sin θ+F 安=F f ,安培力增大,静摩擦力沿框架向上增大,A 、C 、D 错误,B 正确.4. (2018·浙江杭州五校联盟检测)如图所示,在置于匀强磁场中的平行导轨上,横跨在两导轨间的导体杆PQ 以速度v 向右匀速移动,已知磁场的磁感应强度为B 、方向垂直于导轨平面(纸面)向外,导轨间距为l ,闭合回路acQP 中除电阻R 外,其他部分的电阻忽略不计,则( )A .回路中的感应电动势E =IlBB .回路中的感应电流I =Blv RC .通过电阻R 的电流方向是由a 流向cD .通过PQ 杆的电流方向是由Q 流向P解析:选B.导体杆垂直切割磁感线,产生的感应电动势E =Blv ,故A 错误;电路中的感应电流I =E R =Blv R,故B 正确;由右手定则可知,PQ 中产生的感应电流从P 流向Q ,通过R 的电流方向从c 流向a ,故C 、D 错误.5. (2018·安徽省江淮十校第三次联考)宽为L 的两光滑竖直裸导轨间接有固定电阻R ,导轨(电阻忽略不计)间Ⅰ、Ⅱ区域中有垂直纸面向里、宽为d 、磁感应强度为B 的匀强磁场,Ⅰ、Ⅱ区域间距为h ,如图,有一质量为m 、长为L 电阻不计的金属杆与竖直导轨紧密接触,从距区域Ⅰ上端H 处杆由静止释放.若杆在Ⅰ、Ⅱ区域中运动情况完全相同,现以杆由静止释放为计时起点,则杆中电流I 随时间t 变化的图象可能正确的是( )解析:选B.金属杆进入上方磁场时,若速度较大,则进入磁场时所受安培力大于重力,根据F 安-mg =ma 可知,金属杆做加速度减小的减速运动,则感应电流I =BLv R =BL (v 0+at )R ,其中v 0为杆进入上方磁场时的速度大小,所以图线切线的斜率减小;因金属杆在两个磁场区域内的运动情况相同;故图线B 正确.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全选对的得6分,选对但不全的得3分,有错选或不答的得0分)6.在绝缘的水平桌面上有MN 、PQ 两根平行的光滑金属导轨,导轨间的距离为l .金属棒ab 和cd 垂直放在导轨上,两棒正中间用一根长l 的绝缘细线相连,棒ab 右侧有一直角三角形匀强磁场区域,磁场方向竖直向下,三角形的两条直角边长均为l ,整个装置的俯视图如图所示,从图示位置在棒ab 上加水平拉力,使金属棒ab 和cd 向右匀速穿过磁场区,则金属棒ab 中感应电流i 和绝缘细线上的张力大小F 随时间t 变化的图象,可能正确的是(规定金属棒ab 中电流方向由a 到b 为正)( )解析:选AC.在ab 棒通过磁场的时间内,ab 棒切割磁感线的有效长度均匀增大,由E =Blv 分析可知,ab 产生的感应电动势均匀增大,则感应电流均匀增大,由楞次定律知感应电流的方向由b 到a ,为负值.根据cd 棒受力平衡知,细线上的张力F 为0;在cd 棒通过磁场的时间内,cd 棒切割磁感线的有效长度均匀增大,由E =Blv 分析可知,cd 产生的感应电动势均匀增大,则感应电流均匀增大,由楞次定律知感应电流的方向由a 到b ,为正值.根据cd 棒受力平衡知,细线上的张力F =BIl =B 2l 2v R,l 均匀增大,则F 与l 2成正比,故B 、D 错误,A 、C 正确.7.现代科学研究中常要用到高速电子,电子感应加速器就是利用感生电场使电子加速的设备.如图所示,上面为侧视图,上、下为电磁铁的两个磁极,电磁铁线圈中电流的大小可以变化;下面为磁极之间真空室的俯视图.现有一电子在真空室中做圆周运动,从上往下看电子沿逆时针方向做加速运动.则下列判断正确的是( )A .通入螺线管的电流在增强B .通入螺线管的电流在减弱C .