阶常微分方程边值问题
常微分方程的边值问题

常微分方程的边值问题一、引言在数学中,微分方程是研究自然界中变化和发展的重要工具。
它描述了物体在不同变化条件下的行为规律,并被广泛应用于物理、工程、经济等领域。
边值问题是微分方程中的一个重要分支,它关注的是在一定边界条件下的解。
二、常微分方程常微分方程是指只含有关于一个自变量的一阶或高阶导数的方程。
一般形式为:[F(x, y, y’, y’’, , y^{(n)}) = 0]其中,x是自变量,y是未知函数。
常微分方程的求解可以分为两种类型:初值问题和边值问题。
三、边值问题的定义边值问题是指在一定边界条件下,求解微分方程的解。
对于二阶常微分方程,边值问题的一般形式为:[y’‘(x) = f(x, y, y’), a < x < b, y(a) = , y(b) = ]其中,a和b是给定的边界点,()和()是给定的边界值。
四、边值问题的求解方法边值问题的求解可以分为两种方法:迭代方法和直接方法。
4.1 迭代方法迭代方法是通过不断迭代逼近的方式求解边值问题。
常用的迭代方法有有限差分法和有限元法。
4.1.1 有限差分法有限差分法是一种将微分方程转化为差分方程进行求解的方法。
它将求解域离散化,并通过差分近似来近似微分项,最终通过迭代逼近求得边界值。
有限差分法的基本思想是将求解域划分为若干个离散的网格点,然后使用近似公式将微分项替换为差分项,从而得到差分方程。
通过迭代求解差分方程,最终得到边界条件下的解。
4.1.2 有限元法有限元法是一种将微分方程转化为代数方程组进行求解的方法。
它通过将求解域划分为有限个小区域,然后在每个小区域上选择一个试验函数来代表解,在满足边界条件的情况下,通过最小化误差的方法得到近似解。
有限元法的基本思想是将求解域划分为若干个小单元,然后在每个小单元上选择一个适当的试验函数,通过建立弱形式和加权残差方法得到代数方程组,最终通过迭代求解代数方程组得到边界条件下的解。
4.2 直接方法直接方法是通过对微分方程进行直接求解的方法,其中最常用的方法是变分法。
常微分方程的边值问题

常微分方程的边值问题常微分方程是数学中一个重要的分支,研究的是函数的导数与自变量之间的关系。
在实际问题中,常微分方程的解可以描述物理、工程、经济等领域的变化规律。
而边值问题是常微分方程中的一类特殊问题,它要求在给定的边界条件下求解方程的解。
一、边值问题的定义与分类边值问题是指在一定边界条件下求解常微分方程的解。
边界条件是一组给定的条件,它们通常是关于未知函数及其导数在一些特定点上的值或关系。
边值问题可分为以下两类:1. Dirichlet 边值问题:给定函数在边界上的值。
假设我们要求解的常微分方程为 y''(x) + p(x)y'(x) + q(x)y(x) = r(x),边值问题可以表示为:y(a) = A,y(b) = B其中,a, b 是给定的自变量取值,A, B 是给定的常数。
2. Neumann 边值问题:给定函数在边界上的导数值。
假设我们要求解的常微分方程还是 y''(x) + p(x)y'(x) + q(x)y(x) = r(x),边值问题可以表示为:y'(a) = A,y'(b) = B二、求解边值问题的方法求解边值问题有多种方法,其中比较常用的包括:1. 分离变量法这是一种基本的求解边值问题的方法。
通过将方程中的未知函数分离变量,得到一个关于自变量的方程和一个关于未知函数的方程,再分别求解这两个方程。
2. 特征值法对于某些特殊的边值问题,可以使用特征值法进行求解。
特征值法的关键在于将边值问题转化为一个特征值问题,通过求解特征值和特征函数来得到方程的解。
3. 迭代法对于某些复杂的边值问题,可以使用迭代法逐步逼近方程的解。
迭代法是通过不断逼近函数解来改善近似解的精度,从而得到较为准确的解。
