机床原点故障分析
数控机床的回零及其常见故障分析[1]
![数控机床的回零及其常见故障分析[1]](https://img.taocdn.com/s3/m/bb6b1621bcd126fff7050be2.png)
数控机床参考点的回归及其常见故障诊断数控机床启动后通常需要进行返回参考点的操作,在这个过程中常会遇到各种问题,问题处理的正确与否在很大程度上会直接影响机床的使用及工件的加工精度。
一、为什么要返回参考点在数控机床上,各坐标轴的正方向是定义好的,因此只要机床原点一旦确定,机床坐标系也就确定了。
机床原点往往是由机床厂家在设计机床时就确定了,但这仅仅是机械意义上的,计算机数控系统还是不能识别,即数控系统并不知道以哪一点作为基准对机床工作台的位置进行跟踪、显示等。
为了让系统识别机床原点,以建立机床坐标系,就需要执行回参考点的操作。
如在CK0630型数控车床上,机床原点位于卡盘端面后20mm处,为让数控系统识别该点,需回零操作。
在CK0630型数控车床的操作面板上有一个回零按钮“ZERO”,当按下这个按钮时将会出现一个回零窗口菜单,显示操作步骤。
按照这个步骤,依此按下“X”按钮、“Z”按钮,则机床工作台将沿着X轴和Z轴的正方向快速运动,当工作台到达参考点的接近开关时,工作台减速停止。
回参考点的工作完成后,显示器即显示机床参考点在机床坐标系中的坐标值(X400,Z400),此时机床坐标系已经建立(如图1所示)。
目前,大多数数控机床均采用增量式位置检测装置来做位置环反馈元件,当机床在断电状态时NC系统会失去对机床坐标系值的记忆,因此每次机床重新通电之初,必须手动操作返回机床参考点一次,恢复记忆,以便进行自动加工。
对使用日本FUNAC系统的机床,除通电之初外,在机床工作过程中如出现断电、紧急停止或压下了机床行程限位开关时,也必须返回参考点。
机床返回参考点的方向、速度、参考点的坐标等均可由系统参数设定。
二、返回参考点的原理目前数控机床回参考点的方式有两种:使用脉冲编码器或光栅尺的栅格法和使用磁感应开关的磁开关法。
磁开关法由于存在定位漂移现象,因此较少使用。
大多数数控机床均采用栅格法回参考点。
栅格法根据检测元件计量方法的不同又可分为绝对栅格法和增量栅格法。
数控机床回不了参考点故障的分析及排除

数控机床回不了参考点故障的分析及排除1、概述数控机床回参考点时根据检测元件的不同分绝对脉冲编码器方式和增量脉冲编码器方式两种,使用绝对脉冲编码器作为反馈元件的系统,在机床安装调试后,正常使用过程中,只要绝对脉冲编码器的后备电池有效,此后的每次开机,都不必再进行回参考点操作。
而使用增量脉冲编码器的系统中,机床每次开机后都必须首先进行回参考点操作,以确定机床的坐标原点,寻找参考点主要与零点开关、编码器或光栅尺的零点脉冲有关,一般有两种方式。
1)轴向预定点方向快速运动,挡块压下零点开关后减速向前继续运动,直到挡块脱离零点开关后,数控系统开始寻找零点,当接收到第一个零点脉冲时,便以确定参考点位置。
配F ANUC系统和北京KND系统的机床目前一般采用此种回零方式。
2)轴快速按预定方向运动,挡块压向零点开关后,反向减速运动,当又脱离零点开关时,轴再改变方向,向参考点方向移动,当挡块再次压下零点开关时,数控系统开始寻找零点,当接收到第一个零点脉冲,便以确定参考点位置。
配SIEMENS、美国AB 系统及华中系统的机床一般采用这种回零方式。
采用何种方式或如何运动,系统都是通过PLC的程序编制和数控系统的机床参数设定决定的,轴的运动速度也是在机床参数中设定的,数控机床回参考点的过程是PLC系统与数控系统配合完成的,由数控系统给出回零命令,然后轴按预定方向运动,压向零点开关(或脱离零点开关)后,PLC向数控系统发出减速信号,数控系统按预定方向减速运动,由测量系统接收零点脉冲,收到第一个脉冲后,设计坐标值。
所有的轴都找到参考点后,回参考点的过程结束。
数控机床回不了参考点的故障常见一般有以下几种情况:一是零点开关出现问题;二是编码器出现问题;三是系统测量板出现问题;四是零点开关与硬(软)限位置太近;五是系统参数丢失等等。
下面以本人在工作中遇到的几个实例介绍维修的过程。
2、维修实例例1)XH714加工中心开机回参考点,X轴向回参考的相反方向移动。
数控机床回参考点方式及故障分析

