高一数学上学期期中试题110

合集下载

黑龙江省大庆市实验中学实验一部2023-2024学年高一上学期期中数学试题(含答案解析)

黑龙江省大庆市实验中学实验一部2023-2024学年高一上学期期中数学试题(含答案解析)

B. 3, 2
C.3, 2
D. , 3 2,
2.命题“ x R , x 1 0 ”的否定是( )
A. x R , x 1 0
B. x R , x 1 0
C. x R , x 1 0
D. x R , x 1 0
3.函数
f
x
lnx
3 x2
的零点所在的区间是(

A. 1, 2
B. 2, e
黑龙江省大庆市实验中学实验一部 2023-2024 学年高一上学 期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A x x 2 , B x x 3 ,则 ðR A B ( )
A. R
B.4, 20, 2
C. 2, 0
D. , 42,
8.已知函数 g x 为偶函数, h x 为奇函数,且满足 g x h x 2x .若对任意的
x
1,
1 2
,均有不等式
mg
x
2
h
x
2
0
恒成立,则实数
m
的最大值为(

A.1
B. 0
C. 9 10
D. 2 6
试卷第 1页,共 4页
二、多选题
C.若同时增加窗户面积和地板面积,且增加的地板面积是增加的窗户面积的 3 倍,
公寓采光效果一定会变差
D.若窗户面积和地板面积都增加原来的 a% ,其中 a 0,公寓采光效果不变
11.设正实数 x , y 满足 2x y 1,则( )
A. xy 的最大值为 1 8
B.
2 x

高一数学上学期期中考试试卷含答案(共3套)

高一数学上学期期中考试试卷含答案(共3套)

2019-2020学年度第一学期高一期中考试数学试卷考试时间:120分钟总分:150分第Ⅰ卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2﹣x﹣6<0},集合B={x|x﹣1>0},则(∁RA)∩B=()A.(1,3)B.(1,3] C.[3,+∞)D.(3,+∞)2.已知函数f(x)=(m2﹣m﹣1)是幂函数,且x∈(0,+∞)时,f(x)是递减的,则m 的值为()A.﹣1 B.2 C.﹣1或2 D.33.已知f(x)=loga(x+1)﹣1(a>0,a≠1),则此函数恒过定点是()A.(1,0)B.(0,1)C.(0,﹣1)D.(1,﹣1)4.函数f(2x+1)的图象可由f(2x﹣1)的图象经过怎样的变换得到()A.向左平移2个单位B.向右平移2个单位C.向左平移1个单位D.向右平移1个单位5.分段函数则满足f(x)=1的x值为()A.0B.3C.0或3D.6.下列各组函数中,表示相同函数的是()A.f(x)=x与g(x)=B.f(x)=|x|与g(x)=C.f(x)=与g(x)=•D.f(x)=x0与g(x)=17.已知,则()A.a<b<c B.a<c<b C.c<a<b D.c<b<a8.函数f(x)=log a|x+1|在(﹣1,0)上是增函数,则f(x)在(﹣∞,﹣1)上是()A.函数值由负到正且为增函数B.函数值恒为正且为减函数C.函数值由正到负且为减函数D.没有单调性9.已知函数f(x)=,则下列的图象错误的是()A.y=f(x﹣1)的图象B.y=f(﹣x)的图象C.y=|f(x)|的图象D.y=f(|x|)的图象10.函数y=lgx+x有零点的区间是()A.(1,2)B.()C.(2,3)D.(﹣∞,0)11.已知函数f(x)=在(﹣∞,+∞)上是增函数,则a的取值范围是()A.a>1 B.a<2 C.1<a<2 D.1<a≤212.已知函数f(x)=(x+1)2,若存在实数a,使得f(x+a)≤2x﹣4对任意的x∈[2,t]恒成立,则实数t的最大值为()A.10 B.8 C.6 D.4第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分,答案填在.....)....Ⅱ.卷答题卡上13.求函数y=的定义域.14.已知f(x)是定义域为R的奇函数,当x>0时,f(x)=﹣4x+1,写出分段函数f(x)的解析式.15.已知f(x)=,则函数y=f(f(x))+1的零点的个数是;16.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:①函数f(x)=x2﹣2x(x∈R)是单函数;②函数f(x)=是单函数;③若y=f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.其中的真命题是(写出所有真命题的编号)三、解答题:(本大题共6小题,共70分。

最新版高一数学上学期期中试题及答案(新人教A版 第110套)

最新版高一数学上学期期中试题及答案(新人教A版 第110套)