三、常见的边值问题应用常微分方程的边值问题在实际应用中具有广泛的应用,下面列举几个常见的例子:1. 自由振动问题自由振动是常微分方程的一个典型应用,比如弹簧振子的运动可以用一阶线性常微分方程来描述。
数值计算中的常微分方程边值问题

数值计算中的常微分方程边值问题常微分方程边值问题是数值计算中的重要研究领域之一,涉及到许多实际应用场景。
在本文中,我们将介绍边值问题的基本概念、求解方法以及应用实例。
一、什么是常微分方程边值问题在数学中,常微分方程可以使用初始值问题或边值问题来描述。
边值问题通常涉及到一个微分方程在一些给定条件下的解,而这些条件不同于初始值问题的初始条件。
对于一个二阶微分方程,如:y''(x) + p(x)y'(x) + q(x)y(x) = f(x),a < x < b其边值问题通常包含以下条件:y(a) = α,y(b) = β也就是说,我们需要找到一个函数 y(x),在满足微分方程和给定边界条件的情况下,使得 y(x) 满足问题的要求。
二、常微分方程边值问题的求解方法常微分方程边值问题的求解方法有很多种,其中最常见的是有限差分法和有限元法。
有限差分法是将微分方程在所给定的空间和时间区间内离散化,将连续的函数转换为离散的点和线段,通过计算差分方程的差分近似来求解微分方程边值问题。
这种方法的优点是计算简单,容易实现,在工科领域中应用广泛。
例如,当我们研究一条河流的河流动力学时,我们可以通过有限差分法来模拟河流的水流和流速。
有限元法是另一种流行的求解常微分方程边值问题的方法。
有限元法将微分方程的解转换为一个包含许多小单元的有限元模型。
每个有限元都可以理解为一个简单的子部件,有限元模型通过模拟这些子部件之间的相互作用来计算微分方程的解。
有限元法的优点是可以处理非线性方程,具有较高的计算精度,例如,在工程领域中,有限元法被广泛应用于机械结构力学、热传导等问题。
三、常微分方程边值问题的应用实例常微分方程边值问题可以用来解决许多实际问题,下面我们将谈谈其中的几个应用。
1. 车辆悬架设计常微分方程边值问题可以用于汽车悬架系统的设计。
当车辆行驶在不平路面上时,悬架系统需要运作以使车辆保持平衡和稳定性。
配置法解常微分方程边值问题

配置法解常微分方程边值问题常微分方程是描述自然现象中变化的数学模型,边值问题是指在一定范围内求解常微分方程的解。
配置法是求解边值问题的一种方法,其基本思想是将边值问题转化为一个特殊的本征值问题,通过求解本征值和本征函数来得到原问题的解。
一、配置法的基本概念1. 本征值和本征函数对于一个线性算子L和它的定义域V上的一个向量函数f(x),如果存在一个标量λ使得Lf(x)=λf(x),则称λ为L的一个本征值,f(x)称为对应于λ的一个本征函数。
2. 二阶常微分方程边值问题考虑形如y''(x)+p(x)y'(x)+q(x)y(x)=f(x)在区间[a,b]上满足y(a)=A,y(b)=B两个边界条件的二阶常微分方程边值问题。
其中p(x),q(x),f(x)都是已知函数。
3. 本征值问题将原问题转化为特殊的本征值问题:设y''(x)+p(x)y'(x)+q(x)y(x)=λy(x),其中λ为待求参数。
则称该式为原方程关于λ的特征方程。
我们要找到所有满足该特征方程且满足边界条件的本征函数,这些本征函数对应的λ值即为本征值。
二、配置法的求解步骤1. 求出特征方程将原方程关于y(x)和y'(x)分别求导,得到y''(x)+p(x)y'(x)+q(x)y(x)=λy(x),y''(x)+p(x)y'(x)+(q(x)-λ)y(x)=0。
将此式看作一个关于y(x)的齐次线性微分方程,其特征方程为r^2+p(x)r+(q(x)-λ)=0。
2. 求解特征方程根据一般理论可知,该特征方程有两个线性无关的解r1和r2。
分三种情况讨论:(1)当r1≠r2时,通解为y=c1e^(r1x)+c2e^(r2x);(2)当r1=r2时,通解为y=(c1+c2x)e^(r1x);(3)当r1,r2为共轭复数时,通解为y=e^(ax)(c1cosbx+c2sinbx),其中a=Re(r),b=Im(r)。
