混凝土受弯构件正截面承载力影响因素分析
混凝土受弯构件正截面承载力计算

r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y
令
x
h0
则
r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。
钢筋混凝土梁受弯构件 正截面承载力实验

有技术、技术秘密、软件、算法及各种新的产品、工程、技术、系统的应用示范等。
第三条本办法所称科技成果转化,是指为提高生产力水平而对科学研究与技术开发所产生的具有实用价值的科技成果所进行的后续试验、开发、应用、推广直至形成新技术、新工艺、新材料、新产品,发展新产业等活动。
第四条科技成果转化应遵守国家法律法规,尊重市场规律,遵循自愿、互利、公平、诚实信用的厚则,依照合同的约定,享受利益,承担风险,不得侵害学校合法权益。
第二章组织与实施第五条学校对科技成果转化实行统一管理。
合同的签订必须是学校或具有独立法人资格的校内研究机构,否则科技成果转化合同的签订均是侵权行为,由行为人承担相应的法律责任。
第六条各学院应高度重视和积极推动科技成果转化工作,并在领导班子中明确分管本单位科技成果转化工作的负责人。
第七条学校科学技术处是学校科技成果转化的归口管理部门,是科技成果的申报登记和认定的管理机构,负责确认成果的权属并报批科技成果转化合同。
第八条学校科技成果可以采用下列方式进行转化:(一)自行投资实施转化;(二)向他人转让;(三)有偿许可他人使用;(四)以该科技成果作为合作条件,与他人共同实施转化;(五)以该科技成果作价投资,折算股份或者出资比例;(六)其它协商确定的方式。
第九条不论以何种方式实施科技成果转化,都应依法签订合同,明确各方享有的权益和各自承担的责任,并在合同中约定在科技成果转化过程中产生的后续改进技术成果的权属。
第十条对重大科研项目所形成的成果,或拟转让的、作价入股企业的、金额达到100万元的科技成果,应先到科学技术处申请、登记备案,并报请学校校长办公会审核、批准、公示后才能进行。
第十一条科技成果转让的定价主要采取协议定价方式,实行协议定价的,学校对科技成果名称、简介、拟交易价格等内容进行公示,公示期15天。
第十二条对于公示期间实名提出的异议,学校科学技术处组织不少于3人的行业专家进行论证,并将论证结果反馈至科技成果完成人和异议提出者,如任何一方仍有异议,则应提交第三方评估机构进行评估,并以评估结论为准。
钢筋混凝土受弯构件正截面有效高度

钢筋混凝土受弯构件正截面有效高度一、引言钢筋混凝土受弯构件是建筑结构中常见的构件类型之一,其正截面有效高度是一个重要的设计参数。
本文将从以下几个方面对钢筋混凝土受弯构件正截面有效高度进行详细的介绍。
二、什么是正截面有效高度正截面有效高度是指受弯构件在弯曲时,其纵向受拉钢筋和混凝土工作在相同应变下,所能承受最大弯矩时钢筋和混凝土所占的高度比例,即受拉区域混凝土与整个截面混凝土之比。
三、影响正截面有效高度的因素1. 受拉区域混凝土抗压强度:随着受拉区域混凝土抗压强度的增加,正截面有效高度也会相应地增加。
2. 受拉钢筋直径:随着受拉钢筋直径的增加,正截面有效高度也会相应地增加。
3. 受拉区域与整个截面之比:当受拉区域占整个截面比例较小时,正截面有效高度会较小,反之则会较大。
4. 受拉钢筋与混凝土之间的粘结性:钢筋与混凝土之间的粘结性越强,正截面有效高度也会越大。
四、正截面有效高度的计算方法1. 假设受拉区域混凝土完全压碎,那么正截面有效高度可以通过以下公式计算:h0 = (Asfy)/(0.85fckb)其中,h0为正截面有效高度;As为受拉钢筋的总截面积;fy为受拉钢筋的抗拉强度;fck为混凝土的抗压强度;b为构件宽度。
2. 当受拉区域混凝土未完全压碎时,需要根据实际情况进行修正。
一般来说,可以采用等效矩形法或者直接根据试验数据进行修正。
五、正截面有效高度在设计中的应用1. 正截面有效高度是确定受弯构件弯矩承载能力的重要参数。
在设计过程中需要根据实际情况合理选择正截面有效高度值。
2. 在进行梁柱节点设计时,需要考虑节点处梁端部分所占比例,以此来确定节点处梁的正截面有效高度。
3. 在进行受弯构件的受力分析时,需要根据实际情况合理选择正截面有效高度值,以此来计算构件的弯矩承载能力。
六、结论正截面有效高度是钢筋混凝土受弯构件中一个重要的设计参数,其大小直接影响到构件的弯矩承载能力。
在设计过程中需要根据实际情况选择合理的正截面有效高度值,并且在进行节点设计和受力分析时都需要考虑到其影响。
受弯构件的正截面受弯承载力