江西省宜春中学高一数学上学期期中试题新人教A 版一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的) 1. 已知全集{}1,2,3,4,5,6,7U =,{}3,4,5A =, {}1,3,6B =,则()U A C B ⋂等于( )A .{}4,5B .{}2,4,5,7C .{}1,6D .{}32.下列函数中,在其定义域内既是奇函数又是增函数的是( ) A . 2log y x =- B .3y x x =+ C .3x y = D .1y x= 3.已知函数(1)32f x x +=+,则()f x 的解析式是 ( )A . 32x +B .31x +C .34x +D .31x -4. 在映射:f A B →中,},|),{(R y x y x B A ∈==,且),2(),(:y x y x y x f +-→,则与B 中元素)1,4(-相对应的A 中元素为 ( )A .)2,1(-B .)1,2(-C .)3,9(--D .)3,9(- 5. 已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( )A .2B .1C . -2D .06.函数()xx f x12-=的零点所在的区间是( ) A .⎪⎭⎫ ⎝⎛21,0 B .⎪⎭⎫ ⎝⎛1,21 C .⎪⎭⎫ ⎝⎛23,1 D .⎪⎭⎫ ⎝⎛2,237.已知函数()f x 的定义域为[]3,6,则函数y =( )A .[)1,2B .3,22⎡⎫⎪⎢⎣⎭C .3,22⎡⎤⎢⎥⎣⎦D .[]1,28.函数log (1)(1)a y x a =+>的大致图像是( )9.已知函数⎩⎨⎧≥+-<=)0(4)3(),0()(x a x a x a x f x 满足对任意0)()(,212121<--≠x x x f x f x x 都有成立,则a 的取值范围是 ( )A .⎥⎦⎤ ⎝⎛41,0B .(0,1)C .⎪⎭⎫⎢⎣⎡1,41D .(0,3)10.已知()f x 是定义在(,)-∞+∞上的偶函数,且在(],0-∞上是增函数,设4(log 7)a f =,12(log 3)b f =,0.6(0.2)c f -=,则,,a b c 的大小关系是( )A .c a b <<B .c b a <<C .b c a <<D .a b c <<二.填空题(本大题共5小题,每小题5分,共25分) 11.已知2510,x y ==则11x y+= . 12.已知幂函数221(55)m y m m x +=--在(0,)+∞上为减函数,则实数m = .14.已知函数1,4()2(1),4xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则2(2log 3)f += . 15.下列五个命题:(1)函数()f x 在0x >时是增函数,0x <时也是增函数,所以()f x 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3)223y x x =--的递增区间为[)1,+∞;(4)1y x =+和y =表示相同函数;(5)对于函数q px x x x f ++=||)(,当0,0>=q p 时,方程0)(=x f 有且只有一个实数根其中正确的命题是 .三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题满分12分)计算 (1)()()122321329.63 1.548--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭(2)7log 23log lg 25lg 473+++17.(本小题满分12分)集合{}121,P x a x a =+≤≤+,{}25,Q xx =-≤≤(1)若3a =,求集合()R C P Q⋂;(2)若P Q ⊆,求实数a 的取值范围.18.(本小题满分12分)已知函数223(0)()3(0)x x x f x x x x ⎧-+>⎪=⎨-≤⎪⎩(1)作出函数()f x 的图像,并求函数()f x 的单调区间;19.(本小题满分12分)已知函数3()log (01)3ax f x a a x -=>≠+且 (1)求函数()f x 的定义域; (2)判断()f x 的奇偶性并证明; (3)若12a =,当[]5,9x ∈时,求函数()f x 的值域.20. (本小题满分13分)已知定义在R 上的函数f(x)满足:①对任意,x y R ∈,有()()()f x y f x f y +=+;②当0x <时,()0f x >且(1)3f =-(1)求证;(0)0f =; (2)判断函数()f x 的奇偶性;(3)解不等式(22)()12f x f x --≥-21.(本小题满分14分)设a 为正实数,记函数()f x =值为()g a(1)设t =()f x 表示为t 的函数()m t ; (2)求()g a ;(3a 满足1()()g a g a=?若存在,求出所有满足条件的a值;若不存在,说明理由.高一上学期期中考试数学答案三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)342231433(2)log lg 5lg 223log 32lg 52lg 2212(lg 5lg 2)2411152lg10222444-=+++=+++=-+++=-++=-++=原式…………………………12分(ⅱ)当P φ=时,211a a ∴+<+,所以 0a < …………………………11分 综上:实数a 的取值范围为(,2]a ∈-∞ …………………………12分由图可知,增区间为:30,2⎛⎫ ⎪⎝⎭,减区间为:()3,,2⎛⎫∞+∞⎪⎝⎭-,0 …………………………6分 (2)由图可知,3()2m f <<0,又23339()32224f ⎛⎫=-+⨯= ⎪⎝⎭,94m ∴<<0 ∴9M=m 4{|0<m<} …………………………12分(3)12a =时,112236()log log (1)33x f x x x --==+++用单调函数的定义或复合函数的单调性说明()f x 在[]5,9上单调递减min 12max 121()(9)log 121()(5)log 24f x f f x f ∴======()f x ∴的值域为[]1,2…………………………12分20. (1)证明:令0,0x y ==,则有(0)(0)(0)f f f =+,(0)0f ∴= ………………3分(2) 令y x =-,(0)()()0f f x f x ∴=+-=,()()f x f x ∴=-∴函数()f x 是奇函数. …………………………6分(3)设12x x <,121212()()()()()0f x f x f x f x f x x ∴-=+-=->12()()f x f x ∴> ∴()f x 为R 上减函数 …………………………10分(22)()(22)()(2)12f x f x f x f x f x --=-+-=-≥-又 124(1)(4)f f -== (2)(4)f x f ∴-≥ 24x ∴-≤ 6x ∴≤∴解集为{}6x x ≤ …………………………13分21. (1)依题意21011,20)10x x t t t x +≥⎧⎤⇒-≤≤=+≥⇒∈⎨⎦-≥⎩,………2分且2221111,()(1),2222t m t a t t at t a t ⎤=-∴=--=--∈⎦ …………………4分(2)关于t 的二次函数21(0)2y at t a a =-->图像为开口向上的抛物线,对称轴为直线1t a=当1a ≤2a ≥时,min ()f x m ==12a <<即12a <<时,min 11()()2f x m a a a ==-- 当12a ≥即102a <≤时,min ()(2)2f x m a ==-211(),22212,02a g a a a aa a ⎧≥⎪⎪⎪⎪∴=--<<⎨⎪⎪-<≤⎪⎪⎩…………………………8分(3)由(2)可得11()2212,2a a g a a aa a⎧⎪<≤⎪⎪=--<⎨⎪⎪-≥⎪⎩a 满足1()()g a g a=,2a <时,12a a=--,即220a -+=,a ∴=,舍去 当2a ≥时,12a =-,12a ∴=+<,不合条件 综上所述,不存在满足条件的正实数a …………………………14分宜春中学高一上学期数学期中考试试卷命题人:刘亚子 审题人:钟文峰一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的) 1. 已知全集{}1,2,3,4,5,6,7U =,{}3,4,5A =, {}1,3,6B =,则()U A C B ⋂等于( A )A .{}4,5B .{}2,4,5,7C .{}1,6D .{}32.下列函数中,在其定义域内既是奇函数又是增函数的是( B ) A .2log (0)y x x =-> B .3()y x x x R =+∈ C .3()xy x R =∈ D .1(,0)y x R x x=∈≠ 3.已知函数(1)32f x x +=+,则()f x 的解析式是 ( D )A . 32x +B .31x +C .34x +D .31x -4. 在映射:f A B →中,},|),{(R y x y x B A ∈==,且),2(),(:y x y x y x f +-→,则与B 中元素)1,4(-相对应的A 中元素为 ( A )A .)2,1(-B .)1,2(-C .)3,9(--D .)3,9(-5. 已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( C )A .2B .1C . -2D .06.函数()xx f x12-=的零点所在的区间是( B ) A .⎪⎭⎫ ⎝⎛21,0 B .⎪⎭⎫ ⎝⎛1,21 C .⎪⎭⎫ ⎝⎛23,1 D .⎪⎭⎫ ⎝⎛2,237.已知函数()f x 的定义域为[]3,6,则函数y =( C )A .[)1,2B .3,22⎡⎫⎪⎢⎣⎭C .3,22⎡⎤⎢⎥⎣⎦D .[]1,28.函数log (1)(1)a y x a =+>的大致图像是( B )9.已知函数⎩⎨⎧≥+-<=)0(4)3(),0()(x a x a x a x f x 满足对任意0)()(,212121<--≠x x x f x f x x 都有成立,则a 的取值范围是 ( A )A .⎥⎦⎤ ⎝⎛41,0B .(0,1)C .⎪⎭⎫⎢⎣⎡1,41D .(0,3)10.已知()f x 是定义在(,)-∞+∞上的偶函数,且在(],0-∞上是增函数,设4(log 7)a f =,12(log 3)b f =,0.6(0.2)c f -=,则,,a b c 的大小关系是( B )A .c a b <<B .c b a <<C .b c a <<D .a b c <<二.填空题(本大题共5小题,每小题5分,共25分) 11.已知2510,xy==则11x y+= 1 . 12.已知幂函数221(55)m y m m x +=--在(0,)+∞上为减函数,则实数m = -1 . 13.设)1(2)(,1,0++=≠>x x ax f a a 函数有最大值,则不等式0)1(log >-x a 的解集为()1,2 .14.已知函数1,4()2(1),4xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则2(2log 3)f += 124 . 15.下列四个命题:(1)函数()f x 在0x >时是增函数,0x <时也是增函数,所以()f x 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3)223y x x =--的递增区间为[)1,+∞;(4)1y x =+和y =表示相同函数.(5)若函数q px x x x f ++=||)(,当0,0>=q p 时,方程0)(=x f 有且只有一个实数根 其中正确的命题是 (5) .三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)122231223()22322927314823331222333122231122--⨯⨯----⎛⎫⎛⎫⎛⎫=--+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=--+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭=-=16.(1)原式342231433(2)log lg 5lg 223log 32lg 52lg 2212(lg 5lg 2)2411152lg10222444-=+++=+++=-+++=-++=-++=原式17.解:(1)3a =,{}47P x x =≤≤, {}4,7R C P x x x =<>或{}25Q x x =-≤≤, {}()24R C P Q x x ∴⋂=-≤<(2)P Q ⊆,(ⅰ)P φ≠时,12215211a a a a +≥-⎧⎪∴+≤⎨⎪+≥+⎩02a ∴≤≤; (ⅱ)当P φ=时,211a a ∴+<+,所以 0a <综上:实数a 的取值范围为(,2]a ∈-∞18.解:(1)由图可知,增区间为:30,2⎛⎫ ⎪⎝⎭,减区间为:()3,,2⎛⎫∞+∞⎪⎝⎭-,0 (2)由图可知,3()2m f <<0,又23339()32224f ⎛⎫=-+⨯= ⎪⎝⎭, 94m ∴<<0 19.(1)由303x x ->+解得33x x ><-或,()f x ∴的定义域为()(),33,-∞-⋃+∞ (2)()f x 的定义域为()(),33,-∞-⋃+∞1333()log log log 3333log ()3a a a a x x x f x x x x x f x x ---+-⎛⎫-=== ⎪-+-+⎝⎭-⎛⎫=-=- ⎪+⎝⎭又∴()f x 为奇函数(3)12a =时,112236()log log (1)33x f x x x --==+++用单调函数的定义或复合函数的单调性说明()f x 在[]5,9上单调递减()f x ∴的值域为[]1,2min 12max 121()(9)log 121()(5)log 24f x f f x f ∴======20. (1)证明:令0,0x y ==,则有(0)(0)(0)f f f =+,(0)0f ∴=(2) 令y x =-,(0)()()0f f x f x ∴=+-=,()()f x f x ∴=-∴函数()f x 是奇函数.(3)设12x x <,121212()()()()()0f x f x f x f x f x x ∴-=+-=->12()()f x f x ∴>∴()f x 为R 上减函数(22)()(22)()(2)12f x f x f x f x f x --=-+-=-≥-又 124(1)(4)f f -==(2)(4)f x f ∴-≥ 24x ∴-≤ 6x ∴≤∴解集为 {}6x x ≤21. (1)依题意21011,20)10x x t t t x +≥⎧⎤⇒-≤≤=+≥⇒∈⎨⎦-≥⎩,2221111,()(1),2222t m t a t t at t a t ⎤=-∴=--=--∈⎦ (2)关于t 的二次函数211(0)2y at t a =-->图像为开口向上的抛物线,对称轴为直线12t =当1a ≤2a ≥时,min ()f x m ==12a <<即122a <<时,min 11()()2f x m a a a ==-- 当12a ≥即102a <≤时,min ()(2)2f x m a ==-11(),2212,02a g a a a aa a ⎧≥⎪⎪⎪⎪∴=--<<⎨⎪⎪-<≤⎪⎪⎩(3)由(2)可得11()2212,2a a g a a aa a⎧⎪<≤⎪⎪=--<⎨⎪⎪-≥⎪⎩a 满足1()()g a g a =,2a <时,12a a=--,即220a -+=,a ∴=,舍去 当2a ≥时,12a =-,122a ∴=+<,不合条件 综上所述,不存在满足条件的正实数a。

