励磁涌流(da)
励磁涌流特点

励磁涌流特点
以下是 7 条关于励磁涌流特点的内容:
1. 哎呀呀,励磁涌流第一个特点就是数值很大呢!就好像突然来了一股很强的洪流!比如说,当变压器刚通电的那一瞬间,那电流可就像洪水猛兽一样涌出来啦,吓人一跳!
2. 嘿,励磁涌流还具有衰减快的特点呢!就像一阵狂风,来得快去得也快。
你想想看,刚才还那么大的电流,不一会儿就迅速变小了,是不是很神奇?就好比短跑选手冲过终点后迅速减速一样。
3. 嘿呀,它还有一个特点是包含大量的非周期分量!这可不好理解了吧。
那就想象一下,就像是一锅大杂烩里有各种奇奇怪怪的东西混在一起,这些非周期分量就是那些特别的存在。
比如在电力系统中,励磁涌流里的这些非周期分量可不容忽视哟!
4. 哇塞,励磁涌流的出现具有随机性呢!这就像是抽奖,你永远不知道它啥时候会冒出来。
可能这一次变压器启动很平稳,下一次突然就来了个大的励磁涌流,老天爷都猜不到呢!就像你出门会不会遇到意外惊喜一样,谁知道呢?
5. 瞧啊,励磁涌流还有一个特点,会导致波形出现畸变!这就好像原本整齐的队伍突然变得歪七扭八啦!比如说在某些情况下,励磁涌流让电流的波形变得奇奇怪怪的,可有意思啦。
6. 想不到吧,励磁涌流还会产生高次谐波呢!这就如同在一首曲子里突然多了很多奇怪的音符。
打个比方,在电力世界里,励磁涌流就是那个制造这些特殊音符的家伙,让情况变得复杂起来啦。
7. 得记住呀,励磁涌流的尖顶波特性也很重要呢!它就好像是一个尖尖的小山包。
比如在一些测量仪器上,就可以很明显地看到这样的尖顶波呢,是不是很特别呢?
总之,励磁涌流的特点可不少,这些特点都对电力系统有着重要的影响呢!。
什么是励磁涌流(1)

什么是励磁涌流?变压器励磁涌流是:变压器全电压充电时在其绕组中产生的暂态电流。
变压器投入前铁芯中的剩余磁通与变压器投入时工作电压产生的磁通方向相同时,其总磁通量远远超过铁芯的饱和磁通量,因此产生极大的涌流,其中最大峰值可达到变压器额定电流的6-8倍。
励磁涌流随变压器投入时系统电压的相角,变压器铁芯的剩余磁通和电源系统地阻抗等因素而变化,最大涌流出现在变压器投入时电压经过零点瞬间(该时磁通为峰值)。
变压器涌流中含有直流分量和高次谐波分量,随时间衰减,其衰减时间取决于回路电阻和电抗,一般大容量变压器约为5-10秒,小容量变压器约为0.2秒左右。
1 概述变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。
当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。
2 励磁涌流的特点当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下:1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。
2)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。
因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。
3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。
4)励磁涌流的数值很大,最大可达额定电流的8~10倍。
当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。
3 励磁涌流的大小3.1 合闸瞬间电压为最大值时的磁通变化在交流电路中,磁通Φ总是落后电压u90°相位角。
如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。
在这种情况下,变压器不会产生励磁涌流。
发电机励磁涌流产生的原因

发电机励磁涌流产生的原因引言发电机励磁涌流问题是发电机运行中常见的一个问题。
当发电机由停止状态转为运行状态时,会产生励磁涌流,这可能会对发电机和整个电力系统造成负面影响。
本文将深入探讨励磁涌流产生的原因及其影响,并提出相应的解决方法。
励磁涌流的定义励磁涌流是指在发电机启动的瞬间,由于励磁系统中磁场的建立而引起的暂态过程中的电流急剧增长现象。
这种电流的增长速度非常快,可能会达到发电机额定电流的数倍,因此励磁涌流对发电机和电力系统而言都是一种不可忽视的问题。