未裂阶段 没有裂缝,挠度很小 大致成直线 直线
前期为直线,后期为有 上升段的曲线,应力峰 值不在受拉区边缘 σs≤20~30kN/mm2 Ia阶段用于抗裂验算
带裂缝工作阶段 有裂缝,挠度还不 明显
曲线
受压区高度减小, 混凝土压应力图形 为上升段的曲线, 应力峰值在受压区 边缘
大部分退出工作
20~ 30kN/mm2<σs<fy0 用于裂缝宽度及变 形验算
4.3.3 正截面受弯的三种破坏形态
适筋破坏
配 筋 超筋破坏 率 ρ
少筋破坏
适筋破坏形态
min
h h0
b
最
筋
率
率
特点:纵向受拉钢筋先屈服,受压区混凝土 随后压碎。
梁完全破坏以前,钢筋要经历较大的塑性变 形,随后引起裂缝急剧开展和梁挠度的激增, 带有明显的破坏预兆,属于延性破坏类型。
M0
h0=h-as
纵向受拉钢筋配筋率为
As (%)
bh0
纵向受拉钢筋的配筋百分率ρ在一定程度上标志了正截面上纵向受拉钢 筋与混凝土之间的面积比率,它是对梁的受力性能有很大影响的一个 重要指标。
混凝土保护层
混凝土保护层厚度c-纵向受力钢筋的外表面到截面边缘 的垂直距离。
保护层厚度的作用:
a. 保护纵向钢筋不被锈蚀;
梁中纵向受力钢筋宜采用HRB400级或RRB400级(Ⅲ级)和HRB335级 (Ⅱ级),常用直径为12mm、14mm、16mm、18mm、20mm、22mm 和25mm。根数最好不少于3(或4)根。设计中若采用两种不同直径的钢 筋,其直径相差至少2mm,也不宜超过6mm。
梁的箍筋宜采用HPB235级(Ⅰ级)、HRB335(Ⅱ级)和HRB400(Ⅲ级钢 筋)级的钢筋,常用直径是6mm、8mm和10mm。
混凝土受弯构件正截面承载力影响因素分析

 ̄ o
根 据 平 截 面 假 定 积 分 可得 :
0≤s≤f b 可 得 O。 x= l h 0
一
式中 为峰值应 力( 混凝土极 限抗压强度 ) 。 ; 为相应
与峰值应力时 的应 变 , £ =0 0 2 G 取 。 .0 ; 为 极 限压应 变 , 取
截 高度蛐 ) n
图 4 h对 弯 矩 的 影 响
把 y 代 人 t 1 c =2 -G 1 : h 得 }
]
从 图 3可以看出 , 在其 它条 件给 定不 变 的前 提 下 , 构件
— — — ■— 『 — —一 _
卜
- 一
+
(
截 面宽度 b 对构件 正截 面承载力成线性 关系 ; 图 4看 出弯 从
=0 00 3。 . 3
12 矩 形截 面 受 弯承 载 力公 式 推 导 .
根 据 混 凝 土 压应 力 合 力 C不 变 的 条 件 , 有 可
[ 收稿 日期] 09— 6— 9 20 0 0
1 58
四川 建筑
第3 O卷 2期
2 1 .4 000
・
工 程 结 构
/
/
度, 有利于在设计 中采取有 效的经济措施改善结构的承载 力; 用的方法是概 率极 限状 态设 计 法, 采 通过一 个
实例 中各 因素 的分 析 对 比 , 出影 响 因素 以及 各 自的 影 响程 度 ; 凝 土 受 弯 构件 正截 面 承 载 力 与 构 件 截 面尺 找 混
水工砼结构-3.受弯构件正截面承载力计算