湖南省长沙市2024-2025学年高一上学期期中考试 数学含答案

湖南省长沙市2024-2025学年高一上学期期中考试 数学含答案

2024年下学期期中考试试卷高一数学(答案在最后)时量:120分钟分值:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,2}A =,{,}B xy x A y A =∈∈,则集合B 中元素的个数为()A.4B.3C.2D.12.设,a b ∈R ,则“a b =”是“22a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.命题“a ∃∈R ,210ax +=有实数解”的否定是()A.a ∀∈R ,210ax +≠有实数解 B.a ∃∈R ,210ax +=无实数解C.a ∀∈R ,210ax +=无实数解D.a ∃∈R ,210ax +≠有实数解4.已知集合{1,2}M =,{1,2,4}N =,给出下列四个对应关系:①1y x=,②1y x =+,③y x =,④2y x =,请由函数定义判断,其中能构成从M 到N 的函数的是()A.①②B.①③C.②④D.③④5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是()A. B.C. D.6.若0a >,0b >,且4a b +=,则下列不等式恒成立的是()A.02a << B.111a b+≤2≤ D.228a b +≤7.已知定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则满足()0xf x <的x 的取值范围是()A.(,2)(2,)-∞-+∞B.(0,2)(2,)+∞ C.(2,0)(2,)-+∞ D.(,2)(0,2)-∞-8.若函数2(21)2(0)()(2)1(0)b x b x f x x b x x -+->⎧=⎨-+--≤⎩,为在R 上的单调增函数,则实数b 的取值范围为()A.1,22⎛⎤⎥⎝⎦ B.1,2⎛⎫+∞⎪⎝⎭C.[]1,2 D.[2,)+∞二、多选题:本题共3题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全选对的得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()bf x x x=+,下列说法正确的是()A.若1b =,则函数()f x 的最小值为2B.若1b =,则函数()f x 在(1,)+∞上单调递增C.若1b =-,则函数()f x 的值域为RD.若1b =-,则函数()f x 是奇函数10.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的部分图象如图所示,则()A.0abc >B.0a b +>C.0a b c ++< D.不等式20cx bx a -+>的解集为112x x ⎧⎫⎨⎬⎩⎭-<<11.定义在R 上的函数()f x 满足()()()f x f y f x y +=+,当0x <时,()0f x >.则下列说法正确的是()A.(0)0f = B.()f x 为奇函数C.()f x 在区间[],m n 上有最大值()f n D.()2(21)20f x f x -+->的解集为{31}x x -<<三、填空题,本题共3小题,每小题5分,共15分.12.若36a ≤≤,12b ≤≤,则a b -的范围为________.13.定义在R 上的函数()f x 满足:①()f x 为偶函数;②()f x 在(0,)+∞上单调递减;③(0)1f =,请写出一个满足条件的函数()f x =________.14.对于一个由整数组成的集合A ,A 中所有元素之和称为A 的“小和数”,A 的所有非空子集的“小和数”之和称为A 的“大和数”.已知集合{1,0,1,2,3}B =-,则B 的“小和数”为________,B 的“大和数”为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合{3}A x a x a =≤≤+,集合{1B x x =<-或5}x >,全集R U =.(1)若A B =∅ ,求实数a 的取值范围;(2)若命题“x A ∀∈,x B ∈”是真命题,求实数a 的取值范围.16.(15分)已知幂函数()2()253mf x m m x =-+是定义在R 上的偶函数.(1)求()f x 的解析式;(2)在区间[]1,4上,()2f x kx >-恒成立,求实数k 的取值范围.17.(15分)已知关于x 的不等式(2)[(31)]0mx x m ---≥.(1)当2m =时,求关于x 的不等式的解集;(2)当m ∈R 时,求关于x 的不等式的解集.18.(17分)为促进消费,某电商平台推出阶梯式促销活动:第一档:若一次性购买商品金额不超过300元,则不打折;第二档:若一次性购买商品金额超过300元,不超过500元,则超过300元部分打8折;第三档:若一次性购买商品金额超过500元,则超过300元,不超过500元的部分打8折,超过500元的部分打7折.若某顾客一次性购买商品金额为x 元,实际支付金额为y 元.(1)求y 关于x 的函数解析式;(2)若顾客甲、乙购买商品金额分别为a 、b 元,且a 、b 满足关系式45085b a a =++-320(90)a ≥,为享受最大的折扣力度,甲、乙决定拼单一起支付,并约定折扣省下的钱平均分配.当甲、乙购买商品金额之和最小时,甲、乙实际共需要支付多少钱?并分析折扣省下来的钱平均分配,对两人是否公平,并说明理由.(提示:折扣省下的钱=甲购买商品的金额+乙购买商品的金额-甲乙拼单后实际支付的总额)19.(17分)经过函数性质的学习,我们知道:“函数()y f x =的图象关于原点成中心对称图形”的充要条件是“()y f x =是奇函数”.(1)若()f x 为定义在R 上的奇函数,且当0x <时,2()1f x x =+,求()f x 的解析式;(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数()y f x =的图象关于点(,0)a 成中心对称图形”的充要条件是“()y f x a =+为奇函数”.若定义域为R 的函数()g x 的图象关于点(1,0)成中心对称图形,且当1x >时,1()1g x x=-.(i )求()g x 的解析式;(ii )若函数()f x 满足:当定义域为[],a b 时值域也是[],a b ,则称区间[],a b 为函数()f x 的“保值”区间,若函数()tg()(0)h x x t =>在(0,)+∞上存在保值区间,求t 的取值范围.2024年下学期期中考试参考答案高一数学1.B2.A3.C4.D【详解】对于①,1y x =,当2x =时,1N 2y =∉,故①不满足题意;对于②,1y x =+,当1x =-时,110N y =-+=∉,故②不满足题意;对于③,y x =,当1x =时,1y N =∈,当2x =时,2N y =∈,故③满足题意;对于④,2y x =,当1x =时,1y N =∈,当2x =时,4N y =∈,故④满足题意. D.5.A6.C 【详解】因为0a >,0b >,当3a =,1b =时,3ab =,1114133a b +=+=,2210a b +=,所以ABC 选项错误.由基本不等式a b +≥22a b+≤=,选C.7.A 【详解】定义在R 上的奇函数()f x 在(,0)-∞上单调递减,故函数在(0,)+∞上单调递减,且(2)0f =,故(2)(2)0f f -=-=,函数在(2,0)-和(2,)+∞上满足()0f x <,在(,2)-∞-和(0,2)上满足()0f x >.()0xf x <,当0x <时,()0f x >,即(,2)x ∈-∞-;当0x >时,()0f x <,即(2,)x ∈+∞.综上所述:(,2)(2,)x ∈-∞-+∞ .故选A.8.C 【详解】21020221b b b ->⎧⎪-⎪≥⎨⎪-≥-⎪⎩,解得12b ≤≤.∴实数b 的取值范围是[]1,2,故选C.9.BCD 10.ACD11.ABD解:因为函数()f x 满足()()()f x f y f x y +=+,所以(0)(0)(0)f f f +=,即2(0)(0)f f =,则(0)0f =;令y x =-,则()()(0)0f x f x f +-==,故()f x 为奇函数;设12,x x ∈R ,且12x x <,则1122122()()()()f x f x x x f x x f x =-+=-+,即1212())()(0f x f x f x x -=->,所以()f x 在R 上是减函数,所以()f x 在区间[],m n 上有最大值()f m ;由2(21)(2)0f x f x -+->,得2(23)(0)f x x f +->,由()f x 在R 上减函数,得2230x x +-<,即(3)(1)0x x +-<,解得31x -<<,所以2(21)(2)0f x f x -+->的解集为{31}x x -<<,故选ABD.12.