薄膜材料及其制备技术

合集下载

薄膜材料的制备及性能研究

薄膜材料的制备及性能研究

薄膜材料的制备及性能研究第一章:薄膜材料的基础知识薄膜材料是指厚度在一个纳米到几微米之间的材料,由于其具有较大的比表面积和界面能,从而表现出了明显的物理和化学性质,应用广泛。

薄膜材料可以制备出各种不同形态和结构的材料,包括单层,多层和复合薄膜。

薄膜可以用于制备各种功能性材料,例如光电材料,传感器,能源材料和生物医学材料等。

因此薄膜材料的制备和性能研究已经成为了材料科学中一个重要的研究方向。

第二章:薄膜制备技术薄膜制备技术可以分为物理气相沉积(PVD),化学气相沉积(CVD),溶液法和电化学法等。

其中PVD主要应用于粘附性要求高的金属材料,CVD是为了制作半导体器件而发展出来的技术。

溶液法和电化学法则可以用来制备具有大面积、低成本和环境友好等特点的薄膜材料,因此是应用最为广泛的制备技术之一。

采用这两种技术制备的薄膜具有谷电导,谷光导和电化学性质等。

第三章:薄膜材料的性能研究具体来说,薄膜材料的性能包括表面化学性质、表面结构、光电性质和力学性质。

如表面化学性质可以通过XPS、FTIR和Tof-SIMS等技术进行表征,表面结构可以利用STM和AFM等技术来研究;光电性质则可以通过光谱测量和电学测试等手段来探究,力学性质则可以通过纳米压痕实验等方法来研究。

另外,薄膜材料的吸湿性、稳定性和生物相容性也是需要考虑的因素。

第四章:薄膜材料的应用领域举例薄膜材料由于其独特的性质,在许多领域中都有着广泛的应用。

以太阳能电池为例,在这种光电器件中,薄膜材料被用来制作光电转换器件和透明电极等部件,这直接关系到其光电性能和机械稳定性。

另外,在生物医学领域中,薄膜材料可以用来制备药物输送系统和人工血管等医学器械,用于有效地传递和释放药物。

第五章:未来展望在未来,薄膜材料将面临更加广泛和深入的应用前景。

例如,在生物医学领域中,薄膜材料可以用于制备智能药物释放系统,这将为治疗慢性疾病提供更有效的途径。

此外,在电子器件中,薄膜材料可以用于制作超薄管道、柔性器件和透明电极等。

薄膜材料的特点及其制备技术

薄膜材料的特点及其制备技术

薄膜材料的特点及其制备技术薄膜材料的特点及其制备技术厚度小于1微米的膜材料,称为薄膜材料。

下面是店铺给大家整理的薄膜材料的特点及其制备技术,希望能帮到大家!薄膜材料的特点与制备技术工业上有两大类塑料薄膜(厚度在0.005mm~0.250mm)生产方法——压延法和挤出法,其中挤出法中又分为挤出吹塑、挤出拉伸和挤出流延。

目前最广泛使用的生产工艺有挤出吹塑、挤出拉伸和挤出流延,尤其是聚烯烃薄膜,而压延法主要用于一些聚氯乙烯薄膜的生产。

在挤出吹塑、挤出拉伸和挤出流延中,由于挤出吹塑设备的整体制造技术的不断提高以及相对于拉伸和流延设备而言低得多的,本应用在不断增多。

不过在生产高质量的各种双向拉伸薄膜中仍然广泛使用挤出拉伸设备。

随着食品、蔬菜、水果等对塑料薄膜包装的要求越来越高以及农地膜、棚膜的高性能要求和工业薄膜的应用不断增加、计算机和自动化技术的应用,塑料薄膜设备生产商一直在不断创新,提高薄膜的生产质量。

薄膜材料的简介当固体或液体的一维线性尺度远远小于其他二维时,我们将这样的固体或液体称为膜。

通常,膜可分为两类,一类是厚度大于1微米的膜,称为厚膜;另一类则是厚度小于1微米的膜,称为薄膜。

半导体功能器件和光学镀膜是薄膜技术的主要应用。

一个很为人们熟知的表面技术的应用是家用的镜子:为了形成反射表面在镜子的背面常常镀上一层金属,镀银操作广泛应用于镜子的制作,而低于一个纳米的极薄的镀层常常用来制作双面镜。