电子在轨道中做圆周运动的向心力是电场力D .电子在轨道中加速的驱动力是电场力解析:选AD.从上往下看电子沿逆时针方向做加速运动,表明感应电流沿顺时针方向.图示电磁铁螺线管电流产生的磁场方向竖直向上,根据楞次定律和右手定则,当磁场正在增强时,产生的感应电场沿顺时针方向,故选项A 正确,B 错误;电子所受感应电场力方向沿切线方向,电子在轨道中做加速圆周运动是由电场力驱动的,选项C 错误,D 正确.8.(2018·郑州市质量检测)铁路运输中设计的多种装置都运用了电磁感应原理.有一种电磁装置可以向控制中心传输信号以确定火车的位置和运动状态,装置的原理是:将能产生匀强磁场的磁铁安装在火车首节车厢下面,如图甲所示(俯视图),当它经过安放在两铁轨间的矩形线圈时,线圈便产生一个电信号传输给控制中心.线圈长为l 1,宽为l 2,匝数为n .若匀强磁场只分布在一个矩形区域内,当火车首节车厢通过线圈时,控制中心接收到线圈两端电压u 与时间t 的关系如图乙所示(ab 、cd 均为直线),则在t 1~t 2时间内( )A .火车做匀速直线运动B .M 点电势低于N 点电势C .火车加速度大小为u 2-u 1nBl 2(t 2-t 1)D .火车平均速度大小为u 2+u 12nBl 1 解析:选BD.由E =BLv 可知,动生电动势与速度成正比,而在题图乙中ab 段的电压与时间成线性关系,因此可知在t 1到t 2这段时间内,火车的速度随时间均匀增加,所以火车在这段时间内做的是匀加速直线运动,故A 错误;根据右手定则,线圈中的感应电流是逆时针的,M 点电势低于N 点电势,B 正确;由题图知t 1时刻对应的速度为:v 1=u 1nBl 1,t 2时刻对应的速度为:v 2=u 2nBl 1,故这段时间内的加速度为:a =v 2-v 1t 2-t 1=u 2-u 1nBl 1(t 2-t 1),故C 错误;由C 可知这段时间内的平均速度为:v =v 1+v 22=u 1+u 22nBl 1,D 正确. 三、非选择题(本题共3小题,共52分,按题目要求作答.计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位)9.(14 分)(2018·广东深圳调研)一根阻值12 Ω的金属导线绕成如图甲形状的闭合回路,大正方形边长0.4 m ,小正方形边长0.2 m ,共10匝.放在粗糙的水平桌面上,两正方形对角线间存在竖直向下的匀强磁场,磁感应强度随时间变化的规律如图乙所示,整个过程中线框始终未动.求闭合回路:(1)产生的感应电动势;(2)电功率;(3)第1 s 末受到的摩擦力大小.解析:(1)根据法拉第电磁感应定律有:E =N ΔΦΔt =N ΔBS Δt得:E =N ΔBS Δt =10×21×12×(0.42-0.22)V =1.2 V. (2)电功率为:P =E 2R =1.2212W =0.12 W. (3)线框中的电流为:I =E R =1.212A =0.1 A 在磁场中的两条边受到的力垂直于线框,大小相等,互成90°,每条边受到的力为:F =NBIL =10×2×0.1×(0.4+0.2)N =1.2 N安培力的合力为:F ′=2F =2×1.2 N ≈1.7 N摩擦力大小为:f =F ′=1.70 N.答案:(1)1.2 V (2)0.12 W (3)1.70 N10.(18分)如图所示,光滑的金属导轨间距为L ,导轨平面与水平面成α角,导轨下端接有阻值为R 的电阻.质量为m 的金属细杆ab 与绝缘轻质弹簧相连静止在导轨上,弹簧劲度系数为k ,上端固定,弹簧与导轨平面平行,整个装置处在垂直于导轨平面斜向上的匀强磁场中,磁感应强度为B .