励磁涌流产生的原因励磁涌流产生的原因主要包括以下几个方面:1.磁场建立的延迟:当发电机启动时,励磁系统需要一段时间来建立稳定的磁场。
在这个过程中,励磁线圈中会出现较大的电流,导致励磁涌流的产生。
2.励磁线圈的电感:励磁线圈是由许多匝数较多的线圈组成的,它们之间的电感相互耦合。
当磁场建立的过程中,由于电感产生的互感作用,电流会在线圈之间迅速传播,形成励磁涌流。
3.发电机轴的机械性能:发电机轴的机械性能决定了励磁系统的机械惯性。
在发电机启动瞬间,由于励磁线圈的电感和电流的急剧增长,励磁系统会产生很大的机械冲击力,这也是励磁涌流产生的重要原因之一。
4.发电机内部电容的充放电:发电机内部存在着电容,当磁场建立的过程中,电容会逐渐充电,导致励磁涌流的产生。
励磁涌流的影响励磁涌流对发电机和电力系统都会产生一定的影响,主要包括以下几个方面:1.电流冲击:励磁涌流会导致电流瞬间增大,可能会超过发电机和电力系统的额定电流。
这会对设备和电网的安全运行造成威胁,甚至导致设备的损坏。
2.发电机振动和噪声:励磁涌流会引起发电机内部的机械冲击,导致发电机振动和噪声的增加,可能影响发电机的稳定性和寿命。
3.电网稳定性:励磁涌流会对电网产生瞬态扰动,可能导致电网的电压和频率波动,进而影响整个电力系统的稳定性和可靠性。
4.发电机保护系统的动作:励磁涌流会引起保护系统的动作,导致发电机的停机和重新启动,给电力系统带来一定的负荷调整问题。
励磁涌流的定义

励磁涌流的定义嘿,朋友们!今天咱来聊聊励磁涌流呀!这励磁涌流啊,就好像是电路世界里的一个小调皮鬼!你想啊,当变压器啊、电动机啊这些大宝贝们,突然被接通电源的时候,就像一个人猛地被叫醒,那一下子的反应可大了去了。
这时候啊,电流就会像洪水一样涌出来,比平时正常工作的时候大多啦,这就是励磁涌流啦!它就像是一场突如其来的风暴,在电路的海洋里掀起巨浪。
平时安安静静的电流,一下子变得汹涌澎湃起来。
你说这像不像一个平时很乖的孩子,突然调皮起来,让你有点措手不及呀!这励磁涌流的出现啊,可给我们带来了不少麻烦呢。
它可能会让保护装置误动作,就好像是一个敏感的警报器,稍微有点风吹草动就响个不停。
本来没啥大事儿,它这么一闹,反而让人紧张兮兮的。
而且啊,它还可能影响到其他设备的正常运行呢。
就好比一个班级里有个调皮捣蛋的学生,总是扰乱课堂秩序,让其他同学也没法好好上课。
那怎么对付这个小调皮鬼呢?这可得好好研究研究。
我们得了解它的脾气秉性,知道它什么时候会出现,出现的时候有多大的威力。
这样我们才能找到合适的办法来应对它呀。
比如说,我们可以采用一些特殊的保护装置,就像是给电路穿上了一层坚固的铠甲,让励磁涌流的冲击没那么容易得逞。
或者我们可以优化电路的设计,让它没那么容易被励磁涌流影响到。
你说这励磁涌流是不是很有意思呀?它虽然会给我们带来一些麻烦,但也让我们更加深入地了解了电路的奥秘。
就像生活中的一些小困难一样,虽然会让我们头疼一阵子,但也让我们变得更强大,更有经验呀!所以啊,我们可不能小瞧了这励磁涌流,要认真对待它,找到和它相处的好办法。
这样我们才能让电路世界更加稳定、更加可靠地运行呀!这不就是我们一直追求的嘛!大家说是不是呀!原创不易,请尊重原创,谢谢!。
行业资料-16-17-励磁涌流解决措施

励磁涌流解决措施一、了解励磁涌流。
1.1 什么是励磁涌流。
朋友们!咱得先知道啥是励磁涌流。
简单说呢,这就像是电路里突然来了一股不受控制的大电流,在变压器刚通电的时候,它就可能冒出来。
这就好比一个刚睡醒的大力士,突然发力,力量有点不受控制了。
这股电流可比正常运行时的电流大好多倍呢,要是不处理好,那可会给设备带来不少麻烦。
1.2 励磁涌流的危害。
这励磁涌流啊,危害可不小。
它可能会让变压器的保护装置误动作,就像一个本来正常站岗的士兵,突然被假警报给骗了,乱了阵脚。
这一误动作,就可能导致停电之类的事故,影响大家用电。
而且大电流长时间冲击设备,就像一个人总是受到强烈撞击一样,设备的寿命也会大大缩短,就像好东西被过度消耗,很是可惜。
二、传统解决措施。
2.1 采用速饱和中间变流器。
这种方法就像是给电流设置一个聪明的守门员。
速饱和中间变流器啊,它对励磁涌流有很强的识别能力。
正常电流能顺利通过,就像好人正常通行一样,但是励磁涌流一来,它就把这股大电流给挡住了,不让它干扰后面的设备,避免保护装置误动作。
不过呢,这种方法也不是十全十美,它对某些特殊情况的适应性可能还差点火候。
2.2 二次谐波制动。