常微分方程边值问题的解法

常微分方程边值问题的解法常微分方程是描述自然科学、工程技术和经济管理等领域中各种变化规律的一个基础理论。
而边值问题是求解一些微分方程的重要问题之一,涉及到数学、物理、化学等多个领域。
在本文中,我们将讨论常微分方程边值问题的解法。
1. 边值问题的定义在微分方程解的过程中,边值问题(Boundary Value Problem, BVP)是指在区间 $[a,b]$ 上求解微分方程的解,同时已知$y(a)=\alpha$,$y(b)=\beta$ 的问题。
边值问题是对初值问题(Initial Value Problem, IVP)的一种自然延伸,在一定范围内对变量的取值进行限制,使得解的可行域更为明确。
举例来说,对于经典的二阶线性微分方程$$ y''+p(x)y'+q(x)y=f(x), \quad a<x<b $$ 如果边界条件是$y(a)=\alpha$,$y(b)=\beta$,则这个微分方程就是一个边值问题。
2. 常用解法对于一般的常微分方程边值问题,没有通用的方法可以求出其解析解,必须采用一些数值计算的方法进行求解。
常用的边值问题的解法大致有以下几种:(1)求解特殊解的方法这种方法常用于求解具有周期性边界条件的问题。
如果问题中的边界条件满足:$y(a)=y(b)=0$,则可以将问题转化为一个周期问题,即 $y(a+k)=y(b+k)$,其中 $k=b-a$。
这时,边值问题就变成了求解这个方程的周期解,例如,可以使用Fourier 级数来求解。
(2)变分法变分法是一种基于求解最小值的方法,可以用来求解一类线性边值问题。
其基本思路是将原问题转化为求一个积分的最小值。
对于一般的边值问题 $y''+f(x)y=g(x)$,可以构造一个变分问题:$$ \delta\int_a^b \left(y'^2-f(x)y^2-2gy\right) \mathrm{d}x=0 $$ 这个问题的解可以通过对变分问题的欧拉方程求解而得到。
一阶常微分方程无穷点边值问题的上下解方法

方程边值 问题 在常微 分 方程理 论 中有 十 分重 要 的地 位, 因此对常微分方程在无 穷点边值 条件 下解 的存在
t<…<t 2 <…<T口<0 及一1 , ^ 以 <∑ 的
I 1 =
性 问题进行深入地研究是 非常必要 的. 文献 [] Ma 8中
R y n建立 了一阶常微分方程 m+ 1 uu 点边值 问题
YAN Don - i g m ng
( ol e f Mahm t s n n om t nS i c , r wet r lU ies y,a z o 3 0 0 C ia C l g te a i d If r i ce e Not sNom nv ri L nh u7 0 7 ,hn ) e o ca a o n h a t
( 1 )
记 A ) 定义 在 -上 的绝 对 连 续 函数 构 成 的集 C( 为 ,
广
合. L ( ) 设 - 为定义在 . 厂 , 上满足I ( . d <+。 I £ 4 t z ) P 。
收 稿 日期 :0 71_6 2 0 —l2 基 金 项 目 : 北 师 范大 学 科 教 创 新 工 程 ( 西 NW NU—J X - 1 ) K C GC 22
近 2 年来 , 常微 分方 程 非局 部 问 题解 的存 在 O 对
性 问题 的研 究 , 已经 取 得 了重 大 的进 展 . 常微 分
引进 上下 解 的概 念 并 发 展 上 下 解 方 法 . 中 J 一 其
[ , ] C R, ,^忌= 12 … ) 0 T ,。∈ t a ( ^ ,, 为满 足 0< t < l
给定 常数 , JX -R为 C rt 6d r ,: R- - * aah o oy函数.
