高中数学88个常用公式及结论总结

高中数学88个常用公式及结论总结
高中数学88个常用公式及结论总结

高中数学常用公式及结论

1 元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??.A A ??≠?

2 集合12{,,

,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集

有22n -个.

3 二次函数的解析式的三种形式: (1) 一般式2

()(0)f x ax bx c a =++≠;

(2) 顶点式2

()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)

(4)切线式:02

()()(()),0x kx d f x a x a =-+≠+。(当已知抛物线与直线y kx d =+相切且切点

的横坐标为0x 时,设为此式)

4 真值表: 同真且真,同假或假 5

6

充要条件: (1)、p q ?,则P 是q 的充分条件,反之,q 是p 的必要条件;

(2)、p q ?,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ?,则P 是q 的必要不充分条件;

4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。

7 函数单调性:

增函数:(1)、文字描述是:y 随x 的增大而增大。

(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的

1212

,,x x D x x ∈<且,都有

12()()

f x f x <成立,则就叫f (x )在x ∈D 上是增函数。D 则就是f (x )的递增区间。

减函数:(1)、文字描述是:y 随x 的增大而减小。

(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的

1212

,,x x D x x ∈<且,都有

12()()

f x f x >成立,则就叫f (x )在x ∈D 上是减函数。D 则就是f (x )的递减区间。

单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数; (3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;

注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。

(1)设[]1212,,,x x a b x x ∈≠那么

[]1212()()()0x x f x f x -->?

[]b a x f x x x f x f ,)(0)

()(2

121在?>--上是增函数;

[]1212()()()0x x f x f x --

[]b a x f x x x f x f ,)(0)

()(2

121在?<--上是减函数. (2)设函数)(x f y =在某个区间可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 8函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称) 奇函数:

定义:在前提条件下,若有()()()()0f x f x f x f x -=--+=或, 则f (x )就是奇函数。

性质:(1)、奇函数的图象关于原点对称;

(2)、奇函数在x >0和x <0上具有相同的单调区间;

(3)、定义在R 上的奇函数,有f (0)=0 . 偶函数:

定义:在前提条件下,若有()()f x f x -=,则f (x )就是偶函数。 性质:(1)、偶函数的图象关于y 轴对称;

(2)、偶函数在x >0和x <0上具有相反的单调区间; 奇偶函数间的关系:

(1)、奇函数·偶函数=奇函数; (2)、奇函数·奇函数=偶函数;

(3)、偶奇函数·偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的) (5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 9函数的周期性: 定义:对函数f (x ),若存在T ≠0,使得f (x+T )=f (x ),则就叫f (x )是周期函数,其中,T 是f (x )

的一个周期。

周期函数几种常见的表述形式:

(1)、f (x+T )= - f (x ),此时周期为2T ;

(2)、 f (x+m )=f (x+n ),此时周期为2m n - ; (3)、1

()()

f x m f x +=-

,此时周期为2m 。 10常见函数的图像:

11 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2

b

a x +=;两个函数)(a x f y +=与)(x

b f y -= 的图象关于直线2

b a

x -=对称. 12 分数指数幂与根式的性质: (1)m n

a

=0,,a m n N *>∈,且1n >).

(2)1

m n

m n

a

a -

=

=

0,,a m n N *

>∈,且1n >).

(3)n

a =.

(4)当n a =;当n ,0

||,0a a a a a ≥?==?-

.

13 指数式与对数式的互化式: log b a N b a N =?=(0,1,0)a a N >≠>.

指数性质: (1)1、1p p

a a

-=

; (2)、01a =(0a ≠) ; (3)、()mn m n

a a = (4)、(0,,)r

s

r s

a a a a r s Q +?=>∈ ; (5)、m n

a = ;

指数函数:

(1)、 (1)x

y a a =>在定义域是单调递增函数;

(2)、 (01)x

y a a =<<在定义域是单调递减函数。注: 指数函数图象都恒过点(0,1) 对数性质:

(1)、 log log log ()a a a M N MN += ;(2)、 log log log a a a

M

M N N

-= ;

(3)、 log log m

a a

b m b =? ;(4)、 log log m n a a n

b b m

=

? ; (5)、 log 10a = (6)、 log 1a a = ; (7)、 log a b

a b =

对数函数:

(1)、 log (1)a y x a => 在定义域是单调递增函数;

(2)、log (01)a y x a =<<在定义域是单调递减函数;注: 对数函数图象都恒过点(1,0) (3)、 log 0,(0,1),(1,)a x a x a x >?∈∈+∞或

(4)、log 0(0,1)(1,)a x a x

N a

=

(0a >,且1a ≠,0m >,且1m ≠, 0N >).