数控机床回参考点方式及故障分析摘要:回参考点是数控机床的重要功能之一,能否正确地返回参考点,将会影响到零件的加工质量。
本文分析了数控机床几种回参考点的方法及回参考点常见的故障。
关键词:数控机床参考点编码器减速开关0引言目前大多数的数控机床采用增量式编码器作为位置检测装置,系统断电后位置检测装置靠电池来维持坐标值的记忆,但只记忆机床断电前的坐标值而不是机床的实际位置,所以机床首次启动系统后,要进行返回参考点操作,使系统的位置记数与脉冲编码器的零位脉冲同步,机床就需要回参考点。
机床执行回参考点操作具有以下优点:(1)系统通过参考点来确定机床的原点位置,以正确建立机床坐标系;(2)可以消除丝杠间隙的累计误差及丝杠螺距误差补偿对加工的影响。
1.机床返回参考点的几种方式(1)回参考点的Z脉冲方式(零脉冲方式)手动回原点时,回原点轴先以参数设置的快速速度Fr向原点方向移动,当原点减速撞块压下原点减速开关时,伺服电动机减速至由参数设置的接近原点速度F1继续向前移动;当减速撞块释放减速开关后,数控系统检测到编码器发出的第一个栅点或零标志信号时,归零轴停止,此停止点即为机床参考点,如图1所示。
图1(2)回参考点的“+、-”方式回原点轴先以快速进给速度Fr向原点方向移动,当原点减速开关被减速撞块压下时,回原点轴制动到速度为零,再以接近原点速度F1向相反方向移动;当减速撞块释放原点接近开关后,数控系统检测到反馈元件(如编码器)发出的第一个栅点回零标志信号时,回零轴停止,该点即机床原点,如图2所示。
图2(3)回参考点的“+、-、+”方式回原点时,回原点轴先以快速进给速度Fr向原点方向移动,当减速撞块压下减速开关时,回归原点轴制动到速度为零,再向相反方向以F1速度微动;当减速撞块释放减速开关时,归零轴又反向以F1速度沿原快速进给方向移动;当减速撞块再次压下减速开关时,归零轴仍以接近原点速度F1前移;减速撞块释放减速开关后,数控系统检测到第一个栅点或零标志信号时,归零轴停止,机床原点随之确立,如图3所示。
FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床机械原点的设置及回零常见故障分析当前大多数数控机床均采用通过减速档块的方式回零,但谊方式在日常使用中故障率却艰高,有时甚至出现机械原点的丢失。
本文以FANUC系统的台中精机VCENTER-70加工中心为例浅析了数控机床机械原点的设置方法,并对该类数控机床常见回零故障的各种形式式进行了分析与总结。
机械原点是机床生产厂家在生产机床时任机床上设置的一个物理位置,可以使控制系统和机床能够同步,从而建立起一个用于测量机床运动坐标的起始位置点,通常也是程序坐标的参考点。
大多数数控机床在开机后都需要回零即回机械原点的操作。
本文以FANUC系统的台中精机VCENTER-70加工中心为例浅析了数控机床机械原点的设置方法,并对此类数控机床常见回零故障的各种形武进行了分析与总结。
1 机械原点设置1.1 机械原点丢失的原因台中精机生产的VCENTER-70加工中心采用增量编码器作为机床位置的检测装置。
系统断电后,工件坐标系的坐标值就会失去记忆,尽管靠电池能够维持坐标值的记忆,但只是记忆机床断电前的坐标值而不是机床的实际位置,所以机床首次开机后要进行返回参考点操作。
而当系统断电遇到电池没电或特殊情况失电时,就会造成机械原点的丢失.从而使机床回参考点失败而无法正常工作。
此时机床会产生。
#306 n轴电池电压0#的报警信息,并且还会产生机械坐标丢失报警。
#300第n轴原点复位要求”(n代指X、Y、Z)。
1.2 机械原点的设置在通常情况下,设置数控机床机械原点的方法主要有以下两种:1)手动使X、Y、Z三轴超程印利用三轴的极限位置选择机械原点。
2)利用各坐标轴的伺服检溯反馈系统提供相应基准脉冲来选择机床参考点即机械原点。
由于第一种方法是机床厂家通常建议的也是较为简便和实用的方法.因此本文在此详细介绍第1种做法。
以X轴为例,设置步骤如下:(1)将机床操作面板上的方式选择开关设定为MDI方式。
(2)按下机床MDI面板上的功能键[OFS/SET]数次,进入设定画面。
FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床板滞本面的树坐及回整罕睹障碍分解之阳早格格创做目前大普遍数控机床均采与通过减速档块的办法回整,但是谊办法正在凡是使用中障碍率却艰下,偶尔以至出现板滞本面的拾得.本文以FANUC系统的台中粗机VCENTER-70加工核心为例浅析了数控机床板滞本面的树坐要领,并对付该类数控机床罕睹回整障碍的百般形式式举止了分解与归纳.板滞本面是机床死产厂家正在死产机床时任机床上树坐的一个物理位子,不妨使统制系统战机床不妨共步,进而建坐起一个用于丈量机床疏通坐目标起初位子面,常常也是步调坐目标参照面.大普遍数控机床正在开机后皆需要回整即回板滞本面的支配.本文以FANUC系统的台中粗机VCENTER-70加工核心为例浅析了数控机床板滞本面的树坐要领,并对付此类数控机床罕睹回整障碍的百般形武举止了分解与归纳.1 板滞本面树坐1.1 板滞本面拾得的本果台中粗机死产的VCENTER-70加工核心采与删量编码器动做机床位子的检测拆置.系统断电后,工件坐标系的坐标值便会得去影象,纵然靠电池不妨保护坐标值的影象,但是不过影象机床断电前的坐标值而出有是机床的本质位子,所以机床尾次开机后要举止返回参照面支配.而当系统断电逢到电池出电或者特殊情况得电时,便会制成板滞本面的拾得.进而使机床回参照面波折而无法平常处事.此时机床会爆收.#306 n轴电池电压0#的报警疑息,而且还会爆收板滞坐标拾得报警.#300第n轴本面复位央供”(n代指X、Y、Z).1.2 板滞本面的树坐正在常常情况下,树坐数控机床板滞本面的要领主要有以下二种:1)脚动使X、Y、Z三轴超程印利用三轴的极限位子采用板滞本面.2)利用各坐标轴的伺服检溯反馈系统提供相映基准脉冲去采用机床参照面即板滞本面.由于第一种要领是机床厂家常常提议的也是较为烦琐战真用的要领.果此本文正在此小心介绍第1种搞法.以X轴为例,树坐步调如下:(1)将机床支配里板上的办法采用开关设定为MDI办法.(2)按下机床MDI里板上的功能键[OFS/SET]数次,加进设定绘里.(3)将写参数中的0改为1,由此,系统加进了参数可写状态.此时机床出现.SWO 100参数写进开关处于挨开”的报警疑息.忽略那条报警疑息,树坐完参数后改回为0即可.(4)按下功能键lsYSTEM】,加进系统参数键里.通过参数搜索找到参数1815(如表l所示)常常情况下,X轴的#4APZ或者#5 APC会隐现为0,若出有为0便将其设定为0.(5)找到参数1320,此参数为保存各轴正背路程的坐标值.将其X轴的正背路程设定为最大值999999.脚段是让X轴的正背硬限位位子值大于其正背硬限位的位子值.(6)将办法采用开关挨到脚轮办法,而后摇动脚轮使处事台碰及X轴的正背限位档块,此时机床会出现“#500+X过路程”报警.(7)按下MDI里板上的[POS]功能键.加进机床坐标隐现键里.挨开相对付坐标隐现键里,按下X+[起源]使X轴的相对付坐标值形成0.(8)按下机床支配里板上的【超程释搁】并摇动脚轮至X-6.5的位子.(9)再次找到参数1815,将X轴的#4APZ或者#5 APC皆设定为1.末尾沉开数控系统,完毕X轴的板滞本面树坐.Y轴战Z轴的板滞本面树坐要领与X轴相共,三轴的板滞本面皆设定佳后沉新挨开写参数设定键里,将其设定为0.此时机床的报警疑息局部消得,完毕了加工核心的板滞本面树坐.利用基准脉冲设定机床整面.正在常常情况下,关环系统曲线的光栅尺每隔50mm 便会爆收一个基准脉冲,但是也会有一些特殊的曲线光栅尺,它会每隔20mm便爆收一个基准脉冲.对付于关环系统中的转动编码器去道,爆收的基准脉冲距离要比曲线光栅尺小很多,比圆惟有6mm.由于那个基准脉冲正在机床上时常会被选定为致控系统计数的基准.果此通过建改机床里的参数便不妨将那个基准面的值设定为0,进而使那个面成为机床的参照面也便是机床的板滞本面.1.3 树坐板滞本面时的注意事项(1)树坐前要查看各坐标轴上要可拆置有机床回整的微动开关,且各微动开关的位子是可符合.(2)正在第一个基准脉冲验出之前,必逆包管该坐标轴到了需要落速的距离上了.而那个落速距离便是所选速度的滞后缺面值.(3)由于使用的是编码器.故二个基准脉冲之间的距离会很小,所以正在回机床整面时,速度要矮一些,进而使滞后缺面出有会下于那个值的500.(4)由于各坐标轴回机床板滞本面时的速度是由机床的相映参效决断的.果此正在树坐那些参数时要注意.保证机床回整速度符合.