当光学用薄膜材料(例如减反射膜消反射膜等)由数个不同厚度不同反射率的薄层复合而成时,他们的光学性能可以得到加强。

相似结构的由不同金属薄层组成的周期性排列的薄膜会形成所谓的超晶格结构。

在超晶格结构中,电子的运动被限制在二维空间中而不能在三维空间中运动于是产生了量子阱效应。

薄膜技术有很广泛的应用。

长久以来的研究已经将铁磁薄膜用于计算机存储设备,医药品,制造薄膜电池,染料敏化太阳能电池等。

陶瓷薄膜也有很广泛的应用。

由于陶瓷材料相对的高硬度使这类薄膜可以用于保护衬底免受腐蚀氧化以及磨损的危害。

薄膜材料及其制备技术

薄膜材料及其制备技术

课程设计实验课程名称电子功能材料制备技术实验项目名称薄膜材料及薄膜技术专业班级学生姓名学号指导教师薄膜材料及薄膜技术薄膜技术发展至今已有200年的历史。

在19世纪可以说一直是处于探索和预研阶段。

经过一代代探索者的艰辛研究,时至今日大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位,各种材料的薄膜化已经成为一种普遍趋势。

其中包括纳米薄膜、量子线、量子点等低维材料,高K值和低K值介质薄膜材料,大规模集成电路用Cu布线材料,巨磁电阻、厐磁电阻等磁致电阻薄膜材料,大禁带宽度的“硬电子学”半导体薄膜材料,发蓝光的光电半导体材料,高透明性低电阻率的透明导电材料,以金刚石薄膜为代表的各类超硬薄膜材料等。

这些新型薄膜材料的出现,为探索材料在纳米尺度内的新现象、新规律,开发材料的新特性、新功能,提高超大规模集成电路的集成度,提高信息存储记录密度,扩大半导体材料的应用范围,提高电子元器件的可靠性,提高材料的耐磨抗蚀性等,提供了物质基础。

以至于将薄膜材料及薄膜技术看成21世纪科学与技术领域的重要发展方向之一。

一、薄膜材料的发展在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。

自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。

生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。

生物体生命现象的重要过程就是在这些表面上进行的。

细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。

膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。

细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。

细胞膜的这些结构和功能带来了生命,带来了神奇。

二、薄膜材料的分类目前,对薄膜材料的研究正在向多种类、高性能、新工艺等方面发展,其基础研究也在向分子层次、原子层次、纳米尺度、介观结构等方向深入,新型薄膜材料的应用范围正在不断扩大。