应变图
ec max
应力图 M
et max
Mcr
M ft sAs Ia II My
ey
xf M fyAs IIa III Mu fyAs IIIa z T=fyAs D
sAs
I
sAs
各阶段截面应力、应变分布
受弯构件正截面破坏形态
钢筋混凝土受弯构件有两种破坏性质:
塑性破坏(延性破坏):结构或构件在破坏前有明显变形
结构中常用的梁、板是典型的受弯构件。
中小跨径,多采用矩形及T形截面 大跨径,多采用工字形或箱形截面
截面尺寸
为统一模板尺寸、便于施工,通常采用梁
宽度b=120、150、180、200、220、250mm, 250mm以上者以50mm为模数递增。 梁高度h=250、300、350、400 、…800mm , 800mm以上者以100mm为模数递增。
As (%) 定义 配筋率 bh0
ρ在一定程度上反映了正
截面上纵向受拉钢筋与混 凝土之间的面积比率,它 是对梁的受力性能有很大 影响的一个重要指标。
受弯构件正截面的受力特性
百分表 应变测点 百分表
位移计
在梁的纯弯段内,沿梁高布置 测点,量测梁截面不同高度处 的纵向应变。
采用预贴电阻应变片或其它方 法量测纵向受拉钢筋应变,从 而得到荷载不断增加时钢筋的 应力变化情况。 在梁跨中的下部设置位移计, 以量测梁跨中的挠度。
受力分为三个阶段
第Ⅰ阶段——未裂阶段
荷载很小,应力与应变之
间基本成线性关系; 荷载↑,砼拉应力达到ft, 拉区呈塑性变形;压区应 力图接近三角形; 砼达到极限拉应变 (et=etu),截面即将开裂 (Ⅰa状态),弯矩为开裂 弯矩Mcr; Ⅰa状态是抗裂计算依据。
受弯构件正截面受弯承载力构造要求

受弯构件正截面受弯承载力构造要求
受弯构件是在实际工程中经常使用的一种构件形式,它在建筑、桥梁、机械等领域都有广泛的应用。
为了确保受弯构件的安全可靠使用,需要对
其正截面的受弯承载力进行构造要求。
下面将详细介绍受弯构件正截面受
弯承载力的构造要求。
1.正截面有效高度
正截面有效高度是指从正截面底边至压力纬线的距离。
在确定正截面
有效高度时,需要考虑构件的几何形状、受力特点以及受力荷载等因素。
正截面有效高度的确定对于受弯构件的受弯承载力具有重要影响,一般采
用弯曲变形能量原理进行计算。
2.受压区的构造要求
受压区是指正截面中压力产生的区域。
受压区的构造要求包括混凝土
的尺寸、钢筋的布置以及受压区尺寸的确定等。
为了保证受压区的承载能力,混凝土的强度等级应符合设计要求,并且钢筋的强度、布置密度等参
数也需要满足相应的要求。
3.受拉区的构造要求
受拉区是指正截面中拉力产生的区域。
受拉区的构造要求包括混凝土
保护层、钢筋的布置以及受拉区尺寸的确定等。
为了保证受拉区的承载能力,混凝土的保护层厚度应满足设计要求,并且钢筋的强度、布置密度等
参数也需要满足相应的要求。
另外,为了提高受弯构件的受弯承载力,可以采用增加截面尺寸、增加受力钢筋数量、采用高强度混凝土等方法。
在设计过程中,需要根据实际情况合理选取合适的构造要求。
总之,受弯构件正截面受弯承载力的构造要求是确保受弯构件在受弯荷载作用下安全可靠使用的重要措施。
通过合理设计正截面的有效高度、受压区和受拉区的构造要求,可以提高受弯构件的受弯承载力,确保其满足工程要求。
钢筋混凝土受弯构件正截面承载力计算-混凝土结构设计原理