带非齐次边界条件的二阶常微分方程边值问题正解的存在性

V0. 125 No. 4
0e .2 1 t 02
文章 编号 :0 4 82 (0 2 0 - 2 10 10 - 8 0 2 1 )4 0 5 - 5 -
带 非 齐 次 边 界 条 件 的 二 阶 常 微 分 方 程 边值 问题 正解 的存 在 性
谢 春 杰
( 西北师范大学数 学与统计 学院 , 甘肃 兰州 7 07 ) 3 00
( ¨ d =1 y s c ) c A I ㈩州 +
由 ( )知 p +6 H1 := c+伽 >0 则 ,
dy ) M +・ J( Ds + ]
解 的 A。 B值 如下 :
算 子. 引理 11 设 P为 B nc 间 X中 的体 锥 , [ aah空 0
摘要 : 运用 一凸算子理论研究了带非齐次边界条件的二阶常微分方程边值 问题 fP t () +h tI )=0 t∈ ( , ) ( () t ) ()( 厂 , 01, Lu O a ( )一6 ( ) ( ) = [ p O 0 ]十A, C( )- ( ) ( ) =卢 M U 1 I 1 1 - [ ]+
( (), t ) P t 1( ) +Y t 2 ( )=0 t∈ ( , ) ( ) , 0 1 , 5
1 预 备 知 识
本文 总假定 :
( ) ∈ C [ ,] ( H1 P ( 0 1 ,0,+∞ ) , ∈ C(0, ) h [
1 ,0 +∞) , ][ , ) 并且 () 0 1 £ 在[ ,]的任意子区间
的文献 研 究 了非 齐 次 边 值 问 题
,特 别 地 ,文
[ , ]分别 考 虑 了方 程 ( )在 非齐 次边 界条件 8 9 1
M0 ()=0M1 ∑bt 和 u()=0 ,()= it l )+ ( 0 ,
二阶常微分方程边值问题

ylabel'$$y$$','Interpreter','latex','color','r','fontsize',28;
实验结果与分析:
差分法结果如下:
从图上我们可以看到,可以得到函数图像确实十分接近理论上的解答,差分二阶导数比起差分一阶导数来说,更加接近原函数.差分二阶导数在后面几乎能跟原函数重合,是非常好的求边值问题的方法.
成绩:
批阅教师签名:
定解问题往往不具有解析解,或者其解析解不易计算.所以要采用可行的数值解法.有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解.此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解即收敛性,等等.
许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关.描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件.利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程边值问题在应用科学与工程技术中有着非常重要的应用,例如工程学、力学、天文学、经济学以及生物学等领域中的许多实际问题通常会归结为常微分方程边值问题的求解。虽然求解常微分方程边值问题有很多解析方法可以求解,但这些方法只能用来求解一些特殊类型的方程,对从实际问题中提炼出来的微分方程往往不再适用,因而对常微分方程边值问题的数值方法的研究显得尤为重要。经典的数值方法主要有:试射法(打靶法)和有限差分法。
实验结果与分析:
差分法结果如下:
从图上我们可以看到,可以得到函数图像确实十分接近理论上的解答,差分二阶导数比起差分一阶导数来说,更加接近原函数。差分二阶导数在后面几乎能跟原函数重合,是非常好的求边值问题的方法。
我们在整个实验中,感觉最困难的就是对于差分法的理解以及程序的编写上面。我们查询了各种有关于常微分方程边值问题、有限差分法、二阶常微分方程的资料以及论文,差分法实际上就是用离散的、只含有有限个未知量的差分方程去近似代替连续变量的微分方程和定解条件。有一点要注意,我们这个算法只适合用于等间隔差分。
定理:设方程中的函数 及 , 在区域
内连续,并且
(ⅰ) ;
(ⅱ) 在 内有界,即存在常数 ,使得
, ,
则边值问题-的解存在且唯一。
我们假设函数 可以简单地表示成
,
即边值问题-为具有如下形式的二阶线性边值问题
三、有限差分法:
有限差分方法是用于微分方程定解问题求解的最广泛的数值方法,其基本思想是用离散的、只含有有限个未知量的差分方程去近似代替连续变量的微分方程和定解条件,并把相应的差分方程的解作为微分方程定解问题的近似解。
(2.26a)
或者
其中, .