薄膜材料及其制备技术

薄膜材料及其制备技术

薄膜材料及其制备技术薄膜材料是指厚度在纳米级别到微米级别的材料,具有特殊的物理、化学和力学性质。

薄膜材料广泛应用于电子、光电、光学、化学、生物医学等领域。

下面将介绍薄膜材料的分类以及常用的制备技术。

薄膜材料的分类:1.无机薄膜材料:如氧化物薄膜、金属薄膜、半导体薄膜等。

2.有机薄膜材料:如聚合物薄膜、膜面活性剂薄膜等。

3.复合薄膜材料:由两种或以上的材料组成的。

如聚合物和无机材料复合薄膜、金属和无机材料复合薄膜等。

薄膜材料的制备技术:1.物理气相沉积技术:包括物理气相沉积(PVD)和物理气相淀积(PVD)两种方法。

PVD主要包括物理气相沉积和磁控溅射,通过将固态金属或合金加热,使其升华或蒸发,然后在基底表面形成薄膜。

PVD常用于制备金属薄膜、金属氧化物薄膜等。

2.化学气相沉积技术:包括化学气相沉积(CVD)和原子层沉积(ALD)两种方法。

CVD通过化学反应在基底表面形成薄膜。

ALD则是通过一系列的单原子层回旋沉积来生长薄膜。

这些方法可以制备无机薄膜、有机薄膜和复合薄膜。

3.溶液法制备技术:包括溶胶-凝胶法、旋涂法、浸渍法等。

溶胶-凝胶法通过溶胶和凝胶阶段的转化制备薄膜。

旋涂法将溶液倒在旋转基底上,通过离心力将溶液均匀分布并形成薄膜。

浸渍法将基底浸泡在溶液中,溶液中的材料通过表面张力进入基底并形成薄膜。

这些方法主要用于制备有机薄膜和复合薄膜。

4.物理沉积法和化学反应法相结合的制备技术:如离子束沉积法、激光沉积法等。

这些方法通过物理沉积或化学反应在基底表面形成薄膜,具有较高的沉积速率和较好的薄膜质量。

综上所述,薄膜材料及其制备技术涉及多个领域,各种薄膜材料的制备方法各有特点,可以选择合适的技术来制备特定性质的薄膜材料。

随着对薄膜材料的深入研究和制备技术的不断进步,薄膜材料在各个应用领域的潜力将会得到更大的发掘。

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用薄膜材料是在基材上形成的一层薄膜状的材料,通常厚度在几纳米到几十微米之间。

它具有重量轻、柔韧性好、透明度高等特点,广泛应用于电子、光学、能源、医疗等领域。

薄膜材料制备的原理主要涉及物理蒸发、溅射、化学气相沉积等方法。

其中,物理蒸发是指将所需材料制成块状或颗粒状,利用高温或电子束加热,使材料从固态直接转变为蒸汽态,并在基材上沉积形成薄膜。

溅射是将材料制成靶材,用惰性气体或者稀释气体作为工作气体,在高电压的作用下进行放电,将靶材表面的原子或分子溅射到基材上形成薄膜。

化学气相沉积是指在一定条件下,将气态前体分子引入反应室,通过化学反应沉积到基材上,形成薄膜。

薄膜材料制备技术不仅包括上述原理所述的基本制备方法,还涉及到不同材料、薄膜厚度、表面质量等方面的特定要求。

例如,为了提高薄膜的品质和厚度均匀性,可采用多台蒸发源同时蒸发的方法,或者通过旋涂、喷涂等方法使得所需薄膜材料均匀地覆盖在基材上。

此外,为了实现特定功能,还可以通过控制制备条件、改变材料组成等手段来改变薄膜的特性。

薄膜材料具有多种应用领域。

在电子领域,薄膜材料可以用于制作集成电路的介质层、金属电极与基板之间的隔离层等。

在光学领域,薄膜材料可以用于制作光学滤波器、反射镜、透明导电膜等。

在能源领域,薄膜材料在太阳能电池、锂离子电池等器件中扮演重要角色。

在医疗领域,薄膜材料可以用于制作人工器官、医用伽马射线屏蔽材料等。

此外,薄膜材料还应用于防腐蚀涂料、食品包装、气体分离等领域。

虽然薄膜材料制备技术已经相对成熟,但是其制备过程中仍然存在一些挑战。

例如,薄膜厚度均匀性、结晶性能、粘附性能等方面的要求十分严格,制备过程中需要控制温度、压力、物质流动等多个参数的影响,以确保薄膜的质量。

此外,部分薄膜材料的制备成本相对较高,制约了其在大规模应用中的推广。

总的来说,薄膜材料制备原理、技术及其应用具有重要的实际意义。

通过不断改进制备技术,提高薄膜材料的制备效率和质量,将有助于推动薄膜材料在各个领域的更广泛应用。

【2024版】微电子工艺之薄膜技术

【2024版】微电子工艺之薄膜技术
生长速率的增加而下降;低温下, Nf∝ HPf0,且H 随生长速率的增加而增加,因此掺杂浓度与生长速率 成正比;。
二、外延掺杂及杂质再分布
3.杂质再分布
再分布:外延层中的杂质向衬底扩散;
衬底中的杂质向外延层扩散。
总杂质浓度分布:各自扩散的共同结果。
①衬底杂质的再分布(图3-21)
初始条件:N2(x,0)=Nsub,x<0; N2(x,0)=0,x>0; 边界条件一:衬底深处杂质浓度均匀,即
当vt» D1t 时,有
N1x,t
Nf 2
erfc
2
x D1t
二、外延掺杂及杂质再分布
当vt»2 D1t 时,有
N1(x,t)≈Nf
③总的杂质分布(图3-24)
N(x,t)=N1(x,t)± N2(x,t) “+”: 同一导电类型;
“-”:相反导电类型;
三、自掺杂(非故意掺杂)
1.定义
N 2 x
x 0
二、外延掺杂及杂质再分布
边Jd界条D件2 二Nx:2 在xx外f 延J层b 表J s面 (h2x=vxfN)2 ,扩x f 散,t 流密度Jd为
解得:
N2x,t
N sub 2
erfc
2
x D2 t
v h2 2h2
v
ex
p
D2
vt
x erfc
2vt x 2 D2t
①当hG» ks,则 NGS≈NG0,V= ks(NT/ NSi) Y,是表面反 应控制。
②当ks» hG,则 NGS ≈0, V= hG(NT/ NSi) Y,是质量转 移控制。
二、外延掺杂及杂质再分布
1. 掺杂原理-以SiH4-H2-PH3为例

