微生物代谢类型

合集下载

第五章 微生物的代谢

第五章 微生物的代谢

为混合酸发酵。
EMP
葡萄糖
乳酸、乙酸、甲酸 丙酮酸 乙醇 、CO2 、H2 琥珀酸
五 丙酮-丁醇发酵
——严格厌氧菌进行的唯一能大规模生产的发酵产 品。(丙酮、丁醇、乙醇混合物,其比例3:6:1)
——丙酮丁醇梭菌(Clostridium acetobutyricum
2丙酮酸 2乙酰-CoA
缩合
乙酰-乙酰 CoA
• 为细胞生命活动提供ATP 和 NADH • 是连接其它几个重要代谢途径的桥梁 • 为生物合成提供多种中间代谢物
2. HM途径(磷酸戊糖支路, 单磷酸己糖途径)
ATP 12NADPH+H+ 36ATP 35ATP
6C6
6C5
经过系列反应后合成己糖 6CO2
5C6
C6为己糖或己糖磷酸;C5为核酮糖-5-磷酸;打方框的为终产物; NADPH+H+必须先由转氢酶将其上的氢转到NAD+上并变成 NADPH+H+后,才能进入呼吸链产ATP;
NADH + H+ NAD+
•异型乳酸发酵途径:肠膜明串珠菌,短乳杆菌
PK/ HK
葡萄糖
乳酸 + 乙醇 + CO2 + 1ATP
•双岐发酵途径:双岐杆菌
PK/ HK 葡萄糖 乳酸 + 乙酸 + CO2 + 2.5ATP
三 丙酸发酵(丙酸细菌,厌氧菌)
葡萄糖
EMP
丙酮酸
丙酸
乳酸
四 混合酸发酵
由于代谢产物中含有多种有机酸,故将其称
生活在盐湖及海边的岩池等盐浓度很高环境
胞内积累高浓度的甘油从而使细胞的渗透压保持平衡

10-12 第五章 微生物的代谢

10-12 第五章  微生物的代谢

1、生物氧化的形式:
包括脱氢或脱电子
①失电子:
Fe2+ → Fe3+ + e CH3-CHO
②化合物脱氢、递氢: CH3-CH2-OH
NAD NADH2
2、生物氧化的过程: 脱氢(或电子)、递氢(或电子)和受氢(或电子)三 个阶段
3、生物氧化的功能: 产能(ATP)、产还原力[H]和产小分子中间代谢物
德国: (Carl Neuberg)
目前甘油生产中使用的微生物 Dunaliella aslina(一种嗜盐藻类) 生活在盐湖及海边的岩池等盐浓度很高环境
胞内积累高浓度的甘油使细胞的渗透压保持平衡
由EMP途径中丙酮酸出发的发酵
②同型乳酸发酵:发酵产物只有乳酸
丙酮酸
NADH2
乳酸
同型乳酸发酵菌株有: 德氏乳杆菌(L.delbruckii)、嗜酸乳杆菌(L.acidophilus)、植物乳杆菌 (L.plantarum)、干酪乳杆菌(L.casei)、粪链球菌(Streptococcus faecalis)
(5)Stickland反应
氨基酸同时为碳源、氮源和能源 以一种氨基酸为H供体,而另一种氨基酸为H受体来实现 生物氧化产能的发酵类型。
3乙酸
丙氨酸
+
2甘氨酸
3NH3
CO2 ATP
Stickland反应特点:
部分氨基酸的氧化与另一些氨基酸的还原相偶联; 产能效率低,1ATP/1G。
各途经的相互关系
H2O
2-酮-3-脱氧-6-磷酸-葡萄糖酸
丙酮酸
~~醛缩酶
(KDPG)
有氧时与TCA循环连接 无氧时进行细菌乙醇发酵
葡萄糖只经过4步反应即可快速获得由EMP途径须经10步 才能获得的丙酮酸。