二次谐波制动可是个挺巧妙的办法。
咱都知道谐波就像电流里的小杂音,正常电流里二次谐波成分比较少,而励磁涌流里二次谐波含量比较高。
我们就利用这个特点,设置一个门槛,当二次谐波达到一定比例的时候,就判定是励磁涌流,然后制动保护装置,不让它误动作。
这就好比根据声音特征来识别是朋友还是坏人,但是这个门槛的设置也需要很精确,不然也容易出错。
三、新型解决措施。
3.1 基于波形对称原理的方法。
这种方法可有意思了。
它是研究电流波形的对称性。
正常电流的波形是比较对称的,就像一个左右两边很均匀的物体,但是励磁涌流的波形不对称,就像一个歪歪扭扭的东西。
通过对波形对称性的判断,就能把励磁涌流找出来,然后采取措施。
这就像是通过看一个东西的形状来判断它是不是正常的,很直观。
励磁涌流及二次谐波制动

励磁涌流及二次谐波制动1. 什么是励磁涌流?变压器励磁涌流是:变压器在空载合闸投入电网时在其绕组中产生的暂态电流。
变压器投入前铁芯中的剩余磁通与变压器投入时工作电压产生的磁通方向相同时,其总磁通量远远超过铁芯的饱和磁通量,使铁芯瞬间饱和,因此产生极大的冲击励磁电流(最大峰值可达到变压器额定电流的6-8倍),通常称为励磁涌流。
2.励磁涌流具体是怎么产生的?简单来说呢,励磁涌流是由于变压器铁芯饱和造成的,先以一台单相变压器的空载合闸为例来学习一下励磁涌流产生的原因。
我们先来了解一下剩磁的概念:下图曲线是铁磁性材料特有的曲线,对于一个没有被磁化的铁磁材料,其磁感应强度B会随着磁场强度H的增加沿图中虚线所示的路径,逐渐增强,当到达a点时,磁感应强度B不再随磁场强度H线性增加,而是趋于平稳,此时铁磁材料达到磁饱和。
此时若磁场强度H逐渐减小到0,磁感应强度B并不会沿图中虚线路径减小到0,而是由a点下降到b点,在b点剩余的磁感应强度B称为剩磁。
讲到这里相信大家对磁饱和以及剩磁的概念已经了解到根(wan)深(quan)蒂(bu)固(dong)的程度了吧!下面开始正题:变压器是一个电磁元件,其磁通的建立和维持需要励磁电流,当变压器空载投入或外部故障切除后电压恢复时,可能会出现数值很大的励磁电流称为励磁涌流。
变压器稳态运行情况下,设绕组端电压u为:忽略变压器的漏抗和绕组电阻,设匝数N=1,则用标幺值表示的电压u与磁通Φ之间的关系为:当变压器空载合闸时,由电压u与磁通Φ之间的微分方程求解可得:式中:C为积分常数。
由于铁芯中的磁通不能突变,设变压器空载投入瞬间(t=0)时铁芯的ΦSY剩磁为ΦSY,则积分常数C为:于是空载合闸时变压器铁心中的磁通为:式中第一项为稳态磁通,后两项为暂态磁通,若及及变压器损耗,暂态磁通将会随时间衰减,一般大容量变压器约为5-10秒,小容量变压器约为0.2秒左右。
以上推导都是大家在大学期间学习的知识,相信大家记(wang)忆(gan)犹(jing)新(le)。
励磁涌流产生的原因及应对策略(通用版)

( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改励磁涌流产生的原因及应对策略(通用版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes励磁涌流产生的原因及应对策略(通用版)随着经济的发展,电业因其无污染等特点被广泛应用到社会的各方面,变压器作为交流电力系统重要的电气设备,其正常运行直接关系着人民生命财产的安全。
本文从变压器励磁涌流释义开始、随后就变压器励磁涌流产生原因进行了分析研究,最后就变压器励磁涌流的应对策略提出了很好的意见。
变压器的励磁电流是只流入变压器接通电源一侧绕组的,对纵差保护回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流。
因此,它必然给纵差保护的正确工作带来影响。
下面笔者结合工作实际谈一下励磁涌流产生的原理及应对策略。
变压器励磁涌流释义1.1励磁涌流的定义变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。
当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。
1.2变压器励磁涌流的特点1.2.1涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。
1.2.2励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。