材料科学中的薄膜制备技术研究综述

材料科学中的薄膜制备技术研究综述

材料科学中的薄膜制备技术研究综述薄膜作为一种重要的材料形态,在材料科学领域中具有广泛的应用。

薄膜制备技术的研究和发展,不仅能够扩展材料的功能性,并提高材料的性能,还可以为各个领域提供更多的应用可能性。

本文将综述材料科学中薄膜制备技术的研究进展,并重点探讨了几种常见的薄膜制备技术。

1. 物理气相沉积(PVD)物理气相沉积是一种常见的薄膜制备技术,它通过蒸发或溅射等方法将材料转化为蒸汽或离子,经过气相传输沉积在基底上形成薄膜。

物理气相沉积技术包括热蒸发、电子束蒸发、分子束外延和磁控溅射等方法。

这些方法在薄膜制备中具有高温、高真空和高能量等特点,能够制备出具有优异性能的薄膜。

然而,物理气相沉积技术在薄膜厚度的控制上存在一定的局限,且对于一些化学反应活性较高的材料来说,难以实现。

2. 化学气相沉积(CVD)化学气相沉积是一种将反应气体在表面上发生化学反应生成薄膜的方法。

CVD 技术根据反应条件的不同可以分为低压CVD、大气压CVD和等离子CVD等。

这些技术在实现复杂薄膜结构和化学组成控制上相较于PVD技术更具优势。

化学气相沉积技术可用于金属、氧化物、氮化物以及半导体材料等薄膜的制备。

然而,该技术所需的气体和化学物质成分较复杂,容易引起环境污染,并且对设备的要求较高。

3. 溶液法制备薄膜溶液法是一种常用的低成本、高效率的薄膜制备技术。

常见的溶液法包括旋涂法、浸渍法、喷涂法和柔性印刷法等。

这些方法通过将溶液中的溶质沉积在基底上,形成薄膜。

溶液法制备薄膜的优势在于简单易行、成本低、适用于大面积薄膜制备。

然而,溶液法制备出的薄膜常常具有较低的晶化程度和机械强度,且在高温和湿润环境下易失去稳定性。

4. 磁控溅射技术磁控溅射技术是一种通过离子轰击固体靶材的方法制备薄膜。

在磁控溅射过程中,离子轰击靶材,使靶材表面的原子转化为蒸汽,然后通过惰性气体的加速将蒸汽沉积在基底上。

磁控溅射技术可用于金属、氧化物、氮化物等薄膜的制备,并可实现厚度和成分的精确控制。

薄膜制备工艺技术

薄膜制备工艺技术

薄膜制备工艺技术薄膜制备工艺技术是指通过化学合成、物理沉积、溶液制备等方法制备出具有一定厚度和特殊性能的薄膜材料的技术。

薄膜广泛应用于光电子、微电子、光学、传感器、显示器、纳米技术等领域。

本文将详细介绍几种常见的薄膜制备工艺技术。

第一种是物理沉积法。

物理沉积法主要包括物理气相沉积法(PVD)和物理溶剂沉积法(PSD)两种。

其中,物理气相沉积法是将固态材料加热至其熔点或升华点,然后凝华在基底表面上形成薄膜。

而物理溶剂沉积法则是通过在沉积过程中溶剂的挥发使溶剂中溶解的材料沉积在基底表面上。

物理沉积法具有较高的沉积速度和较低的工艺温度,适用于大面积均匀薄膜的制备。

第二种是化学沉积法。

化学沉积法通过在基底表面上进行化学反应,使反应物沉积形成薄膜。

常见的化学沉积法有气相沉积法(CVD)、溶液法和凝胶法等。

气相沉积法是将气体反应物输送至反应室内,通过热、冷或化学反应将气体反应物沉积在基底表面上。

而溶液法是将溶解有所需沉积材料的溶液涂覆在基底表面上,通过溶剂挥发或加热使溶液中的沉积材料沉积在基底上。

凝胶法则是通过凝胶溶胶中的凝胶控制沉积材料的沉积,形成薄膜。

化学沉积法成本低、制备工艺简单且适用于大面积均匀薄膜的制备。

第三种是离子束沉积法(IBAD)、激光沉积法和磁控溅射法。

离子束沉积法是通过加速并聚焦离子束使其撞击到基底表面形成薄膜。

激光沉积法则是将激光束照射在基底表面上,通过激光能量转化和化学反应形成薄膜。

磁控溅射法是将材料附着在靶上,通过离子轰击靶表面并溅射出材料颗粒,最终沉积在基底表面上。

这些方法制备的薄膜具有优异的结构和性能,适用于制备复杂结构和功能薄膜。