(5)倘若机床正在回整面时压住了微动开关,那么便必须通过脚轮或者是脚动的办法支配数控机床坐标轴,强制其退出微动开关并退到离微动开关较近的位子,而后再次真止各坐标轴回参照面的支配.2 机床回整罕睹障碍分解及处理2.1 机床开机后出有克出有及回整障碍分解及处理(1)大概系统参数树坐有误.办理要领是小心查看各个相关参数,需要时沉设参数.(2)整脉冲出有良引导的障碍.整脉冲出有良便会使回整时找出有到整脉冲,引起的本果大概是系统轴板障碍或者是编码器及交线出现障碍.办理要领是对付编码器举止调换或者荡涤,查看线路及系统轴板是可有问题.(3)有大概减速开关短路或者是已经益坏.那种障碍会引导减速旗号出有克出有及爆收.办理要领是查看减速开关的线路,对付减速开关举止维建,需要时调换减速开关.(4)大概检测元件已被传染.正在齐关环统制的系统中,若光栅尺沾有油污,便出有克出有及支集到旗号.办理要领是荡涤光栅尺.2.2 机床回整时找出有到整面位子障碍分解及处理(1)减速开关有大概已经益坏或者受污,也大概是线路短路或者断路.办理要领便是即时对付减速开关举止浑理维建,需要时调换减速开关.查看线路连交情况.即时创制问题并办理.(2)大概是减速档块所处位子禁绝确.办理要领是安排减速档块到限位开关的距离,预防二者路程过小激励此障碍.2.3 机床回整后的位子与整面位子爆收螺距偏偏移障碍分解及处理引起那一障碍大概的本果是爆收栅格旗号的时刻与减速旗号从断开到交通的时刻太交近了,再加上存留的传动缺面,便使得机床回整历程中处事台逢到减速开关时,刚刚佳错过了栅格旗号,所以只可等到脉冲编码器再转过一周以去才搞找到下一个栅格旗号.故而出现了此类障碍.简曲分解如下:正在减速开关的旗号从断开回复到交通状态时,随即便出现了栅格旗号,也便是早栅格旗号处正在门临界面上(如图1a所永).那样一去,板滞部分的热变形,减速开关出现“通”、“断”旗号的沉复粗度缺面皆市引导整面爆收位子偏偏离的障碍(如图1b所示).办理要领脚可符合的阔整减速档块所处的位子,进而使整面位子与处事台停止的位子沉合(如图1c所示).也不妨采与建改栅格偏偏移量的要领,使爆收栅格旗号的时划离减速旗号从断开到交通时刻的距离是栅格旗号爆收周期的一半,便可与消此障碍(如图1d所示).图1障碍分解及鳞决要领示意囤2.4 机床幽整位子随机性变更障碍分解及处理(1)脉冲编码器的供电电压太矮.办理要领是安排从主板上输出的电压值,共时查看编码器线路板上的电源电压是可已到了符合的范畴.(2)伺服安排出有良.进而引起追踪缺面偏偏大.办理要领脚建改伺服参数.(3)滚珠丝杠间隙偏偏大或者丝杠与电效果的联轴器出现了紧动.办理的要领是对付演珠丝杠螺母剐的间隙举止安排及劣化,对付联轴器举止紧周或者调换.(4)整咏冲受到搞扰.办理的要领是查看脉冲编码器的电缆安插是可合理,反馈电缆萍蔽是可连交无误.3 结语掌握数拧机床本面的树坐要领战罕睹回整障碍处理办法对付于办理死产试验中的机床回整障碍具备很佳的指挥效率.但是值得证明的是障碍瞅象与障碍本果并出有是是一一对付应的,有大概是几种本困引起的.果此正在维建时要根据机床的本质情况,分离试验体味战维建脚册逐一查看排除假象,找到障碍去由并给予排除.。
数控机床回参考点的故障分析和排除

数控机床回参考点的故障分析和排除数控机床参考点又名原点或零点,是机床的机械原点和电气原点相重合的点,是原点复归后机械上固定的点。
机床参考点确立后,各工件坐标系随之确立,即参考点为工件坐标系的原始参照系。
文章通过对数控机床回参考点的确立,并结合回参考点的故障维修实例,从而归纳总结出回参考的故障排除方法。
标签:数控机床;参考点;测量反馈元件1 参考点的确立数控系统按检测反馈元件测量方式的不同分为绝对脉冲编码器方式和增量脉冲编码器方式两种。
数控系统反馈元件采用绝对脉冲编码器,坐标值实际位置是靠位置检测装置的电池来维持,因此系统断电后,绝对脉冲编码器会记住当前位置。
在数控机床正常使用过程中,只要保证绝对脉冲编码器的后备电池有效,机床开机就不需要再进行回参考点操作。
而采用增量脉冲编码器的数控系统,系统断电后,工件坐标系的坐标值就会消失,因此机床每次开机后都必须先进行回参考点操作,通过参考点来确定机床的坐标原点,从而建立正确的机床坐标系。
除此之外,机床在按下急停开关及机床出现故障并修复后都需要进行一次手动回参考点的操作。
数控机床各轴回参考点的运动中,各轴的运动速度是在机床参数中设定的,并且数控系统是通过PLC的程序编制和数控系统的参数设定决定的,因此,数控机床各轴回参考点是通过PLC和数控系统配合完成的。