现给杆一沿导轨向下的初速度v 0,杆向下运动至速度为零后,再沿导轨平面向上运动达最大速度v 1,然后减速为零,再沿导轨平面向下运动,一直往复运动到静止(金属细杆的电阻为r ,导轨电阻忽略不计).试求:(1)细杆获得初速度的瞬间,通过R 的电流大小;(2)当杆速度为v 1时,离最初静止位置的距离L 1;(3)杆由v 0开始运动直到最后静止,电阻R 上产生的焦耳热Q .解析:(1)由E =BLv 0;I 0=ER +r ,解得:I 0=BLv 0R +r. (2)设杆最初静止不动时弹簧伸长x 0,则kx 0=mg sin α当杆的速度为v 1时杆受力平衡,弹簧伸长x 1kx 1=mg sin α+BI 1L此时I 1=BLv 1R +r,L 1=x 1-x 0得L 1=B 2L 2v 1k (R +r ). (3)杆最后静止时,杆在初始位置,由能量守恒可得Q 总=12mv 2所以:Q =Rmv 202(R +r ). 答案:(1)BLv 0R +r (2)B 2L 2v 1k (R +r ) (3)Rmv 202(R +r )11.(20分)如图所示,两根光滑金属导轨平行放置在倾角为30°的斜面上,导轨宽度为L ,导轨下端接有电阻R ,两导轨间存在一方向垂直于斜面向上、磁感应强度大小为B 的匀强磁场,轻绳一端平行于斜面系在质量为m 的金属棒上,另一端通过定滑轮竖直悬吊质量为m 0的小木块.第一次金属棒从PQ 位置由静止释放,发现金属棒沿导轨下滑,第二次去掉轻绳,让金属棒从PQ 位置由静止释放.已知两次下滑过程中金属棒始终与导轨接触良好,且在金属棒下滑至底端MN 前,都已经达到了平衡状态.导轨和金属棒的电阻都忽略不计,已知m m 0=4,mgR B 2L 2=gh (h 为PQ 位置与MN 位置的高度差).求:(1)金属棒两次运动到MN 时的速度大小之比;(2)金属棒两次运动到MN 过程中,电阻R 产生的热量之比.解析:(1)金属棒匀速运动时,根据平衡条件得:第一种情况有:mg sin 30°-m 0g =BI 1L =B 2L 2v 1R第二种情况有:mg sin 30°=BI 2L =B 2L 2v 2R又由题 mm 0=4 联立以上三式得:v 1v 2=12. (2)第一次下滑至MN 位置的过程中,根据动能定理可得mgh -m 0g h sin 30°-W 1=12(m +m 0)v 21 第二次下滑至MN 位置的过程中,根据动能定理可得mgh -W 2=12mv 22 两次运动过程中,电阻R 产生的热量之比为Q1 Q2=W1W2=59112.答案:见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十磁场考点1磁场的描述及安培力的应用1.[2015全国卷Ⅱ,18,6分][多选]指南针是我国古代四大发明之一.关于指南针,下列说法正确的是()A.指南针可以仅具有一个磁极B.指南针能够指向南北,说明地球具有磁场C.指南针的指向会受到附近铁块的干扰D.在指针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏转2.[2018河南郑州模拟][多选]下列说法中正确的是()A.电荷在某处不受电场力的作用,则该处电场强度为零B.一小段通电导线在某处不受磁场力作用,则该处磁感应强度一定为零C.电场强度表示电场中某点电场的强弱,是把一个检验电荷放在该点时受到的电场力与检验电荷本身电荷量的比值D.磁感应强度表示磁场中某点磁场的强弱,是把一小段通电导线放在该点时受到的磁场力与该小段导线长度和电流乘积的比值3.下列有关磁感应强度的说法中正确的是()A.