微生物学-第六章-微生物的代谢课件

微生物学-第六章-微生物的代谢课件

G
6-磷酸-果糖
特征性酶 磷酸己糖酮解酶
4-磷酸-赤藓糖 + 乙酰磷酸
6-磷酸-果糖
5-磷酸-木酮糖 ,5-磷酸-核糖
戊糖酮解酶
乙酸
3--磷酸甘油醛+ 乙酰磷酸
乳酸
乙酸
1 G 乳酸 + 1.5乙酸 + 2.5 ATP
三、发酵(fermentantion)
1、定义
广义:利用微生物生产有用代谢一种生产方式。 狭义:厌氧条件下,以自身内部某些中间代谢
氧化氮还原酶
反硝化意义:
1)使土壤中的氮(硝酸盐NO3-)还原成氮气而消失,降低土壤的肥力;
2)反硝化作用在氮素循环中起重要作用。
硫酸盐呼吸(硫酸盐还原)
——厌氧时,SO42- 、SO32-、S2O32- 等为末端电 子受体的呼吸过程。
特点:
a、严格厌氧; b、大多为古细菌 c、极大多专性化能异氧型,少数混合型; d、最终产物为H2S;
用所需的硝酸盐还原酶A亚硝酸还原酶等 c 兼性厌氧 细菌:铜绿假单胞、地衣芽孢杆菌等。
硝酸盐作用
同化性硝酸盐作用:
NO3- NH3 - N R - NH2 异化性硝酸盐作用:
无氧条件下,利用NO3-为最终氢受体
NO3- NO2 NO N2O N2
硝酸盐还原酶
亚硝酸还原酶
氧化亚氮还原酶
a、a1、a2、a4、b、b1、c、c1、c4、c5、d、o等; 末端氧化酶:
cyt a1、a2、a3、d、o,H2O2酶、过氧化物酶;呼吸链组分多变 存在分支呼吸链:
细菌的电子传递链更短并P/O比更低,在电子传递链的几个位置进入链和 通过几个位置的末端氧化酶而离开链。 E.coli (缺氧) CoQ cyt.b556 cyt.o

微生物代谢

微生物代谢

微生物代谢第三章:微生物代谢广义的代谢--生命体进行的一切化学反应。

代谢分为能量代谢和物质代谢,分解代谢和合成代谢。

分解代谢:复杂营养物分解为简单化合物(异化作用)。

合成代谢:简单小分子合成为复杂大分子(同化作用)二者关系初级和次级代谢依据代谢产物在微生物中作用不同,又有初级代谢和次级代谢。

初级代谢:能使营养物转化为结构物质、具生理活性物质或提供生长能量的一类代谢。

产物有小分子前体物、单体、多聚体等生命必需物质。

次级代谢:某些微生物中并在一定生长时期出现的一类代谢。

产物有抗生素、酶抑制剂、毒素、甾体化合物等,与生命活动无关,不参与细胞结构,也不是酶活性必需,但对人类有用。

二者关系:先初后次,初级形成期也是生长期,只有大量生长,才能积累产物。

第1节:微生物能量代谢微生物对能量利用:有机物——化能异养菌日光——光能营养菌通用能源还原态无机物——化能自养菌A TP只有ATP和酰基辅酶A起偶联作用,其他高能化合物只作为〜P 供体。

生物氧化过程分为:脱氢、递氢、受氢三个阶段。

生物氧化功能:产能(A TP)、产还原力[H]、产小分子中间代谢物。

以下主要讲述化能异养微生物的生物氧化和产能。

一、底物(基质)脱氢的四条主要途径以葡萄糖作为典型底物1、EMP途径(糖酵解途径)有氧时,与TCA连接,将丙酮酸彻底氧化成二氧化碳和水。

无氧时,丙酮酸进一步代谢成有关产物。

2、HMP途径(己糖-磷酸途径)产生大量NADPH2和多种重要中间代谢物。

3、ED途径2-酮-3-脱氧-6-磷酸葡萄糖酸裂解途径KDPG是少数缺乏完整EMP的微生物具有的一种替代途径,细菌酒精发酵经ED进行。

4、TCA循环(三羧酸循环)真核在线粒体中,原核在细胞质中。

TCA在代谢中占有重要枢纽地位四种途径产能比较:二、递氢和受氢根据递氢特别是最终氢受体不同划分1、发酵(分子内呼吸)无氧条件下,底物脱氢后产生的还原力不经呼吸链而直接传递给某一中间代谢物的低效产能反应。