综上所述,薄膜制备工艺技术包括物理沉积法、化学沉积法、离子束沉积法、激光沉积法和磁控溅射法等多种方法。

不同的方法适用于不同的材料和薄膜要求,可以根据具体需求选择合适的工艺技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计实验课程名称电子功能材料制备技术实验项目名称薄膜材料及薄膜技术专业班级学生姓名学号指导教师薄膜材料及薄膜技术薄膜技术发展至今已有200年的历史。

在19世纪可以说一直是处于探索和预研阶段。

经过一代代探索者的艰辛研究,时至今日大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位,各种材料的薄膜化已经成为一种普遍趋势。

其中包括纳米薄膜、量子线、量子点等低维材料,高K值和低K值介质薄膜材料,大规模集成电路用Cu布线材料,巨磁电阻、厐磁电阻等磁致电阻薄膜材料,大禁带宽度的“硬电子学”半导体薄膜材料,发蓝光的光电半导体材料,高透明性低电阻率的透明导电材料,以金刚石薄膜为代表的各类超硬薄膜材料等。

这些新型薄膜材料的出现,为探索材料在纳米尺度内的新现象、新规律,开发材料的新特性、新功能,提高超大规模集成电路的集成度,提高信息存储记录密度,扩大半导体材料的应用范围,提高电子元器件的可靠性,提高材料的耐磨抗蚀性等,提供了物质基础。

以至于将薄膜材料及薄膜技术看成21世纪科学与技术领域的重要发展方向之一。

一、薄膜材料的发展在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。

自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。

生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。

生物体生命现象的重要过程就是在这些表面上进行的。

细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。

膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。

细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。

细胞膜的这些结构和功能带来了生命,带来了神奇。

二、薄膜材料的分类目前,对薄膜材料的研究正在向多种类、高性能、新工艺等方面发展,其基础研究也在向分子层次、原子层次、纳米尺度、介观结构等方向深入,新型薄膜材料的应用范围正在不断扩大。

当前薄膜科学与技术得到迅猛发展的主要原因是,新型薄膜材料的研究工作,始终同现代高新技术相联系,并得到广泛的应用,常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。

近10年来,新型薄膜材料在以下几个方面的发展更为突出:(1)金刚石薄膜金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。

金刚石薄膜有很多优异的性质:硬度高、耐磨性好、摩擦系数高、化学稳定性好、热导率高、热膨胀系数小,是优良的绝缘体。

金刚石薄膜属于立方晶系,面心立方晶胞,每个晶胞含有8个C原子,每个C原子采取sp3杂化与周围4个C原子形成共价键,牢固的共价键和空间网状结构是金刚石硬度很高的原因。

利用它的高导热率,可将它直接积在硅材料上成为既散热又绝缘的薄层,是高频微波器件、超大规模集成电路最理想的散热材料。

利用它的电阻率大,可以制成高温工作的二极管,微波振荡器件和耐高温高压的晶体管以及毫米波功率器件等。

金刚石薄膜制备的基本原理是:在衬底保持在800~1000℃的温度范围内,化学气相沉积的石墨是热力学稳定相,而金刚石是热力学不稳定相,利用原子态氢刻蚀石墨的速率远大于金刚石的动力学原理,将石墨去除,这样最终在衬底上沉积的是金刚石薄膜。