磁感应强度是用来表示磁场强弱的物理量B.若有一小段通电导体在某点不受磁场力的作用,则该点的磁感应强度一定为零C.若有一小段长为L,通以电流为I的导体,在磁场中某处受到的磁场力为F,则该处磁感应强度的大小一定是D.由定义式B=可知,电流强度I越大,导线L越长,某点的磁感应强度就越小4.[2017广西三校8月联考]磁场中某区域的磁感线如图所示,则()A.a、b两处的磁感应强度的大小不等,B a>B bB.a、b两处的磁感应强度的大小不等,B a<B bC.同一通电导线放在a处受力一定比放在b处受力大D.同一通电导线放在a处受力一定比放在b处受力小5.[2018甘肃重点中学第一次联考][多选]有两根长直导线a、b互相平行放置,如图所示为垂直于导线的截面图.在图示的平面内,O点为两根导线中心连线ab的中点,M、N为ab的中垂线上的两点,它们与O的距离相等.若两导线中通有大小相等、方向相同的恒定电流,已知电流产生的磁场在某点的磁感应强度B的大小跟该点到通电导线的距离r成反比.则关于线段MN上各点的磁感应强度的说法中正确的是 ( )A.M点和N点的磁感应强度大小相等,方向相同B.M点和N点的磁感应强度大小相等,方向相反C.在线段MN上O点的磁感应强度为零D.若在N点放一小磁针,静止时其北极沿ON指向O点6.图甲、乙所示的是直线电流的磁场,图丙、丁所示的是环形电流的磁场,图戊、己所示的是通电螺线管的磁场,试在各图中补画出电流方向或磁感线方向.7.地球是一个大磁体,地磁场的存在对地球的影响是巨大的.下列有关地磁场的相关说法中,正确的是()A.地磁场的北极在地理的南极附近B.在地面上放置一枚小磁针,在没有其他磁场的影响下静止的小磁针的南极指向地磁场的南极C.北半球地磁场的方向相对地面总是竖直向下的D.地球上任何地方的地磁场方向都是和地面平行的8.如图所示,在匀强磁场中放有下列各种形状的通电导线,电流强度均为I,磁感应强度大小均为B,求各导线所受到的安培力的大小.9.载流长直导线周围磁场的磁感应强度大小为B=,式中常量k>0,I为电流强度,r为距导线的距离.如图所示,矩形线圈abcd通以逆时针方向的恒定电流,并被两根等长的轻质绝缘细线静止地悬挂在水平长直导线MN正下方.开始时MN内不通电流,此时两细线内的张力均为T0.当MN通以强度为I1的电流时,两细线内的张力均减小为T1,当MN内电流强度为I2时,两细线内的张力均大于T0.(1)分别指出强度为I1、I2的电流的方向;(2)求MN分别通以强度为I1和I2的电流时,线框受到的安培力F1与F2大小之比.考点2带电粒子在匀强磁场中的运动10.初速度为v0的电子,沿平行于通电长直导线的方向射出,直导线中电流方向与电子的初始运动方向如图所示,则 ()A.电子将向右偏转,速率不变B.电子将向左偏转,速率改变C.电子将向左偏转,速率不变D.电子将向右偏转,速率改变11.如图是电子射线管示意图.接通电源后,电子射线由阴极沿x轴方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,在下列措施中可采用的是()A.加一磁场,磁场方向沿z轴负方向B.加一磁场,磁场方向沿y轴正方向C.加一电场,电场方向沿z轴负方向D.加一电场,电场方向沿y轴正方向12.[2018陕西第一次摸底考试,8][多选]静止在匀强磁场中的U发生α衰变,产生一个未知粒子x,它们在磁场中的运动径迹如图所示.下列说法正确的是()A.该核反应方程为U x HeB.α粒子和x粒子在磁场中做圆周运动时转动方向相同C.轨迹1、2分别是α粒子、x粒子的运动径迹D.α粒子、x粒子运动径迹半径之比为45∶113.