[1,5]13.21x -+(答案不唯一)14.5,80【详解】由题意可知,B 的“小和数”为(1)01235-++++=,集合B 中一共有5个元素,则一共有52个子集,对于任意一个子集M ,总能找到一个子集M ,使得M M B = ,且无重复,则M 与M 的“小和数”之和为B 的“小和数”,这样的子集对共有54222=个,其中M B =时,M =∅,考虑非空子集,则子集对有421-对,则B 的“大和数”为4(21)5580-⨯+=.故答案为:5;80.15.【详解】(1)因为3a a <+对任意a ∈R 恒成立,所以A ≠∅,又A B =∅ ,则135a a ≥-⎧⎨+≤⎩,解得12a -≤≤;(2)若x A ∀∈,x B ∈是真命题,则有A B ⊆,则31a +<-或5a >,所以4a <-或5a >.16.【详解】(1)因为2()(253)mf x m m x =-+是幂函数,所以22531m m -+=,解得2m =或12,又函数为偶函数,故2m =,2()f x x =;(2)原题可等价转化为220x kx -+>对[1,4]x ∈恒成立,分离参数得2k x x <+,因为对[1,4]x ∈恒成立,则min 2(k x x<+,当0x >时,2x x +≥=当且仅当2x x=即x =时取得最小值.故k <17.【详解】(1)解:当2m =时,不等式可化为(1)(5)0x x --≥解得1x ≤或5x ≥,所以当2m =时,不等式的解集是{1x x ≤或5}x ≥.(2)①当0m =时,原式可化为2(1)0x -+≥,解得1x ≤-;②当0m <时,原式可化为2((31)]0x x m m ---≤,令231m m =-,解得23m =-或1;1)当23m <-时,231m m -<.故原不等式的解为231m x m -≤≤;2)当23m =-时,解得3x =-;3)当203m -<<时,231m m <-,原不等式的解为231x m m≤≤-;③当0m >时,原式可化为2((31)]0x x m m---≥,1)当01m <<时,231m m >-,2x m∴≥或31x m ≤-;2)当1m =时,不等式为2(2)0x -≥,x ∈R ;3)当1m >时,231m m <-,31x m ∴≥-或2x m≤.综上,当23m <-时,原不等式的解集为231x m x m ⎧⎫⎨⎬⎩⎭-≤≤;当23m =-时,不等式的解集为{}3x x =-;当203m -<<时,解集为231x x m m ⎧⎫⎨⎬⎩⎭≤≤-;当0m =时,解集为{}1x x ≤-;当01m <<时,不等式的解集是{2x x m ≥或31}x m ≤-;当1m =时,不等式的解集为R ;当1m >时,解集是{31x x m ≥-或2}x m≤.18.【详解】(1)由题意,当0300x <≤时,y x =;当300500x <≤时,3000.8(300)0.860y x x =+-=+;当500x <时,3000.8(500300)0.7(500)0.7110y x x =+-+-=+.综上,,03000.860,300500 0.7110,500x x y x x x x <≤⎧⎪=+<≤⎨⎪+<⎩.(2)甲乙购买商品的金额之和为4502320(90)85a b a a a +=++≥-.45045023202(85)3201708585a b a a a a +=++=-+++--490230490550≥=⋅+=(元)当且仅当4502(85)85a a -=-即8515a -=±时,原式取得最小值.此时100a =(或70a =,舍去),550450b a =-=(元)因为550500>,则拼单后实付总金额0.7550110495M =⨯+=(元)故折扣省下来的钱为55049555-=(元).则甲乙拼单后,甲实际支付5510072.52-=(元),乙实际支付55450422.52-=(元)而若甲乙不拼单,因为100300<,故甲实际应付100a '=(元);300450500<<,乙应付0.845060420b '=⨯+=(元).因为420元<422.5元,若按照“折扣省下来的钱平均分配”的方式,则乙实付金额b 比不拼单时的实付金额b '还要高,因此该分配方式不公平.(能够答出“乙购买的商品的金额是甲购买商品的金额的4.5倍,则乙应减的价钱应是甲的4.5倍,故不公平”之类的答案的可酌情给分)答:当甲、乙的购物金额之和最小时,甲、乙实际共需要支付495元.若按“折扣省下来的钱平均分配”的方式拼单,则拼单后乙实付422.5元,比不拼单时的实付420元还要高,因此这种方式对乙不公平.19.【详解】(1)()f x 为定义在R 上的奇函数,当0x >时,0x -<,所以()()f x f x =--()2211x x ⎡⎤=--+=--⎣⎦,又()00f =,所以()221,00,01,0x x f x x x x ⎧+<⎪==⎨⎪-->⎩;(2)(i )因为定义域为R 的函数()g x 的图象关于点()1,0成中心对称图形,所以()1y g x =+为奇函数,所以()()11g x g x +=--,即()()2g x g x =--,1x <时,21x ->,所以()()1121122g x g x x x ⎛⎫=--=--=-+ ⎪--⎝⎭.所以()11,111,12x xg x x x ⎧-≥⎪⎪=⎨⎪-+<⎪-⎩;(ii )()()()11,1tg 011,12t x x h x x t t x x ⎧⎛⎫⋅-≥ ⎪⎪⎪⎝⎭==>⎨⎛⎫⎪⋅-+< ⎪⎪-⎝⎭⎩,a )当()0,1x ∈时,()11()11022h x t t t x x ⎛⎫⎛⎫=⋅-+=⋅--> ⎪ --⎝⎭⎝⎭在()0,1单调递增,当()[,]0,1a b ⊆时,则112112t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅--= ⎪⎪-⎝⎭⎩,即方程112t x x ⎛⎫⋅--= ⎪-⎝⎭在()0,1有两个不相等的根,即()220x t x t +--=在()0,1有两个不相等的根,令()()()22,0m x x t x t t =+-->,因为()()0011210m t m t t ⎧=-<⎪⎨=+--=-<⎪⎩,所以()220x t x t +--=不可能在()0,1有两个不相等的根;b )当()1,x ∈+∞时,()()110h x t t x ⎛⎫=⋅-=> ⎪⎝⎭在()1,+∞单调递增,当()[,]1,a b ⊆+∞时,则1111t a a t bb ⎧⎛⎫⋅-= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即方程11t x x ⎛⎫⋅-= ⎪⎝⎭在()1,+∞有两个不相等的根,即20x tx t -+=在()1,+∞有两个不相等的根,令()()2,0n x x tx t t =-+>,则有()2110022212n t t t t t n t t t⎧=-+>⎪⎪⎪⎛⎫⎛⎫⎛⎫=-⋅+<⎨ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪>⎪⎩,解得4t >.c )当01a b <<<时,易知()g x 在R 上单调递增,所以()()()tg 0h x x t =>在()0,+∞单调递增,此时11211t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即()()()()()2222211221111111211112111a a a a a t a a a a a b b b t b b b b ⎧---+-====-+⎪⎪----⎨-+-+⎪===-++⎪---⎩令()()()11,011r a a a a =--+<<-,则易知()r a 在()0,1递减,所以()()00r a r <=即0t <,又1b >时,()112241t b b =-++≥=-,当且仅当()111b b -=-,即2b =时取等,以()()110111241t a a t b b ⎧=-+<⎪⎪-⎨⎪=-++≥⎪-⎩,此时无解;t 的范围是()4,+∞.。