可得一阶导数 的差分近似表达式为
由此可知,差商逼近微商 的精度为二阶,即为 。
类似地,我们还可以给出二阶微商 和高阶微商的差分近似表达式。例如将和两式相加可得
进而有
其中 .
因此,二阶导数 的差分近似表达式[8]为
实验内容(方法和步骤):
差分法代码如下
clc;
clear all
许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件。利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。
定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。
legend('原函数','差分一阶导数','差分二阶导数')
xlabel('$$x$$','Interpreter','latex','color','r','fontsize',28);
ylabel('$$y$$','Interpreter','latex','color','r','fontsize',28);
课程名称:数值代数课程设计
指导教师:刘兰冬
班级:
姓名:
学号:
实验项目名称:
二阶常微分方程边值问题
实验目的及要求:
二阶常微分方程边值问题
,
(该问题真解为: )步长h自己选定,利用差分法求出近似解,利用MATLAB函数画出比较图形。
实验原理:
一、微分方程:
微分方程是现代数学中一个很重要的分支,从早期的微积分时代起,这个学科就成为了理论研究和实践应用的一个重要领域。在微分方程理论中,定解条件通常有两种提法:一种是给出了积分曲线在初始时刻的性态,相应的定解条件称为初值问题;另一种是给出了积分曲线首末两端的性态,这类条件则称为边界条件,相应的定解问题称为边值问题。
做了这道题之后,感觉我们对于常微分边值问题有了更进一步的理解,尤其是各种思维之间的转换尤其重要,在今后的数学学习中,希望我们能够灵活的运用。
成绩:
批阅教师签名:
yxx(i-1)=(y(i+1)+y(i-1)-2*y(i))/h^2;
end
plot(x,y,'r','linewidth',2)
plot(x(2:n-1),yx(1:n-2),'g','linewidth',2);
plot(x(2:n-1),yxx(1:n-2),'b','linewidth',2);
h=;
%x属于【a,b】
a=-1;b=1;
x=a:h:b;
n=length(x);
%定义y
syms y;
y=(((x+2).*(x+2)).^(-1));
hold on
grid on
yx=zeros(1,n);
yxx=zeros(1,n);
for i=2:n-1
yx(i-1)=(y(i+1)-y(i-1))/(2*h);
有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。
二、二阶常微分方程
二阶常微件有如下三类[9]:
第一类边值条件
,
第二类边值条件
,
第三类边值条件[19]
,
其中 , , , 。
在对边值问题用数值方法求解之前,应该从理论上分析该边值问题的解是否存在,若问题的解不存在,用数值方法计算出来的数据没有任何意义。下面的定理给出了边值问题存在唯一解的充分条件。
有限差分逼近的相关概念
设函数 光滑,且 ,利用Taylor展开,可得
由可以得到一阶导数的表达式
(2.21a)
或者
同理由式可得
(2.22a)
或者
其中 表示截断误差项.因此,可得一阶导数的 的差分近似表达式为
由和可知,差商和逼近微商 的精度为一阶,即为 ,为了得到更精确的差分表达式,将减可得
从而可以的到