2 数控机床回参考点的故障维修实例下面介绍几个第一重型机械集团公司的数控机床回参考点的故障维修实例:例1军工分厂一台型号为TK6516数控铣镗床,数控系统为SIEMENS840D,Y轴出现回参考点位置的准确性差的故障,从而影响加工精度的故障。
维修人员首先检查该机床Y轴测量编码器的+5V电压是正常的,并且该轴在手动方式下能正常工作,回参考点的动作过程也正常,再检查参考点减速速度参数MD34040、位置环增益参数MD32200设置也都正确。
分析可能是由于编码器“零脉冲”受到干扰而引起的此故障,再经过仔细检查该故障轴后,发现该轴编码器的连接电缆的屏蔽线脱落,重新连接脱落的屏蔽线后,该故障轴回参考点位置准确,机床加工精度恢复。
数控加工中心原点设置原理与常见故障分析
数控机床回参考点故障及检修
数控机床回参考点故障及检修数控机床回参考点故障原因及检修十堰职业技术(集团)学校唐运福关键词:参考点;回零;故障检修数控机床的原点是数控机床厂家设定在机床上的一个固定点,作为机床调整的基准点。
机床开机、按下急停开关后以及机床出现故障并修复后都需要进行一次返回参考点的操作。
回参考点的方式因数控系统类型和机床生产厂家而异,目前,采用脉冲编码器或光栅尺作为位置检测的数控机床多采用栅格法来确定机床的参考点。
一、数控机床返回参考点的控制原理及调整方法现以SSCK-20数控车床(系统为FANUC-OTD)为例,说明数控机床返回参考点的控制原理及调整方法。
系统在返回参考点状态(REF)下,按下各轴点动按钮(+J),机床以快移速度向机床参考点方向移动,当减速开关(*DEC)碰到减速挡块时,系统开始减速,以低速向参考点方向移动。
当减速开关离开减速挡块时,系统开始找栅格信号(编码器一转信号),系统接收到一转信号后,以低速移动一个栅格偏移量(如果系统参数设定栅格偏移量),准确停在机床的参考点上。
V1速度由系统参数518(X轴)、519(Z轴)决定,设定范围为30~24 000 mm/min,本机床分别设定为4 000 mm/min和6 000 ram/rain。
V2速度由系统参数534(所有轴)决定,设定范围为6~15 000 ram/rain,本机床设定为200 mm/min。
栅格偏移量根据机床实际调整由系统参数508(X轴)、509(Z轴)确定二、数控机床返回参考点的调整数控机床各轴传动机械拆装后、进给伺服电动机更换后、位置检测装置修复后都将导致机床参考点位置不准,需对机床的返回参考点进行调整。
通常机床参考点设计在机床刀架X轴、Z轴正方向上。
如果机床的刀架在机床回零操纵中要求设定固定的位置,只用调整回零开关撞块的方法是不能实现的,必须调整控制机床的相应参数。
机床相应参数调整步骤如下:1、预置参数0508项,X轴栅格调整的预置值。
机床常见故障汇总
机床常见故障汇总一、机床不能回零点原因:1,原点开关触头被卡死不能动作;2,原点挡块不能压住原点开关到开关动作位置;3,原点开关进水导致开关触点生锈接触不好;4,原点开关线路断开或输入信号源故障;5,PLC输入点烧坏。
对策:1,清理被卡住部位,使其活动部位动作顺畅,或者更换行程开关;2,调整行程开关的安装位置,使零点开关触点能被挡块顺利压到开关动作位置;3,更换行程开关并做好防水措施;4,检查开关线路有无断路短路,有无信号源(+24V直流电源) ;5,更换I/O板上的输入点,做好参数设置,并修改PLC程式。
二、机床正负硬限位报警正常情况下不会出现此报警,在未回零前操作机床可能会出现,因没回零前系统没有固定机械坐标系而是随意定位,且软限位无效,故操作机床前必须先回零点。
原因:1,行程开关触头被压住,卡住(过行程);2,行程开关损坏;3,行程开关线路出现断路,短路和无信号源;4,限位挡块不能压住开关触点到动作位置;5,PLC输入点烧坏。
对策:1,手动或手轮摇离安全位置,或清理开关触头;2,更换行程开关;3,检查行程开关线路有无短路,短路有则重新处理。
检查信号源(+24V直流电源);4,调整行程开关安装位置,使之能被正常压上开关触头至动作位置;5,更换I/O板上的输入点并做好参数设置,修改PLC程式。