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)一、选择题1.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 6.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.57.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--8.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-9.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .610.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7811.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.14.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.15.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 16.已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >,()f x 的图象如图所示,那么()f x 的值域是______.17.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.18.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.19.函数2()log 1f x x =-________.20.已知函数()266,34,x x f x x ⎧-+=⎨+⎩0x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 23.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围. 24.计算下列各式的值:(Ⅰ)322log 3lg25lg4log (log 16)++- (Ⅱ)2102329273()( 6.9)()()482-----+25.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.26.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100xv x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.A解析:A 【解析】 由题意{1,2,3,4}AB ,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.6.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.7.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.8.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<, 则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩, 由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.16.【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象欲求的值域分两类讨论:;结合图象即可解决问题【详解】是定义在上的奇函数作出图象关于原点对称作出其在y 轴左侧的图象如图由图可知:的值域是故答案 解析:][()2,33,2⋃--【解析】 【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象,欲求()f x 的值域,分两类讨论:0x >①;0.x <②结合图象即可解决问题.【详解】()f x 是定义在(][2,00,2-⋃上的奇函数,∴作出图象关于原点对称作出其在y 轴左侧的图象,如图.由图可知:()f x 的值域是][()2,33,2⋃--. 故答案为][()2,33,2⋃--. 【点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.17.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.18.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.19.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.20.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。

北师大版高一数学必修1上期中试题及答案

北师大版高一数学必修1上期中试题及答案高一数学期中试卷(满分120分,考试时间90分钟)一、选择题(共12小题,每小题4分,共48分)1.设集合 $A=\{(x,y)|y=-4x+6\}$,$B=\{(x,y)|y=5x-3\}$,则 $A\cap B=$()A。

$\{1,2\}$ B。

$\{x=1,y=2\}$ C。

$\{(1,2)\}$ D。

$(1,2)$2.已知函数 $f(x)$ 是定义在 $[1-a,5]$ 上的偶函数,则$a$ 的值是()A。

0 B。

1 C。

6 D。

-63.若 $a>0$ 且 $a\neq1$,则函数 $y=ax-1$ 的图像一定过点()A。

$(0,1)$ B。

$(0,-1)$ C。

$(1,0)$ D。

$(1,1)$4.若 $f(x)=x+1$,则 $f^{-1}(2)=$()A。

3 B。

2 C。

1 D。

$-1/3$5.下列四个图像中,是函数图像的是()A。

B。

C。

D。

6.下列函数中既是奇函数,又在区间 $(0,+\infty)$ 上单调递增的是()A。

$y=-x^2$ B。

$y=1/x$ C。

$y=x+1/x$ D。

$y=e^{|x|}$7.若方程 $2ax^2-x-1=0$ 在 $(0,1)$ 内恰好有一个解,则$a$ 的取值范围是()A。

$a1$ C。

$-1<a<1$ D。

$a\leq1$8.已知函数 $f(x)=\begin{cases} \log_2x & (x>1) \\ x^3 & (x\leq1) \end{cases}$,则 $f[f(9)]=$()A。