因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。
1.2.3一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。
励磁涌流

励磁涌流1 概述变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。
当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。
2 励磁涌流的特点当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下:1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。
2)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。
因此,在开始瞬间衰减很快,以后逐渐减慢,经~1s后其值不超过~In。
3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。
4)励磁涌流的数值很大,最大可达额定电流的8~10倍。
当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。
3 励磁涌流的大小合闸瞬间电压为最大值时的磁通变化在交流电路中,磁通Φ总是落后电压u90°相位角。
如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。
在这种情况下,变压器不会产生励磁涌流。
合闸瞬间电压为零值时的磁通变化当合闸瞬间电压为零值时,它在铁芯中所建立的磁通为最大值(-Φm)。
可是,由于铁芯中的磁通不能突变,既然合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。
因此,在铁芯中就出现一个非周期分量的磁通Φfz,其幅值为Φm。
这时,铁芯里的总磁通Φ应看成两个磁通相加而成,如图2所示。
铁芯中磁通开始为零,到1/2 T时,两个磁通相加达最大值,Φ波形的最大值是Φ1波形幅值的两倍。
因此,在电压瞬时值为零时合闸情况最严重。
虽然我们很难预先知道在哪一瞬间合闸,但是总会介于上面论述的两种极限情况之间。
变压器绕组中的励磁电流和磁通的关系由磁化特性所决定,铁芯越饱和,产生一定的磁通所需的励磁电流就愈大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
励磁涌流1 概述变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。
当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。
2 励磁涌流的特点当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下:1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。
2)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。
因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。
3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。
4)励磁涌流的数值很大,最大可达额定电流的8~10倍。
当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。
3 励磁涌流的大小3.1 合闸瞬间电压为最大值时的磁通变化在交流电路中,磁通Φ总是落后电压u90°相位角。
如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。
在这种情况下,变压器不会产生励磁涌流。
3.2 合闸瞬间电压为零值时的磁通变化当合闸瞬间电压为零值时,它在铁芯中所建立的磁通为最大值(-Φm)。
可是,由于铁芯中的磁通不能突变,既然合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。