三、松刀故障原因:1,气压不足;2,松刀按钮接触不良或线路断路;3,松刀按钮PLC输入地址点烧坏或者无信号源(+24V);4,松刀继电器不动作;5,松刀电磁阀损坏;6,打刀量不足;7,打刀缸油杯缺油;8,打刀缸故障;对策;1,检查气压待气压达到6公斤正负1公斤即可;2,更换开关或检查线路;3,更换I/O板上PLC输入口或检查PLC输入信号源,修改PLC程式;4,检查PLC输出信号有/无,PLC输出口有无烧坏,修改PLC程式;5,电磁阀线圈烧坏更换之,电磁阀阀体漏气、活塞不动作,则更换阀体;6,调整打刀量至松刀顺畅;7,添加打刀缸油杯中的液压油;8,打刀缸内部螺丝松动、漏气,则要将螺丝重新拧紧,更换缸体中的密封圈,若无法修复则更换打刀缸;四、三轴运转时声音异常原因:1,轴承有故障;2,丝杆母线与导轨不平衡;3,耐磨片严重磨损导致导轨严重划伤;4,伺服电机增益不相配;对策:1,更换轴承;2,校正丝杆母线;3,重新贴耐磨片,导轨划伤太严重时要重新处理;4,调整伺服增益参数使之能与机械相配;五、润滑故障原因:1,润滑泵油箱缺油;2,润滑泵打油时间太短;3,润滑泵卸压机构卸压太快;4,油管油路有漏油;5,油路中单向阀不动作;6,油泵电机损坏;7,润滑泵控制电路板损坏。
机床回不到机械原点故障的处理
伺服电机拆装后,机床回不到原点的处理我公司所使用的是台中精机生产的数控立式车床,其型号是Vturn-V18W,控制系统是:FANUC 18T-C,双系统, 夹具交换使用的是FANUCβ系列伺服。
故障现象:在使用过程中,机床一旦出现报警刀塔就会下滑。
处理过程:很显然,这是伺服马达内藏煞车器损坏所致。
我们拆下伺服马达检查,果然发现煞车片已经破碎,于是我们更换了煞车片,重新装上机床后,与以前一样,进行回机床机械原点的操作,这时发现一个奇怪现象,本来机床向上寻找机械原点,但是,当进行回原点操作后,机床却向相反的方向运行,按急停, 重启机床,改为手动,手动时,机床移动方向与机床约定方向又一致。
到网上查,到维修说明书上,到参考资料寻找解决方法,硬是没有查到。
考虑到我们的立车是双系统,有左右两个刀塔,维修前,如果机床不报警,使用还是正常的,考虑到机床使用的安全性还是拆来修了,没有想到会有以上现象出现。
鉴于左刀塔操作是正常的这种状况,我们仔细的分析了整个拆装过程,为了保护伺服编码器,我们拆刹车器线圈和刹车片时是比较小心的,因此伺服编码器坏的可能性不大,我们又将正常使用时保存的参数与目前的参数进行对比,对比的结果是没有错,于是:我们又对机床显示的各个坐标进行了比较,经过数据比较,发现左右界面在刀塔所处位置差不多的情况下,机械坐标系所显示的数据相差较大,我怀疑是这个因素造成的,因此,想办法将这个数据调整,为了与其它立车相适应,我们采取了调整编码器的做法,具体做法如下:一:开机后将1815号参数Z轴的第四,第五位改为0,再启动机床。
二:用手轮将机床刀塔摇到限位开关处,此时机床处在伺服电机关闭状态。
三:按操纵释放安钮,重新启动伺服电机,按位置显示键,按W键,按起源键,此时W为零。
四:用手轮将机床刀塔摇离限位开关一定距离,按急停,防止刀塔下滑。
五:拆下电机伺服编码器,将编码器在屏幕上显示的机械坐标数据调整到零+机床刀塔摇离限位开关一定距离的数附近就可以了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床“限位报警”原因分析与处理( 本站提供应用行业:其他阅读次数:73 )【字体:大中小】由于机床数控系统种类繁多、设备形态结构各异、设计方式多种多样、故障现象千差万别,维护好数控设备是具有相当难度的工作。
在掌握了机械结构及电气控制原理的同时,必须合理分析,灵活运用,善于总结,才能起到事半功倍的收效。
立足于原理,由易到难地去缩小故障范围并排除。
为了保障机床地运行安全,机床的直线轴通常设置有软限位(参数设定限位)和硬限位(行程开关限位)两道保护“防线”。
限位问题是数控机床常见故障之一,相关资料提及较少。
以下就导致“限位报警”的主要原因作一些分析和说明。
一、相关控制电路断路或限位开关损坏此原因引起“限位报警”发生率相对较高,由于外部元器件受环境影响较大,如机械碰撞、积尘、腐蚀、摩擦等因素的影响,易于导致相关限位开关本身损坏及控制电路断路,同时产生“限位报警”信息。
也遇见超程开关压合后不能复位的情况。
这类故障的处理比较直接,把损坏的开关、导线修复好或更换即可。
导线断路或接触不良时需仔细地校线和观察,如:一台XK755数控铣床,采用FANUC 0-M数控系统。