第四章钢筋混凝土受弯构件正截面承载力计算本章学习要点:1、掌握单筋矩形截面、双筋矩形截面和T形截面承载力的计算方法;2、了解配筋率对受弯构件破坏特征的影响和适筋受弯构件在各阶段的受力特点;3、熟悉受弯构件正截面的构造要求。
§4-1 概述一、受弯构件的定义同时受到弯矩M和剪力V共同作用,而轴力N可以忽略的构件(图4-1)。
梁和板是土木工程中数量最多,使用面最广的受弯构件。
梁和板的区别:梁的截面高度一般大于其宽度,而板的截面高度则远小于其宽度。
受弯构件常用的截面形状如图4-2所示。
图4-1二、受弯构件的破坏特性正截面受弯破坏:沿弯矩最大的截面破坏,破坏截面与构件的轴线垂直。
斜截面破坏:沿剪力最大或弯矩和剪力都较大的截面破坏。
破坏截面与构件轴线斜交。
进行受弯构件设计时,要进行正截面承载力和斜截面承载力计算。
图4-3 受弯构件的破坏特性§4-2 受弯构件正截面的受力特性一、配筋率对正截面破坏性质的影响配筋率:为纵向受力钢筋截面面积A s与截面有效面积的百分比。
sAbh式中sA——纵向受力钢筋截面面积。
b——截面宽度,h——截面的有效高度(从受压边缘至纵向受力钢筋截面重心的距离)。
构件的破坏特征取决于配筋率、混凝土的强度等级、截面形式等诸多因素,但配筋率的影响最大。
受弯构件依配筋数量的多少通常发生如下三种破坏形式:1、少筋破坏当构件的配筋率低于某一定值时,构件不但承载力很低,而且只要其一开裂,裂缝就急速开展,裂缝处的拉力全部由钢筋承担,钢筋由于突然增大的应力而屈服,构件立即发生破坏。
图4-4 受弯构件正截面破坏形态2、适筋破坏当构件的配筋率不是太低也不是太高时,构件的破坏首先是受拉区纵向钢筋屈服,然后压区砼压碎。
钢筋和混凝土的强度都得到充分利用。
破坏前有明显的塑性变形和裂缝预兆。
3、超筋破坏当构件的配筋率超过一定值时,构件的破坏是由于混凝土被压碎而引起的。
受拉区钢筋不屈服。
破坏前有一定变形和裂缝预兆,但不明显,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土受弯构件正截面承载力影响因素分析
引言
混凝土结构在工程中得到了广泛应用,作为一种常见的结构材料,混凝土结构具有良好的耐久性和硬度。
其中,受弯构件是混凝土结构中的常用部件,在建筑、桥梁等工程中都有应用。
受弯构件的承载力是设计中的重要问题,因此需要对其承载力影响因素进行分析和研究。
本文将分析混凝土受弯构件正截面承载力的影响因素,旨在为工程师提供参考和思路。
承载力定义
混凝土受弯构件正截面承载力是指在混凝土受弯构件桁架效应未产生前,混凝土受弯构件正截面最大承载扭矩的大小。
混凝土受弯构件的正截面承载力是由混凝土的强度和钢筋的强度共同决定的。
在混凝土结构中,承载力往往是需要考虑多种因素影响的。
影响因素分析
混凝土受弯构件正截面承载力受到多种因素影响,主要包括以下几个方面:
1. 混凝土强度
混凝土强度是决定受弯构件承载力的基本因素之一,混凝土的强度会影响构件的质量和强度。
在设计时,需要根据受力情况选择合适的混凝土等级,同时还需考虑混凝土的施工、养护等因素。
2. 钢筋配筋率
钢筋配筋率也是影响受弯构件承载力的重要因素,不同的配筋率会直接影响受弯构件的初始刚度和极限承载力。
过小的配筋率会导致构件的破坏类型从韧性破坏转变为脆性破坏,过大的配筋率则会使得构件的刚度增大,导致其受力性能下降。
因此,在设计时,需要根据受力情况以及混凝土、钢筋的强度等因素综合考虑,选择合适的配筋率。
3. 受力形态
混凝土受弯构件的受力形态也是影响其承载力的重要因素,不同的受力形态会直接影响构件的承载能力。
一般来说,混凝土受弯构件承载能力较弱的部位通常是中央区域,而在两侧则相对较强。
因此,在设计时,需要充分考虑受力形态以及构件的受力分布情况,设计合理的构件优化结构。
4. 填充材料
填充材料也是影响混凝土受弯构件承载能力的重要因素之一。
填充材料的性质、强度、粘结性等性能决定了其在混凝土受弯构件中所承受的力的大小和作用。
常见的填充材料主要包括混凝土、轻骨料混凝土、聚苯乙烯泡沫等材料,需要根据具体情况选择合适的填充材料。
混凝土受弯构件正截面承载力是设计中需要考虑的重要问题,承载力的大小受
多种因素影响。
本文主要从混凝土强度、钢筋配筋率、受力形态、填充材料四个方面分析了影响受弯构件承载力的主要因素。
在设计时,需要综合考虑这些因素,合理设计受弯构件的结构。