质量分别为m1和m2、电荷量分别为q1和q2的两粒子在同一匀强磁场中做匀速圆周运动.已知两粒子的动量大小相等.下列说法正确的是()A.若q1=q2,则它们做圆周运动的半径一定相等B.若m1=m2,则它们做圆周运动的半径一定相等C.若q1≠q2,则它们做圆周运动的周期一定不相等D.若m1≠m2,则它们做圆周运动的周期一定不相等考点3带电粒子在复合场、组合场中的运动考点3带电粒子在复合场、组合场中的运动14.[多选]如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U加速后,水平进入互相垂直的匀强电场E和匀强磁场B的复合场中(E和B已知),小球在此空间的竖直面内做匀速圆周运动,则()A.小球可能带正电B.小球做匀速圆周运动的半径r=C.小球做匀速圆周运动的周期T=D.若电压U增大,则小球做匀速圆周运动的周期增加15.[2017江西赣州高三期末][多选]如图所示,一个质量为m、带电荷量为+q的圆环可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中.现给圆环一个向右的初速度v0,在以后的运动过程中,圆环运动的速度—时间图象可能是选项图中的()答案1.BC指南针两端分别是N极和S极,具有两个磁极,选项A错误;指南针静止时,N极的指向为该处磁场的方向,故指南针能够指向南北,说明地球具有磁场,选项B正确;铁块在磁场中被磁化,会影响指南针的指向,选项C正确;通电直导线在其周围会产生磁场,会影响指南针的指向,选项D错误.2.AC电场和磁场有一个明显的区别是:电场对放入其中的电荷都有力的作用,磁场对通电导线有力的作用的条件是磁场方向不能和电流方向平行,因此选项A正确,B错误.同理根据电场强度的定义式E=可知选项C正确.而同样用比值定义法定义的磁感应强度则应有明确的说明,即B=中I和B的方向必须垂直,故选项D错误.3.A引入磁感应强度的目的是描述磁场的强弱,因此选项A正确;磁感应强度是与电流I和导线长度L无关的物理量,且B=中的B、F、L相互垂直,所以选项B、C、D错误.4.B磁感线的疏密程度表示磁感应强度的大小,由题图可知,b处的磁感线比a处的密,所以B a<B b;导线放在磁场中的受力不只取决于B与I的大小还与导线放置的方向有很大关系.故答案为B.5.BC 根据安培定则可以画出通电直导线在M、N两点处的磁感应强度方向(如图所示),对其矢量合成可以得到M点和N点的磁感应强度大小相等,M点合磁感应强度方向为垂直MN向下,N点合磁感应强度方向为垂直MN向上,因而选项B正确,A错误;在O点由于两导线电流在此处的磁感应强度等大反向,故该点磁感应强度为零,选项C正确;若在N点放一小磁针,静止时其北极应指向合磁场方向,即垂直MN向上,选项D错误.6.如图所示7.A 根据地磁场的分布特点可知,地磁场可视为一条形磁铁的磁场,地磁场的北极在地理南极附近,地磁场的南极在地理北极附近,选项A正确.在地面上放置一枚小磁针,在没有其他磁场的影响下,静止的小磁针的南极指向地理南极,即指向地磁场的北极,选项B错误.北半球的地磁场的方向相对地面总是斜向下的,不是竖直向下的,选项C错误.地球上赤道附近的地磁场方向和地面平行,其他任何地方的磁场方向均与地面不平行,选项D错误.8.(a)BIL cos α(b)BIL (c)BIL (d)2BIR (e)0解析:安培力大小计算公式可以写成F=BI·L sin θ=BI·L⊥,其中L sin θ为电流垂直于磁场方向的分量,即有效长度;安培力大小计算公式也可以写成F=B sin θ·IL=B⊥·IL,其中B sin θ为磁场在垂直电流方向的分量,即为有效磁场.