在加工过程中,突然出现“X+、X-、Y+、Y- 硬限位”报警,而实际上机床在正常的加工范围内。
根据上述现象,估计线路接触不良或断路可能性最大,测量电器柜中接线排上供给限位电路的24V电压,压值正常。
按照线路走向逐一查找,在用手旋动床体右侧的一个线路接头时,发现屏幕上报警瞬间消失,在松手间报警复现。
于是,拆下该接头,仔细检查发现里面焊接的两根导线已经脱落,在用手向里面旋动的过程中可以让导线断路的两端碰触,所以有上述变化现象。
重新焊接好接头后,机床恢复正常。
二、操作不规范,误动作或机床失控其中,主要以引起硬限位报警为主,一般来说,通过直接补救措施方能进行恢复,利用机床本身的超程解除功能或短接法是日常维护的惯用方法。
为了赢得宝贵的生产时间,在处理过程中我们应紧紧抓住设备及系统的个体特点,寻找具可靠性的捷径,灵活快速地解决问题。
1、根据机床结构特点进行处理绝大多数机床都设置有“超程解除”触点,一旦出现“硬限位”报警,在确认硬限位开关被压合后,使该触点闭合并在手动方式下向相反方向移出限位位置,即解除报警;也有少数没有设置该按钮,此时应在相应的点上采取等效短接措施,即强制满足条件,然后将机床移出限位位置。
如:一台进口的HX-151型立式五坐标加工中心。
出现“X轴硬限位”报警,该加工中心未设置“超程解除”按钮。
由于机床结构原因,X+向的限位开关安装位置“隐蔽”,必须移开踏板并拆掉护板,需要花费大量时间和精力,延误生产。
因此,采取在电器柜中接线排上短接相应端号等电势点的办法,即短接该机床接线排上的3230和3232两点(也可直接在PLC的输入点A305.3和A306.6间短接),并将机床移回行程范围以内,故障排除。
2、抓住数控系统功能局限及特性在日常维护中,我们也碰到由于受数控系统设计软件的限制出现比较特殊的情况。
对于该类问题的处理,必须全面掌握某个数控系统的个体特点及性能。
在探索、总结的同时,要作好记录,有条件应接受一些必要的技术培训。
如:由我厂技术人员自行设计的叶片喷丸经济型数控机床,控制X、Y、Z、A四轴(其中A轴为旋转轴),数控系统为西南自动化研究所开发的圣维(Swai)M2000,采用开环控制方式。
出现以下两例具代表性的故障现象:(1)由于操作不当,机床面板左下角显示为Y向“硬限位”,+Y行程开关已被压合,且硬限位红色指示灯亮。
在手动方式下,无法向相反方向移出限位位置。
处理方法及原因:采取惯用的移出和短接方法不能排除故障,因报警未清除,在手动或手轮方式下对Y轴移动操作已无效。
在没有找出其它可能原因的情况下,怀疑到数控系统问题,然而,此时数控系统并无任何死机或紊乱的征兆,且其它各轴都能正常运动。
决定将+Y行程限位开关短接,关断机床电源并稍等片刻,然后重新启动机床,发现报警信息消失,红色指示灯熄灭,再将机床移出限位位置,最后取消短接线,一切恢复正常,事实上,经过故障多次发生时的处理情况,我们认识到本故障是由于该数控系统对上一坐标位置在通电的情况下具有保持记忆的功能。
(2)机床操作面板CRT左下角报警信息显示为“硬限位“,硬限位红色指示灯并未亮,机床实际位置离硬限位开关还有很远的距离。
同时,机床坐标数显值接近99999999的最大值,该轴向无法移动。
处理方法:针对上述现象,首先判断为坐标值已出现数据溢出,超出了机床记忆的限位值,在累积越来越大的情况下,必须使坐标数据全部清零处理。
该系统机械坐标清零步骤如下:①在主页面下进入“监控“菜单;②页面内容部分无任何类容显示,不用理会(被隐藏),进入第二项“从机监控”;③接下来按第三项“F3”,此时可见各轴机床坐标都为零,报警已经清除。
特别注意,机床必须重新回参考点建立机床坐标系,出现该情况是由于数控系统功能程序的限制。
在处理时应结合上面第(1)点的特征。
三、回参考点过程失败,引起限位比较高档的数控系统通常都可以利用方便灵活的参数修正功能来维护机床,如果机床实际位置未超过限位位置而出现限位报警,首先应细心查看是否因行程的参数丢失或改变的可能。
针对参数,最典型的事例是某些机床在回参考点时易出现软限位报警,而机床实际位置离参考点有一定距离。
此时,在机床硬限位功能完好的情况下,根据机床报警时的停止点离基准点标记位移大小适当将软限位参数值修改大(有时需设定到最大值或取消,应视其情况),待机床重新回参考点正常后需将软限位设定还原。