微生物新陈代谢

微生物新陈代谢

生物氢气
某些微生物能够利用光合作用或发酵作用产 生氢气,为氢能源的生产提供了新的途径。
感谢您的观看
THANKS
微生物新陈代谢的类型
01
02
03
有氧呼吸
微生物在有氧环境下,通 过氧化反应将有机物彻底 氧化分解,释放出能量。
无氧呼吸
微生物在无氧环境下,通 过发酵或无氧呼吸将有机 物氧化分解,释放出能量。
光合作用
某些光合细菌和藻类能够 利用光能将二氧化碳和水 转化为有机物,并释放出 氧气。
微生物新陈代谢的过程
的作用下进一步分解,释放大量能量。
无氧呼吸的产物
要点一
总结词
无氧呼吸的产物通常是二氧化碳、乙醇、乳酸等。
要点二
详细描述
在无氧呼吸过程中,有机物被氧化分解成不同的产物,例 如,葡萄糖在乳酸菌的无氧呼吸过程中被分解成乳酸,而 在酵母菌的无氧呼吸过程中则被分解成乙醇和二氧化碳。 这些产物对于微生物本身具有一定的生理意义,例如乳酸 可以降低细胞内的pH值,增强微生物的耐酸性;乙醇和二 氧化碳则可以作为微生物的能量来源和碳源。
无氧呼吸的能量转换
总结词
无氧呼吸的能量转换效率通常较低,但也有例外。
详细描述
无氧呼吸过程中释放的能量并不像有氧呼吸那样完全 、高效地转换为ATP中的化学能。因此,无氧呼吸的 能量转换效率通常较低。然而,有些微生物在无氧呼 吸过程中也能产生大量的能量,例如醋酸细菌的无氧 呼吸过程就可以产生大量的能量,其能量转换效率与 有氧呼吸相差无几。此外,一些微生物在无氧呼吸过 程中可以将部分能量转换为热能,以维持微生物自身 的温度。
发酵的产物
总结词
发酵的产物包括酒精、乳酸、乙酸、丁酸等,这些产物具有广泛的应用价值。

常见微生物的代谢方式

常见微生物的代谢方式

常见微生物的代谢方式马丽甘肃省临夏回民中学(731100)微生物种类繁多,代谢方式多样,本文将一些常见微生物的代谢方式归纳如下。

所涉及生物中,除特别标注外,其它均为原核生物。

1、光能自养需氧型这类微生物以光为能源,以CO2为主要碳源,适合生存于有氧环境,如:蓝藻、衣藻(原生生物)。

2、化能自养需氧型这类微生物以无机化学能为能源,以CO2为主要碳源,适合生存于有氧环境,如:铁细菌、无色硫细菌、硝化细菌。

3、光能自养厌氧型这类微生物如:绿硫菌,以光为能源,以CO2为主要主要碳源;有光合色素,进行光合作用获取生长所需要的能量;以无机物如H2、H2S、S等作为供氢体或电子供体,使CO2还原为细胞物质。

适合生存于无氧环境。

4、化能异养需氧型这类微生物的能源和碳源均来自于有机物,适合生存于有氧环境,真菌和绝大多数的细菌都是这一类型,常见的有:霉菌(真核生物)、草履虫及变形虫(原生生物)、放线菌、根瘤菌、圆褐固氮菌、肺炎双球菌、结核杆菌、霍乱弧菌、炭疽杆菌、麻风杆菌、黄色短杆菌、土壤农杆菌、枯草芽孢杆菌、苏云金芽孢杆菌、谷氨酸棒状杆菌等。

5、化能异养厌氧型这类微生物的能源和碳源也是均来自于有机物,但是只有在缺氧的条件下才能很好的生长,如:乳酸菌、甲烷杆菌、反硝化细菌、破伤风杆菌、幽门螺旋杆菌。

6、化能异养兼性厌氧型这类微生物的能源和碳源也是均来自于有机物,在有氧和无氧的条件下均能生长,如:大肠杆菌、酵母菌(真核生物)、金黄色葡萄糖球菌、支原体、酿脓链球菌。

7、兼性营养需氧型这类微生物比较少见,如:裸藻,又叫眼虫(原生生物),适合生存于有氧环境,它在含有有机物的水中,能够靠细胞膜吸取水里的有机物“食物”,过着动物式的化能异养生活。

但是同时,眼虫的细胞中具有含叶绿素的叶绿体,在无有机物的情况下,能够自己制造营养物质进行光合作用。

因此兼有光能自养和化能异养的代谢方式。

8、兼性营养兼性厌氧型这类微生物也是比较少见,如:红螺菌,它的同化方式是兼性营养型,以光为能源,以二氧化碳为主要碳源,以水或其他无机物作为供氢体,进行光合作用,还原CO2合成有机物。

微生物代谢类型

微生物代谢类型

一、微生物代谢类型:1.细菌:原核类:具细胞结构,但细胞内无核膜和核仁的分化,也无复杂的细胞器,包括:细菌(杆状、球状、螺旋状)、放线菌、蓝细菌、支原体、衣原体、立克次氏体、螺旋体。

①细菌:三册书中所涉及的所有细菌的种类:乳酸菌、硝化细菌(代谢类型);肺炎双球菌S型、R型(遗传的物质基础);结核杆菌和麻风杆菌(胞内寄生菌);根瘤菌、圆褐固氮菌(固氮菌);大肠杆菌、枯草杆菌、土壤农杆菌(为基因工程提供运载体,也可作为基因工程的受体细胞);苏云金芽孢杆菌(为抗虫棉提供抗虫基因);假单孢杆菌(分解石油的超级细菌);甲基营养细菌、谷氨酸棒状杆菌、黄色短杆菌(微生物的代谢);链球菌(一般厌氧型);产甲烷杆菌(严格厌氧型)等②放线菌:是主要的抗生素产生菌。