题图(a)中,L⊥=L cos α,或者B⊥=B cos α,所以导线所受到的安培力大小F=BIL cos α.题图(b)中,导线在纸平面内,所以B⊥I,所以F=BIL.题图(c)是两根导线组成的折线abc,整体受力实质上是两部分直导线分别受力的矢量和,折线的有效长度为ac(即从a→c的电流).故F=BIL.题图(d)中,从a→b的半圆形电流,分析圆弧上对称的每一小段电流,受力抵消合并后,其有效长度为ab=2R,F=2BIR.题图(e)中,闭合通电导线的有效长度为0,即所受安培力为0.9.(1)I1的方向向左,I2的方向向右(2)解析:(1)根据同向电流相互吸引,异向电流相互排斥,且距离导线越近,相互作用力越大,可知,I1的方向向左,I2的方向向右.(2)当MN中的电流强度为I时,线圈受到的安培力大小为F,其中F ab=B ab iL=iL,F cd=B cd iL=iL,F ab与F cd方向相反,所以F=F ab-F cd,即F=kIiL(-)式中r1、r2分别为ab、cd与MN的间距,i为线圈中的电流,L为ab、cd的长度.故MN通以I1和I2的电流时,线框受到的安培力之比为=.10.A由右手定则判定直线电流右侧磁场的方向垂直纸面向里,再根据左手定则判定电子所受洛伦兹力偏离电流,由于洛伦兹力不做功,电子动能不变.11.B要使荧光屏上亮线向下偏转,若加磁场,应使电子所受的洛伦兹力方向向下,电子运动方向沿x轴正方向,由左手定则可知,磁场方向应沿y轴正方向;若加电场,电场方向应沿z 轴正方向,B项正确.12.ABD根据核反应前后质量数和核电荷数守恒可知核反应方程为U x He,选项A 正确;由于U核衰变后α粒子和x粒子的动量等大反向,两粒子的电性相同,速度方向相反,由左手定则知两粒子转动方向相同,选项B正确;由r=可知,轨迹1、2分别是x粒子、α粒子的运动径迹,选项C错误;α粒子与x粒子的动量等大,所在磁场相同,=,运动径迹半径之比为45∶1,选项D正确.13.A带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,即qvB=,得轨道半径r==,已知两粒子动量大小相等,若q1=q2,则r1=r2,A项正确;若m1=m2,r与有关,B项错误;带电粒子在磁场中运动的周期T==,因此运动周期T∝或,若m1≠m2,但=,周期T可相等,D项错误;若q1≠q2,但q1v1=q2v2,周期T也可相等,C项错误.14.BC小球在复合场中做匀速圆周运动,则小球受到的电场力和重力大小相等,方向相反,则小球带负电,选项A错误;因为小球做圆周运动的向心力由洛伦兹力提供,由牛顿第二定律和动能定理可得Bqv=,Uq=mv2,联立可得小球做匀速圆周运动的半径r=,由T=可得小球做匀速圆周运动的周期T=,与电压U无关,所以选项B、C正确,D错误.15.AD圆环向右运动,所受洛伦兹力的方向竖直向上.当洛伦兹力qv0B=mg,即v0=时,圆环只受重力和洛伦兹力的作用,且二力平衡,圆环将做匀速直线运动,选项A正确.当洛伦兹力qv0B>mg,即v0>时,圆环受到竖直向下的重力、弹力,竖直向上的洛伦兹力,水平向左的摩擦力四个力的作用,圆环向右做减速运动,当速度减到v=时,洛伦兹力qvB=mg,二力平衡,弹力和摩擦力消失,圆环将做匀速直线运动,选项D正确.当洛伦兹力qv0B<mg,即v0<时,圆环受到竖直向下的重力,竖直向上的洛伦兹力、弹力,水平向左的摩擦力四个力的作用,圆环向右做减速运动,一直减到速度为零,此过程中圆环所受摩擦力F f=μ(mg-qvB),圆环的加速度a==μ(g-),由于v不断减小,所以加速度变大,则v-t图线的斜率变大,选项B、C错误.。