1 B。

3 C。

4 D。

99.为了得到函数 $y=3x$ 的图像,可以把函数 $y=3|x|$ 的图像()。

A。

向左平移3个单位长度 B。

向右平移3个单位长度C。

向左平移1个单位长度 D。

向右平移1个单位长度10.设 $a=\log_{0.3}4$,$b=\log_43$,$c=0.3^{-2}$,则$a$、$b$、$c$ 的大小关系为()A。

2023-2024学年河北省张家口市高一(上)期中数学试卷【答案版】

2023-2024学年河北省张家口市高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4},集合A ={1,2},集合B ={2,3},则∁U (A ∪B )=( ) A .{4}B .{3}C .{1,3,4}D .{3,4}2.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}3.若实数α,β满足﹣13<α<β<﹣12,则α﹣β的取值范围是( ) A .﹣13<α﹣β<﹣12 B .﹣25<α﹣β<0 C .﹣1<α﹣β<0D .﹣1<α﹣β<14.在R 上定义运算“⊙”:a ⊙b =ab +b ,则满足x ⊙(x ﹣1)<0的x 的取值范围为( ) A .(0,1)B .(﹣1,1)C .(﹣∞,﹣1)∪(1,十∞)D .(﹣1,0)5.设x ∈R ,则“x 2>x ”是“|x |>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=x 2+2x ,则当x >0时,函数f (x )的解析式是( ) A .f (x )=﹣x 2+2x B .f (x )=﹣x 2﹣2xC .f (x )=x 2+2xD .f (x )=x 2﹣2x7.已知偶函数f (x )在区间[0,+∞)上单调递增,则不等式f (2x ﹣1)<f (1)的解集是( ) A .(﹣∞,1) B .(﹣1,1)C .(0,1)D .(﹣∞,0)∪(1,+∞)8.已知函数f (x )={(a −2)x +52,x ≤2a x ,x >2是R 上的减函数,则实数a 的取值范围是( )A .(0,2)B .(1,2)C .[1,2)D .(0,1]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列集合中,可以表示为{2,3}的是( ) A .{x ∈Z |2≤x ≤3}B .{x |x 2﹣5x +6=0}C .{(x ,y)|x +y =5x −y =−1}D .不等式组{x >22x −6<0的解集10.下列函数既是偶函数,在(0,+∞)上又是增函数的是( ) A .y =x 2+1B .y =2xC .y =|x |D .y =|1x−x|11.下列结论正确的是( )A .“x ∈N ”是“x ∈Q ”的充分不必要条件B .“∃x ∈R ,使得x 2﹣3x +40≤0”是假命题C .命题“∀x >0,x 2﹣3>0”的否定是“∃x >0,x 2﹣3≤0”D .△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则a 2+b 2=c 2是“△ABC 是直角三角形”的充要条件12.下列命题为真命题的是( ) A .若a >b ,则ac 2>bc 2 B .若a >b >0,则ba <b+2a+2C .若a >1,则a 2−4a+7a−1的最小值是2D .若a >0,b >0,3a+1b=1,则3a +b 的最小值是16 三、填空题:本题共4小题,每小题5分,共20分。

河北省邢台市六校2022-2023学年高一上学期期中考试数学试题及答案

2022-2023学年第一学期期中考试高一数学试题考试范围:必修一1 1 4 1说明:1.本试卷共4页,考试时间120分钟,满分150分.2.请将所有答案都涂写在答题卡上,答在试卷上无效.一㊁单项选择题(本大题共9个小题,每小题5分,共45分)1.已知集合U ={-3,-2,-1,0,1,2,3},A ={-1,0,1},B ={0,1,2},则C U (A ɘB )=(㊀㊀)A.{-3,-2,3}B .{-3,-2,-1,2,3}C .{2,3}D.{-1,2,3}2. a >b 是 a >b 的(㊀㊀)A.充分不必要条件B .充要条件C .必要不充分条件D.既不充分也不必要条件3.已知不等式x 2+2a x +a +2<0的解集为空集,则a 的取值范围是(㊀㊀)A.(-1,2)B .(-ɕ,-1)ɣ(2,+ɕ)C .(-ɕ,-1]ɣ[2,+ɕ)D.[-1,2]4.已知函数f (2x +1)=3x +2,则f (3)的值等于(㊀㊀)A.11B .2C .5D.-15.已知x ɪR ,则使得2|x |+32|x |+2取得最小值时x 的值为(㊀㊀)A.2B .4C .ʃ4D.ʃ26.十六世纪中叶,英国数学家雷科德在«砺智石»一书中首先把 = 作为等号使用,后来英国数学家哈利奥特首次使用 < 和 > 符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.下列说法正确的是(㊀㊀)A.若a <b ,c <d ,则a c <b d B .若a <b ,则1a +1>1b +1C .若a 2b >a 2c ,则1b >1cD.若a >b ,c >d ,则a +c b +c >a +db +d7.函数f (x )=2x 2-7x +3的单调递减区间为(㊀㊀)A.-ɕ,74æèçöø÷B .-ɕ,12æèçöø÷C .7,+ɕæèçöø÷(,)8.设a 为实数,定义在R 上的偶函数f (x )满足:f (x )在[0,+ɕ)上的表达式为f (x )=3x 2+2x -4,则使得f (2a )>f (a +1)成立的a 的取值范围为(㊀㊀)A.-ɕ,-13æèçöø÷ɣ(1,+ɕ)B .-13,1æèçöø÷C .-1,13æèçöø÷D.(-ɕ,1)9.定义在R 上的奇函数f (x )满足f (2+x )=f (-x ),若当0<x ɤ1时,f (x )=x 2-2x +9,则f 72æèçöø÷=(㊀㊀)A.-334B .334C .-8D.8二㊁多项选择题(本大题共5个小题,每小题5分,共25分,全部选对的得5分,部分选对的得2分,有选错的得0分)10.已知函数f (x )=x +5,x <-1x 2,-1ɤx <2{,关于函数f (x )的结论正确的是(㊀㊀)A.f (x )的定义域为R B .f (x )的值域为(-ɕ,4)C .f (-1)=1D.若f (x )=3,则x 的值是311.若函数f (1-2x )=1-x 2x 2(x ʂ0),则(㊀㊀)A.f 12æèçöø÷=15B .f (2)=-34C .f (x )=4(x -1)2-1(x ʂ0)D.f 1x æèçöø÷=4x 2(x -1)2-1(x ʂ0且x ʂ1)12.给定数集M ,若对于任意a ,b ɪM ,有a +b ɪM ,a -b ɪM ,则称集合M 为闭集合.则下列说法中正确的是(㊀㊀)A.集合M ={n |n =3k ,k ɪZ }为闭集合B .集合M ={-6,-3,0,3,6}为闭集合C .正整数集不是闭集合D.若集合A 1㊁A 2为闭集合,则A 1ɣA 2为闭集合13.已知a ,b ɪR ,4a =b 2=9,则2a -b的值可能为(㊀㊀)A.83B .38C .24D.12414.已知函数f (x )的定义域为D ,若存在区间[m ,n ]⊆D 使得f (x ):(1)f (x )在[m ,n ]上是单调函数;(2)f (x )在[m ,n ]上的值域是[2m ,2n ],则称区间[m ,n ]为函数f (x )的 倍值区间 .下列函数中存在 倍值区间 的有(㊀㊀)A.f (x )=x +1x B .f (x )=1xC .f (x )=x 2D.f (x )=3x x 2三㊁填空题(本大题共4个小题,每小题5分,共20分)15.函数f(x)=x x-1+x2-1的定义域为㊀㊀㊀㊀㊀.16.计算:1 5-13ˑ67æèçöø÷0+80 25ˑ42+32ˑ3()6-23æèçöø÷23=㊀㊀㊀㊀㊀.17.函数f(x)为定义在(-1,1)上的奇函数,f(x+2)为减函数,若f(m-1)+f(3-2m)<0,则实数m的取值范围为㊀㊀㊀㊀㊀.{},且a>b,则18.已知关于x的一元二次不等式a x2+2x+bɤ0的解集为x x=-1aa-ba2+b2+2的最大值为㊀㊀㊀㊀㊀.四㊁解答题(本大题共5个小题,每小题12分,共60分,解答应写出文字说明㊁证明过程或演算步骤)19.已知命题p:关于x的方程x2-2a x+2a2-a-6=0有实数根,命题q:m-1ɤaɤm+3.(1)若命题¬p是真命题,求实数a的取值范围;(2)若p是q的必要不充分条件,求实数m的取值范围.20.已知幂函数f(x)=(m2+3m-3)x m+1在(0,+ɕ)上是减函数,mɪR.(1)求f(x)的解析式;(2)若(5-a)1m>(2a-1)1m,求a的取值范围.21.某电子公司生产某种智能手环,其固定成本为2万元,每生产一个智能手环需增加投入100元,已知总收入R (单位:元)关于日产量x (单位:个)满足函数:R =400x -12x 2,0ɤx ɤ400,80000,x >400.ìîíïïïï(1)将利润f (x )(单位:元)表示成日产量x 的函数;(2)当日产量x 为何值时,该电子公司每天所获利润最大,最大利润是多少?(利润+总成本=总收入)22.已知函数f (x )=2x 2+3x +ax,a ɪR .(1)若函数g (x )=f (x )-3,判断g (x )的奇偶性并加以证明;(2)当a =2时,先用定义法证明函数f (x )在[1,+ɕ)上单调递增,再求函数f (x )在(0,+ɕ)上的最小值;(3)若对任意x ɪ[1,+ɕ),f (x )>0恒成立,求实数a 的取值范围.23.设函数h (x )=x 2+1,g (x )=a x -b (a ,b ɪR ),令函数f (x )=h (x )-g (x ).(1)若函数y =f (x )为偶函数,求实数a 的值;(2)若a =1,求函数y =f (x )在区间[0,3]上的最大值.2022-2023学年第一学期期中考试高一数学参考答案1.B 2.C 3.D 4.C 5.D 6.C 7.B 8.A 9.A 10.BC 11.AD 12.AC 13.BC 14.BCD15.{}11>−≤x x x 或 16. 110 17.1,2 18.1419.答案:(1)),3()2,(+∞⋃−−∞ (2)01≤≤−m解析:(1)因为命题p ⌝是真命题,所以命题p 是假命题.............................2 所以方程062222=−−+−a a ax x 无实根有02444)62(4)2(222<++−=−−−−=∆a a a a a (4)062>−−⇒a a 解得),3()2,(+∞⋃−−∞,所以实数a 的取值范围是),3()2,(+∞⋃−−∞ (6)(2)由(1)可知p :32≤≤−a .............................8 因为p 是q 的必要不充分条件,所以1233m m −≥−⎧⎨+≤⎩, (11)则,解得01≤≤−m ,所以实数m 的取值范围是01≤≤−m ............12 20.答案:(1)31)(x x f =(2)(2,5). 解析:(1)由题意得:根据幂函数的性质可知1332=−+m m ,..............2 即0432=−+m m ,解得4−=m 或1=m . (3)因为()f x 在()0,∞+上是减函数,所以10+<m ,即1m <−,则4−=m ...................5 故331)(x xx f ==−...................6 (2)由(1)可得4−=m ,设函数4411)(xx x g ==−,........................7 则()g x 的定义域为()0,+∞,且()g x 在定义域上为减函数 (9)因为4141)12()5(−−−>−a a ,所以50,210,521,a a a a −>⎧⎪−>⎨⎪−<−⎩ (11)解得25a <<.故a 的取值范围为(2,5) (12)21.答案:(1)2130020000,0400()260000100,400x x x f x x x ⎧−+−≤≤⎪=⎨⎪−>⎩(2)当日产量为300个时,公司所获利润最大,最大利润是25000 解析:(1)由题意可得:当0400x ≤≤时,2211()400200001003002000022f x x x x x x =−−−=−+−; (2)当400x >时,()800002000010060000100f x x x =−−=−;..........................4 所以2130020000,0400()260000100,400x x x f x x x ⎧−+−≤≤⎪=⎨⎪−>⎩.......................6 注意:分段函数写对一段给2分,全部写对可得6分。