它们产生链霉素、庆大霉素、红霉素、四环素、环丝氨酸、多氧霉素、环已酰胺、氯霉素和磷霉素等种类繁多的抗生素(85%)。

繁殖方式为分生孢子繁殖。

③衣原体:砂眼衣原体。

2.病毒:病毒类:无细胞结构,主要由蛋白质和核酸组成,包括病毒和亚病毒(类病毒、拟病毒、朊病毒)①动物病毒:RNA类(脊髓灰质炎病毒、狂犬病毒、麻疹病毒、腮腺炎病毒、流感病毒、艾滋病病毒、口蹄疫病毒、脑膜炎病毒、SARS病毒)DNA类(痘病毒、腺病毒、疱疹病毒、虹彩病毒、乙肝病毒)②植物病毒:RNA类(烟草花叶病毒、马铃薯X病毒、黄瓜花叶病毒、大麦黄化病毒等)③微生物病毒:噬菌体。

3.真核类:具有复杂的细胞器和成形的细胞核,包括:酵母菌、霉菌(丝状真菌)、蕈菌(大型真菌)等真菌及单细胞藻类、原生动物(大草履虫、小草履虫、变形虫、间日疟原虫等)等真核微生物。

①霉菌:可用于发酵上工业,广泛的用于生产酒精、柠檬酸、甘油、酶制剂(如蛋白酶、淀粉酶、纤维素酶等)、固醇、维生素等。

在农业上可用于饲料发酵、生产植物生长素(如赤酶霉素)、杀虫农药(如白僵菌剂)、除草剂等。

危害如可使食物霉变、产生毒素(如黄曲霉毒素具致癌作用、镰孢菌毒素可能与克山病有关)。

第三章微生物代谢

第三章微生物代谢

合成。
四、调节的方式
(1)、 直链式或不分支代谢途径的调节
末段产物浓度变化,对该生物合成途径中的关键
酶进行反馈调节。 (2)、分支生物合成途径的调节 a. 同工酶反馈调节
同工酶的反馈抑制 • 同功酶是指能催化同一生化反应,但它们的结构稍有不同,可分
别被相应的末端产物抑制的一类酶。
• 特点是:途径中第一个反应被两个不同的酶所催化,一个酶被H
前体的种类:
• • • • • • • • •
糖和糖苷 氨基酸:色氨酸、络氨酸等 C1化合物:甲基 脂肪酸 嘌呤、嘧啶 短链脂肪酸:乙酸、丙酸、丁酸等 异戊二烯单位:甲羟戊酸等 环己醇:肌醇 脒基:精氨酸
前体的作用:
• 起抗生素建筑材料的作用 • 例如:丙酮酸可诱导氨基酸的合成,是肽
类抗生素、头孢、青霉素等合成的重要物 质。 • 诱导抗生素生物合成的作用 • 例如:过量的赖氨酸可增加头霉素的发酵 单位,丙醇和丙酸可促进红霉素的生产。
(4) 氮代谢物的调节
• 许多次级代谢产物的生物合成同样受到氮分解产物的
影响。黄豆饼粉等利用较慢的氮源,可以防止和减弱 氮代谢物的阻遏作用,有利于次级代谢产物的合成; 而以无机氮或简单的有机氮等容易利用的氮作为氮源 (铵盐、硝酸盐、某些氨基酸)时,能促进菌体的生 长,却不利于次级代谢产物的合成。
• 例如,易利用的铵盐有利于灰色链霉菌迅速生长,但
二、调节的机制:
酶活性调节和酶合成调节
1、微生物代谢调节的部位
(1)、通道 能克服细胞膜屏障的某些输送系统,受ATP的影 响和透性酶的调节。
(2)、通量
原核生物控制代谢物通量的方法--调节现
有酶量(关键酶的合成或降解速率)和改变酶
分子活性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微生物的代谢类型
微生物的代谢类型有3种,分别是自养,腐生,寄生。

微生物的代谢指微生物在存活期间的代谢活动。

微生物在代谢过程中,会产生多种多样的代谢产物,根据代谢产物与微生物生长繁殖的关系,可以分为初级代谢产物和次级代谢产物两类。

初级代谢产物是指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,次级代谢产物是指微生物生长到一定阶段才产生的化学结构十分复杂、对该微生物无明显生理功能,或并非是微生物生长和繁殖所必需的物质。

相关文档
最新文档