金刚石薄膜的许多优良性能有待进一步开拓,我国已将金刚石薄膜纳入863新材料专题进行跟踪研究并取得了很大进展。

(2)铁电薄膜铁电薄膜的制备技术和半导体集成技术的快速发展,推动了铁电薄膜及其集成器件的实用化。

铁电材料已经应用于铁电动态随机存储器(FDRAM)、铁电场效应晶体管( FEET)、铁电随机存储器( FFRAM)、IC卡、红外探测与成像器件、超声与声表面波器件以及光电子器件等十分广阔的领域。

铁电薄膜的制作方法一般采用溶胶-凌胶法、离子束溅射法、磁控溅射法、有机金属化学蒸汽沉积法、准分子激光烧蚀技术等。

已经制成的晶态薄膜有铌酸锂、铌酸钾、钛酸铅、钛酸钡、钛酸锶、氧化铌和锆钛酸铅等,以及大量的铁电陶瓷薄膜材料。

(3)氮化碳薄膜美国伯克利大学物理系的M.L.Cohen教授以b-Si3N4晶体结构为出发点,预言了一种新的C-N化合物b-Si3N4,Cohen计算出b-Si3N4b-C3N4是一种晶体结构类似于b-Si3N4,具有非常短的共价键结合的C-N化合物,其理论模量为4.27Mbars,接近于金刚石的模量4.43 Mbars。

随后,不同的计算方法显示b-Si3N4具有比金刚石还高的硬度,不仅如此,b-Si3N4还具有一系列特殊的性质,引起了科学界的高度重视,目前世界上许多著名的研究机构都集中研究这一新型物质。

b-Si3N4的制备方法主要有激光烧蚀法、溅射法、高压合成、等离子增强化学气相沉积、真空电弧沉积、离子注入法等多种方法。

在CNx膜的诸多性能中,最吸引人的可能超过金刚石的硬度,尽管现在还没有制备出可以直接测量其硬度的CNx晶体,但对CNx膜硬度的研究已有许多报道。

(4)半导体薄膜复合材料以非晶硅氢合金薄膜(a—Si:H)和非晶硅基化物薄膜(a—SiGe:H、a—SiC:H、a—SiN:H等)为代表。

它有良好的光电特性,可以应用于太阳能电池,其特点是:廉价、高效率和大面积化。

为了改善这些器件的性能,又研制了多晶硅膜、微晶硅膜及纳米晶硅薄膜。

这些器件已列入各国发展计划中,如日本的阳光计划,欧洲的焦耳—热量计划,美国的百万屋顶计划,中国的973和863计划,并已发展成为高新技术产业,另一项有发展前途的是Cu(1nGa)Se2(小面积效率>18.8%)及口为16.4%的CdTe薄膜太阳电池也列入国家863计划。

这类半导体薄膜复合材料,特别是硅薄膜复合材料已开始用于低功耗、低噪声的大规模集成电路中,以减小误差,提高电路的抗辐射能力。

(5)超晶格薄膜材料随着半导体薄膜层制备技术的提高,当前半导体超晶格材料的种类已由原来的砷化镓、镓铝砷扩展到铟砷、镓锑、铟铝砷、铟镓砷、碲镉、碲汞、锑铁、锑锡碲等多种。

组成材料的种类也由半导体扩展到锗、硅等元素半导体,特别是今年来发展起来的硅、锗硅应变超晶格,由于它可与当前硅的前面工艺相容和集成,格外受到重视,甚至被誉为新一代硅材料。

半导体超晶格结构不仅给材料物理带来了新面貌,而且促进了新一代半导体器件的产生,除上面提到的可制备高电子迁移率晶体管、高效激光器、红外探测器外,还能制备调制掺杂的场效应管、先进的雪崩型光电探测器和实空间的电子转移器件,并正在设计微分负阻效应器件、隧道热电子效应器件等,它们将被广泛应用于雷达、电子对抗、空间技术等领域。