因此,在铁芯中就出现一个非周期分量的磁通Φfz,其幅值为Φm。
这时,铁芯里的总磁通Φ应看成两个磁通相加而成,如图2所示。
铁芯中磁通开始为零,到1/2 T时,两个磁通相加达最大值,Φ波形的最大值是Φ1波形幅值的两倍。
因此,在电压瞬时值为零时合闸情况最严重。
虽然我们很难预先知道在哪一瞬间合闸,但是总会介于上面论述的两种极限情况之间。
变压器绕组中的励磁电流和磁通的关系由磁化特性所决定,铁芯越饱和,产生一定的磁通所需的励磁电流就愈大。
由于在最不利的合闸瞬间,铁芯中磁通密度最大值可达2Φm,这时铁芯的饱和情况将非常严重,因而励磁电流的数值大增,这就是变压器励磁涌流的由来。
励磁涌流比变压器的空载电流大100倍左右,在不考虑绕组电阻的情况下,电流的峰值出现在合闸后经过半周的瞬间。
但是,由于绕组具有电阻,这个电流是要随时间衰减的。
对于容量小的变压器衰减得快,约几个周波即达到稳定,大型变压器衰减得慢,全部衰减持续时间可达几十秒。
综上所述,励磁涌流和铁芯饱和程度有关,同时铁芯的剩磁和合闸时电压的相角可以影响其大小。
4 励磁涌流的影响励磁涌流对变压器并无危险,因为这个冲击电流存在的时间很短。
当然,对变压器多次连续合闸充电也是不好的,因为大电流的多次冲击,会引起绕组间的机械力作用,可能逐渐使其固定物松动。
此外,励磁涌流有可能引起变压器的差动保护动作,故进行变压器操作时应当注意。
两种削弱励磁涌流的方法2007-02-01 来源:西部工控网浏览:37摘要:合空载电力变压器时会产生数值相当大励磁涌流,易造成变压器差动保护装置误动作。
针对这一问题,介绍了两种削弱励磁涌流方法:控制三相合闸时间或变压器低压侧加装电容器。
理论分析和实践均证明这两种方法是行之有效,但利用控制三相合闸时间来削弱励磁涌流实际应用中更具有潜力。
关键词:励磁涌流;变压器;控制开关;电容1 概述电力变压器空载合闸投入电网或外部故障切除后电压恢复时,变压器非线性,会产生数值相当大励磁涌流,严重情况下其峰值可达额定电流10到20倍[1],导致变压器保护误动作。
解决这一问题,目前变压器差动保护都采用了或门制动方式,即三相电流中有一相制动,则三相全部制动。
这样虽解决了涌流时误动问题,但当变压器有涌流时,发生单相或两相内部故障,差动保护因健全相涌流制动而不动作。
大型变压器时间常数都很长,一般涌流过程超过5 s[2],发生上述故障时,主保护等到振荡消失才能动作,实际就是拒动。
理论分析和动模试验都证实了这种现象。
保证差动保护装置正确动作,必须要降低励磁涌流幅值。
目前,削弱励磁涌流方法主要有两种:控制三相开关合闸时间,或变压器低压侧并联电容器。
本文将对这两种方法原理、效果一一介绍。
2 控制三相开关合闸时间以削弱励磁涌流2.1 理论基础该方法理论基础是:将变压器看作一个强感性负载,即看作一个非线性电感,当合闸时,变压器上电压变压器内部也产生一个磁通,当变压器有剩磁时,合闸后所产生磁通和剩磁极性相同,则变压器内部总磁通就会电压升高而增加,励磁涌流也会随之增加,合闸后所产生磁通和剩磁极性相反,则变压器内部总磁通就会电压升高而减小,削弱了励磁涌流;合闸时变压器内无剩磁,则可合闸角为90°(即电压峰值时)时合闸,这样变压器内产生磁通最小,产生励磁涌流也最小。
单相变压器中,可以很容易分析出如下结果。
单相变压器无漏抗,电源为无穷大,如图1所示:此时有此处把变压器基本磁化曲线作折线处理,如图2所示:其中:α为接入相位角(合闸角);Ψr为变压器剩磁。
从式(1)中可以看出,当α=0°时,产生最大涌流峰值,当α=90°时,励磁涌流峰值最小。
,控制合闸时间来削弱励磁涌流幅值是一种行之有效方法。
2.2 三相变压器中应用三相变压器中,尽管三相之间有电磁耦合以及剩磁影响,但三相绕组内磁通变化规律,控制三相开关合闸时间(即合闸角度),亦可以大幅度降低变压器内感应磁通,削弱励磁涌流幅值。
上述思想,以及变压器三相绕组内剩磁形式,提出了两种合闸策略。
2.2.1 快速合闸策略即一相先合闸角度为90°时合闸,另外两相1/4工频周期后合闸。
这是,设三相绕组中均无剩磁,A 相先最优时间,即是合闸角度为90°时合闸,此时A相绕组中产生磁通最小,B、C相中产生幅值为磁通最大值一半、相位超前A相180°感应磁通,如图3所示,此时,B、C两相合闸最佳时间就是1/4工频周期后合闸,这样就保证B、C两相绕组中磁通正常范围之内,消除或削弱了励磁涌流。