甘肃省武威市武威第一中学2023-2024学年高一上学期期中考试数学试卷(含答案)

武威一中2023年秋季学期期中考试高一年级 数学试卷第Ⅰ卷(选择题)一、单选题(共8小题,每小题5分)1.已知A 是由0,,三个元素组成的集合,且,则实数为( )A.2B.3C.0或3D.0,2,3均可2.已知全集,集合,,那么( )A. B. C. D.3.若集,合,则( )A. B. C. D.4.设,则( )A.B.C.1D.-25.若命题“,使得成立”是假命题,则实数的取值范围是( )A. B. C. D.6.已知函数是一次函数,且,则( )A.11B.9C.7D.57.已知函数是定义在上的偶函数,又,则,,的大小关系为( )A. B.C. D.8.若定义在R 的奇函数,若时,则满足的的取值范围是( )A. B.C. D.m 232m m -+2A ∈m U =R {}24A x x =-≤≤∣501x B x x ⎧⎫-=<⎨⎬+⎩⎭A B = ()1,4-(]1,4-()2,5-[)2,5-{}24x A x =<∣{N 13}B x x =∈-<<∣A B = {12}xx -<<∣{}0,1{}1{13}xx -<<∣()212,11,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩()()1f f =15120R x ∃∈201k x >+k 1k >01k <<1k ≤0k ≤()f x ()23f f x x ⎡⎤-=⎣⎦()5f =()22f x ax a =+[],2a a +()()2g x f x =+()2g -()3g -()2g ()()()232g g g ->->()()()322g g g ->>-()()()223g g g ->>-()()()232g g g >->-()f x 0x <()2f x x =--()0xf x ≥x ()[],20,2-∞- ()(),22,-∞-+∞ ][(,20,2⎤-∞-⎦[]2,2-二、多选题(共4小题,每小题选对得5分,错选或多选得0分,少选或漏选得2分)9.下列结论中,不正确的是( )A. B. C. D.10.下列命题中,真命题的是( )A.,都有 B.任意非零实数,都有C.,使得D.函数211.下列命题正确的是( )A.命题“,,”的否定是“,,”B.与是同一个函数C.函数的值域为D.若函数的定义域为,则函数的定义域为12.函数的定义域为R ,已知是奇函数,,当时,,则下列各选项正确的是( )A. B.在单调递C. D.第Ⅱ卷(非选择题)三、填空题13.已知,集合,则图中阴影部分所表示的集合是________.14.函数的单调递减区间为________.15.已知集合,,若“”是“”的必要非充分条件,则实数的取值范围是________.0.20.20.20.3>113323--<0.10.20.81.25->0.33.11.70.9>x ∀∈R 21x x x -≥-,a b 2b a a b+≥()1,x ∃∈+∞461x x +=-y =x ∀y ∈R 220x y +≥x ∃y ∈R 220x y +<()1f x x =-()211x g x x -=+y x =[)0,+∞()1f x +[]1,4()f x []2,5()f x ()1f x +()()22f x f x +=-[]1,2x ∈()22f x ax =+()()4f x f x +=()f x []0,1()10f =13533f ⎛⎫=⎪⎝⎭U R ={11}A x x =->{B xy ==∣y =204x A xx ⎧⎫+=<⎨⎬-⎩⎭{}22210B x x ax a =-+-<∣x A ∈x B ∈a16已,,,知为四个互不相等的实数.若,,,中最大,则实数的取值范围为________.四、解答题17.(本小题10分)计算下列各式(式中字母都是正数):(1);(2);(3.18.(本小题12分)已知函数.(1)证明:函数在上是减函数;并求出函数在的值域;(2)记函数,判断函数的的奇偶性,并加以证明.19.(本小题12分)设关于的函数,其中,都是实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西壮族自治区田阳高中2016-2017学年高一数学上学期期中试题
一、选择题:(本大题共12个小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项
是符合题目要求的)
1.已知集合{0,4,5}{0,1,2},{0,1,2,3,4,5}A B U ===,,则()U C A B =( )
A . {1,2}
B .{3}
C .{0}
D . {0,1,2,3}
2.下列表示正确的是( )
A .{0}φ∈
B .{3}{1,3}∈
C .0{0,1}⊆
D .{2}φ⊆
3.函数()()lg 2f x x =+的定义域为( )
A .(]2,1-
B .[]2,1-
C .()2,-+∞
D . ()2,1-
4.下面各组函数中为相同函数的是( )
A .()()1f x g x x ==-
B .0()()1f x x g x ==, C. 1
()3()()3x x f x g x -==, D .21
()1()1x f x x g x x -=-=+,
5.已知2log 3a =, 12
log 3b =, 1
23a -= ,则
A.c b a >> B .c a b >> C.a b c >> D.a c b >>
6.在下列区间中函数()243x f x x =-+的零点所在的区间为( ) A. 1(,1)2 B.1
(0,)2 C.3
(1,)2 D. (1,2)
7.函数m x m m x f )1()(2--=是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是(