(6)纳米复合薄膜材料随着纳米材料的出现,纳米薄膜(涂层)技术也得到相应的发展。

时至今日,已从单一材料的纳米薄膜转向纳米复合薄膜的研究,薄膜的厚度也由数微米发展到数纳米的超薄膜。

纳米复合薄膜是指由特征维度尺寸为纳米数量级(1~100nm)的组元镶嵌于不同的基体里所形成的复合薄膜材料,有时也把不同组元构成的多层膜如超晶格称为纳米复合薄膜,它具有传统复合材料和现代纳米材料两者的优越性。

到目前为止,概括起来纳米复合材料可分为三种类型:①0-0复合,即不同成分、不同相或不同种类的纳米粒子复合而成的纳米固体,通常采用原位压块、相转变等方法实现,结构具有纳米非均匀性,也称为聚集型;②0-2复合,即把纳米粒子分散到二维的薄膜材料中,它又可分为均匀弥散和非均匀弥散两类,称为纳米复合薄膜材料。

有时,也把不同材质构成的多层膜如超晶格也称为纳米复合薄膜材料。

③0-3复合,即纳米粒子分散在常规三维固体中。

另外,介孔固体亦可作为复合母体通过物理或化学方法将纳米粒子填充在介孔中,形成介孔复合的纳米复合材料。

纳米复合薄膜是一类具有广泛应用前景的纳米材料,按用途可分为两大类,即纳米复合功能薄膜和纳米复合结构薄膜。

前者主要利用纳米粒子所具有的光、电、磁方面的特异性能,通过复合赋予基体所不具备的性能,从而获得传统薄膜所没有的功能。

而后者主要通过纳米粒子复合提高机械方面的性能。

由于纳米粒子的组成、性能、工艺条件等参量的变化都对复合薄膜的特性有显著的影响,因此可以在较多自由度的情况下人为地控制纳米复合薄膜的特性。

组成复合薄膜的纳米粒子可以是金属、半导体、绝缘体、有机高分子等材料,而复合薄膜的基体材料可以是不同于纳米粒子的任何材料。

人们采用各种物理和化学方法先后制备了一系列金属/绝缘体、半导体/绝缘体、金属/半导体、金属/高分子、半导体/高分子等纳米复合薄膜。

特别是硅系纳米复合薄膜材料得到了深入的研究,人们利用热蒸发、溅射、等离子体气相沉积等各种方法制备了Si/SiOx、Si/a-Si:H、Si/SiNx、Si/SiC等纳米镶嵌复合薄膜。

尽管目前对其机制不十分清楚,却有大量实验现象发现在此类纳米复合薄膜中观察到了强的从红外到紫外的可见光发射。

由于这一类薄膜稳定性大大高于多孔硅,工艺上又可与集成电路兼容,因而被期待作为新型的光电材料应用于大规模光电集成电路。

由于纳米复合薄膜的纳米相粒子的量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应等使得它们的光学性能、电学性能、力学性能、催化性能、生物性能等方面呈现出常规材料不具备的特性。

因此,纳米复合薄膜在光电技术、生物技术、能源技术等各个领域都有广泛的应用前景。

现以硅系纳米复合薄膜材料为例介绍它们的特性及其应用。

三、纳米复合薄膜的制备技术膜的方法进行适当的改进,控制必要的参数就可以获得纳米复合薄膜,比较常见的制备方法有等离子体化学气相沉积技术(PCVD)、溶胶-凝胶法(sol-gel)和溅射法(Sputtering)热分解化学气相沉积技术(CVD)等。

(1)等离子体化学气相沉积技术(PCVD)PCVD是一种新的制膜技术,它是借助等离子体使含有薄膜组成原子的气态物质发生化学反应而在基板上沉积薄膜的一种方法,特别适合于半导体薄膜和化合物薄膜的合成,被视为第二代薄膜技术。

PCVD技术是通过反应气体放电来制备薄膜的,这就从根本上改变了反应体系的能量供给方式,能够有效地利用非平衡等离子体的反应特征。

当反应气体压力为101~102Pa时,电子温度比气体温度约高1~2个数量级,这种热力学非平衡状态为低温制备纳米薄膜提供了条件。

由于等离子体中的电子温度高达104K,有足够的能量通过碰撞过程使气体分子激发、分解和电离,从而大大提高了反应活性,能在较低的温度下获得纳米级的晶粒,且晶粒尺寸也易于控制。

相关文档
最新文档