另外,在更换一些牵涉到行程的设备后(如电机、轴联结、丝杠等),其间隙、位移易发生一定变动,也有可能出现回参考点失败,同时产生“限位报警”。
如:一台宁江机床有限公司制造的THM6350卧式加工中心,数控系统为FANUC 0i-MA。
在回参考点过程中,Y轴出现报警信息为“507 OVER TRAVEL +X”,有减速过程,反复操作不能回参考点,并出现同样的报警信息,该加工中心采用的挡块方式回参考点。
分析与处理:可以看出,该故障的根本原因不是硬限位本身。
那么是否在减速后归基准点标记脉冲不出现?如果是这样,有两种可能:一是光栅在归基准点过程中没有发现归基准点脉冲信号,或归基准点标记失效,或由基准点标记选择的归基准点脉冲在传输或处理过程中丢失,或测量系统硬件故障对归基准点脉冲信号无鉴别或处理能力。
二是减速开关与归基准点标记位置错位,减速开关复位后,没有出现基准点标记。
对相关参数逐一检查无改变和丢失的情况。
用手直接压下各开关,在PMC地址X1009. 0 中确减速信号由“0”变为“1”,说明功能完好,根据故障现象,超程信号也完好,重点应检查基准点信号,排除因信号丢失或元器件损坏的可能。
其减速开关、参考点开关的距离已经由厂家标准设定,参考计数器容量和标准一致,一般在维护过程中不做变动或修改。
先不忙采用跟踪法去确定上面分析的第一点可能原因,先遵循由易到难的原则去考虑问题。
看是否由于基准点标记的识别能力已经下降或丧失所致?决定将参数1425(碰减速挡块后FL速度)的X值由原来的200修改成100,为保证各轴运动平衡,将其它轴的FL速度同时设定为100 ,试回参考点,机床恢复正常,这种设想得到了验证。
因此,造成该故障的原因是由于基准点标记识别能力已经降低,导致机床回参考点失败直到压合硬限位。
四、机床参数受外界干扰发生改变或丢失这一方面,主要以软限位参数为常见。
车间电源质量差、加工环境恶劣、雷电、屏蔽措施不到位等外部因素非常容易导致数控机床的各种参数发生变化或丢失。
在把参数恢复的同时,必须查清引起故障的直接原因,采取补救措施。
一台卧式加工中心,采用FANUC 0i-MA数控系统,在加工过程中出现“501 OVER TRAVEL –X”,即负向超程,机床机械坐标的数显值远远超出设定值-99999999~+99999999的范围(单位:μm),而实际机床在行程范围内。
处理方法:由上述现象看出,机床数显数据因干扰发生了变化且超出软限位设定范围。
进入参数画面修改参数1320、1321(Y轴存储式行程检测负方向边界的坐标值)。
接下来,将参数1320设定为小于参数1321,行程认为是无穷大,不进行存储式行程检测1的检测。
关机重新启动机床并回参考点,然后将1320和1321的参数恢复为修改前的坐标值。
.另一方面,必须找到引起数据变化的直接原因,并即时排除,以防止故障再次发生造成更严重的后果。
本次故障最后确认是受到雷电的干扰所致。
五、坐标系和数控程序的影响加工程序的编制必须严格考虑机床的加工范围,在加工过程中,一旦刀具进入禁止区域,便出现行程(软行程和硬行程)限位报警。
一种情况是程序坐标值因操作不当被改大(通过软件严格模拟对程序过滤式检查不存在),另一方面是因机床的加工坐标系(G54~G59)参数设置不当,在走相对坐标时,超出行程范围。
如:一台VMC1000C立式加工中心,设置好加工坐标系和各补偿参数后,机床一运行程序便出现“OVER TRAVEL –Y”报警,即Y轴负向硬限位。
同时,未执行换刀语句(M06)便直接执行到插补语句,且刀具路径不对。
处理过程:显然,此处硬限位报警只是一种提示,在确认了系统参数和加工程序无任何异常后,决定进一步确认位置环是否完好。
空运行以G54为加工坐标系的另一段数控程序,机床工作正常,排除了位置环存在故障的可能。
故障范围缩小到了加工坐标系上。
将G58上设置的坐标值设置到G54上,同时将原来程序中G54修改成G58,试加工修改加工坐标系后的程序一切正常。
到此,基本判定为G58存在问题,通常情况下G54~G59建立坐标系功能出现故障为数不多。
根据由易到难的原则,首先认为是G58中设置的坐标系没有被系统接受,而是记忆成为另外的数据,从路径不对这一点可以看出。
于是我们采用清除数据、重新输入的办法,试运行机床恢复正常,证明判定是正确的。
本次故障是由于不规范的输入数据,使机床坐标系数据受影响,导致机床出现超程报警。