A .-1
B .2
C .3
D .-1或2
8.下列函数中,既是奇函数又是增函数的为( )
A .3ln y x =
B .2y x =- C. 1
y x = D .||y x x =
9.已知函数()⎩⎨
⎧≤>=030log 2x x x x f x ,,,则⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛41f f 的值是( ) A .9
1- B .9- C .91 D .9 10.已知0,0a b >>,且1ab =,则函数()x f x a =与函数()log b g x x =-的图像可能是( )
11.为了得到函数3lg 10
x y +=的图像,只需把函数lg y x =的图像上所有的点( ) A .向左平移3个单位长度,再向上平移1个单位长度
B .向右平移3个单位长度,再向上平移1个单位长度
C .向左平移3个单位长度,再向下平移1个单位长度
D .向右平移3个单位长度,再向下平移1个单位长度
12.己知集合M={﹣1,1,2,4},N={0,1,2}给出下列四个对应法则,其中能构成从M 到N 的函数
是( )
A .y=x 2
B .y=log 2|x|
C .y=2x
D .y=x+1
二、填空题(本题共4小题,每题5分、共20分)
13.不等式1)12(log 3≤-x 的解集为 .
14.函数22log (23)y x x =+-的单调递减区间为_____ ___.
15.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是
16.设()f x 是R 上的偶函数,且在[0,)+∞上是增函数,若(3)0f -=,则()0f x <的解集
是 .
三、解答题(本题有6小题,共70分,要求写出推理或运算过程。


17.(10分) 化简或求值:
(1)0.5
2071
(2)0.193π-+-+; (2)2(lg 2)lg 2lg 5++
18.(12分) 已知集合{27}A x x =≤<,{310}B x x =<≤,{5}C x a x a =-<<.
(1)求A B ,A B ;
(2)若非空集合()C A B ⊆,求a 的取值范围.
19.(12分) 已知函数1()11
f x x =+-. (1)证明:函数()f x 在(1,)+∞上单调递减;
(2)记函数()(1)1g x f x =+-,判断函数()g x 的奇偶性,并加以证明.
20.(12分) 已知二次函数()f x 满足(1)()2f x f x x +-=,且(0)1f =.
(1)求()f x 的解析式;
(2)求函数()y f x =在区间[1,1]-上的值域;
(3)当[1,1]x ∈-时,不等式()2f x x m >+恒成立,求实数m 的范围.
21.(12分) 某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3 600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
22.(12分) 已知定义在R 上的奇函数)(x f ,当0>x 时,x x x f 2)(2
+-=
(1)求函数)(x f 在R 上的解析式;
(2)若函数)(x f 在区间[]2,1--a 上单调递增,求实数a 的取值范围。

2016~2017学年度上学期高一段考数学参考答案
1~5、ADACD 6~10、ABDCB 11~12、CB
13、1
{|2}2x x <≤ 14、(,3)-∞- 15、12
(,)23- 16、{|33}x x -<<
17、(1)原式=31
1100)925(21
+-+ =31
110035
+-+=101
(2)解:原式= 2)12(lg )5lg 2(lg 2lg -++
= 1)2lg 1(2lg =-+
18、(1){37}A B x x =<<,{210}A B x x =≤≤,
(2)由(1)知{210}A B x x =≤≤,
当C φ≠时,要()C A B ⊆,则5210
a a -≥⎧⎨≤⎩,解得710a ≤≤
19、(1)设121x x >>,则211201010x x x x -<->->,,, 21
1212121
1()()011(1)(1)
x x f x f x x x x x --=-=<----,
∴12()()f x f x <,∴()f x 在(1,)+∞上递减.
(2)1
()(1)1g x f x x =+-=,()g x 是奇函数,
证明如下:∵()g x 的定义域为(,0)(0,)-∞+∞关于原点对称, 1
()()g x g x x -=-=-,∴()g x 是奇函数.
20、(1)令2()(0)f x ax bx c a =++≠,
22(1)()(1)(1)22f x f x a x b x c ax bx c ax a b x +-=++++---=++=恒成立. ∴11a b ==-,,又(0)1f c ==
∴2()1f x x x =-+
(2)213()(),[1,1]24f x x x =-+∈- ∴当1
2x =时,min 13
()()24f x f ==,
当12x =时,max ()(1)3f x f =-= ∴ ()f x 的址域为3[,3]4
- (3)当[1,1]x ∈-时,()2f x x m >+恒成立,即231x x m -+>恒成立, 令2235()31()[1,1]24g x x x x x =-+=--∈-,, 对称轴32
x =在[1,1]-的右边,开口向上, ∴()g x 在[1,1]-上递减,∴min ()(1)1g x g ==-, 1m ∴<-
21、(1)当每辆车的月租金定为3 600元时,未租出的车辆数为
50
000 3600 3-=12,所以这时租出了100-12=88辆车.
(2)设每辆车的月租金定为x 元,则租赁公司的月收益为 f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-50000 3-x ×50=-50
1(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.
22、(1)设x<0,则-x>0, x x x x x f 2)(2)()(2
2--=-+--=-. 3分 又f(x)为奇函数,所以f(-x)=-f(x).
于是x<0时x x x f 2)(2+= 5分 所以⎪⎩
⎪⎨⎧<+=>+-=)0(2)0(0)0(2)(22x x x x x x x x f 6分
(2)由⎪⎩
⎪⎨⎧<+=>+-=)0(2)0(0)0(2)(22x x x x x x x x f 可知()f x 在[1,1]-上单调递增,在(,1)-∞-、(1,)+∞上单调递减(或画出图象也可以), 8分
要使f(x)在[-1,a-2]上单调递增,
则 2121a a ->-,⎧⎨-≤,
⎩ 10分
所以13a <≤,故实数a 的取值范围是(1,3]. 12分。

相关文档
最新文档