该方法适用于三相绕组中剩磁为零,以及三相独立控制合闸情况。
仿真计算,实施该策略后,合闸时间分散度为0.5 ms情况下,励磁涌流幅值与三相随机合闸相比,减少了94.4%[4]。
2.2.2 延迟合闸策略单相先合闸,另外两相2~3工频周期后合闸。
该方法理论依据是铁芯磁通平衡效应:设A相先合闸,之后B、C相产生感应磁通,两相内剩磁不同,则内部感应磁通相同,如图4所示。
设Φc>Φb,则当Φc到达饱和点后,Φb还停未饱和区,此时变压器非线性,LC<LB,B、C相绕组上电压相同,UC>UB,则绕组内部,B相绕组内磁通变化速度要比C相绕组内快,最后,B、C两相内部磁通趋于平衡,同时也消剩磁效应。
该方法适用于已知单相绕组中剩磁,三相独立合闸情况。
仿真计算,实施该策略后,合闸时间分散度为1.0 ms情况下,励磁涌流幅值减少幅度为85%~93%[4]。
3 变压器低压侧并联电容器励磁涌流是变压器内磁通饱和而引起,采取措施限制绕组内磁通达到饱和点,也就达到削弱或消除励磁涌流目。
变压器低压侧并联电容器就是基于这种思想提出,变压器低压侧并联电容值适当大小电容器,变压器低压侧产生磁通就和高压侧磁通极性相反,这样就排绕组内磁通饱和可能性[5]。
该方法优点是控制三相合闸角为多少,均能有效削弱励磁涌流。
缺点对电容器电容值选取,电容值过大或过小均不能满足要求。
电容值过大,会使变压器与电容器组合成系统谐振频率降低,使变压器难以被激磁;电容值过小,会无法满足削弱励磁涌流需要。
荷兰PGEM公司1992年一台66 MVA,150/11 kV 变压器上做过试验,不同电容器值下,励磁涌流峰值如表1所示[6]。
从表1可以看出,电容器值不同,励磁涌流峰值变化很大,故采取此方法前,必须知道变压器励磁特性,对变压器空合闸时暂态现象进行模拟,以选取合适电容值。
4 结论本文讨论了两种削弱励磁涌流方法,两种方法各有优缺点。
变压器低压侧并联合适电容器需要对变压器励磁特性进行精确模拟,而实际工程中,要到一个真实变压器励磁特性是比较困难,,控制开关合闸时间技术不断发展,第一种方法更有潜力。
变压器不平衡电流对差动保护的影响摘要:该文通过分析变压器不平衡电流的产生原因,提出相应的防范措施,以提高差动保护动作的选择性、速动性、灵敏性、可靠性,确保变压器的安全稳定运行。
1 差动保护原理简述变压器差动保护作为变压器的主保护,目前电网中的110 kV变压器的差动保护大多采用由多微机实现的比率差动保护。
之所以采用比率制动特性,是为了防止区外故障引起不平衡的差动电流造成保护误动。
由多微机实现的比率差动保护的动作特性如图1所示。
差动保护动作电流为Id,制动电流为Ir,差动保护电流启动值为Icdqp,比率差动制动系数为Kbl,变压器的额定电流为Ie,图中的阴影部分为保护动作区。
如图2所示,输入变压器的电流:I1,I2,I3,由(I1 + I2 + I3)构成变压器的差动电流,即Id = (I1 + I2 + I3)作为差动继电器的动作量。
在正常运行或外部故障时,在继电器中电流Id在理想状态下等于零,因此差动保护不动作。
然而,由于变压器实际运行中引起的种种不平衡电流,使得差动继电器的动作电流增大,从而降低了保护的灵敏度。
2 产生不平衡电流的原因不平衡电流的产生有稳态和暂态两方面。
稳态情况下不平衡电流:·变压器各侧绕组接线方式不同;·变压器各侧电流互感器的型号和变比不相同,实际的电流互感器变比和计算变比不相同;·带负荷调分接头引起变压器变比的改变。
暂态情况下不平衡的电流:·变压器空载投入电源时或外部故障切除,电压恢复时产生的励磁涌流。
·短路电流的非周期分量主要为电流互感器的励磁涌流,使其铁芯饱和,误差增大而引起不平衡电流。
3 不平衡电流的影响及相应的防范措施变压器差动保护的不平衡电流直接影响到差动保护的选择性、速动性、灵敏性和可靠性。
故此,分析其影响并采取相应的防范措施对提高变压器差动保护性能是十分重要的。
3.1 变压器高低压侧绕组接线方式不同的影响及其防范措施变压器接线组别对差动保护的影响。
如Yy0接线的变压器,因为一二次绕组对应相的电压同相位,所以一二次两侧对应相的相位几乎完全相同。
但当变压器采用Yd11接线时,因为三角形接线侧的线电压,在相位上相差30°,所以其对应相的电流相位关系也相差30°,即三角形侧电流比星形侧的同一相电流,在相位上超前30°,因此即使变压器两侧电流互感器二次电流的数值相等,在差动保护回路中就会出现不平衡电流。