对数恒等式:log a N

a

N =(0a >,且1a ≠, 0N >).

推论 log log m n a a n

b b m

=

(0a >,且1a ≠, 0N >). 15对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则

(1)log ()log log a a a MN M N =+; (2) log log log a

a a M

M N N

=-; (3)log log ()n

a a M n M n R =∈; (4) log log (,)m

n a a n

N N n m R m

=∈。

16 平均增长率的问题(负增长时0p <):

如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x

y N p =+. 17 等差数列:

通项公式: (1) 1(1)n a a n d =+- ,其中1a 为首项,d 为公差,n 为项数,n a 为末项。

(2)推广: ()n k a a n k d =+-

(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)

前n 项和: (1)1()

2

n n n a a S +=

;其中1a 为首项,n 为项数,n a 为末项。 (2)1(1)

2

n n n S na d -=+

(3)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) (4)12n n S a a a =++

+ (注:该公式对任意数列都适用)

常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a +=+ ;

注:若,m n p a a a 是的等差中项,则有2m n p a a a =+?n 、m 、p 成等差。

(2)、若{}n a 、{}n b 为等差数列,则{}n n a b ±为等差数列。

(3)、{}n a 为等差数列,n S 为其前n 项和,则232,,m m m m m S S S S S --也成等差数列。 (4)、,,0p q p q a q a p a +===则 ; (5) 1+2+3+…+n=

2

)

1(+n n 等比数列:

通项公式:(1) 1

*11()n n

n a a a q

q n N q

-==

?∈ ,其中1a 为首项,n 为项数,q 为公比。 (2)推广:n k

n k a a q -=?

(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)

前n 项和:(1)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用)

(2)12n n S a a a =++

+ (注:该公式对任意数列都适用)

(3)1

1(1)(1)

(1)

1n n na q S a q q q =??

=-?≠?-?

常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a ?=? ;

注:若,m n p a a a 是的等比中项,则有 2

m n p a a a =??n 、m 、p 成等比。

(2)、若{}n a 、{}n b 为等比数列,则{}n n a b ?为等比数列。

18分期付款(按揭贷款) :每次还款(1)(1)1

n

n

ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 19三角不等式:

(1)若(0,)2

x π

∈,则sin tan x x x <<.

(2) 若(0,

)2

x π

,则1sin cos x x <+≤

(3) |sin ||cos |1x x +≥.

20 同角三角函数的基本关系式 :2

2sin

cos 1θθ+=,tan θ=

θ

θ

cos sin , 21 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 22 和角与差角公式

sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβ

αβ±=;

tan tan tan()1tan tan αβ

αβαβ

±±

=

.

sin cos a b αα+)α?+

(辅助角?所在象限由点(,)a b 的象限决定,tan b

a

?= ). 23 二倍角公式及降幂公式

sin 2sin cos ααα=2

2tan 1tan α

α

=

+. 2

2

2

2

cos2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan α

α

-=+.

2

2tan tan 21tan ααα=-. sin 21cos 2tan 1cos 2sin 2αα

ααα-==+ 221cos 21cos 2sin ,cos 22

αα

αα-+==

24 三角函数的周期公式

函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0)的周期

2||T πω=

;函数tan()y x ω?=+,,2

x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0)的周期||T πω=. 三角函数的图像:

25 正弦定理 :

2sin sin sin a b c

R A B C

===(R 为ABC ?外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ?===::sin :sin :sin a b c A B C ?=

26余弦定理:

2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.

27面积定理:

(1)111

222a b c S ah bh ch =

==(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111

sin sin sin 2

22S ab C bc A ca B ===.

(3)OAB S ?=2,2

a b c S r r a b c ?

??+==

++斜边内切圆直角内切圆- 28三角形角和定理 :

在△ABC 中,有()A B C C A B ππ++=?=-+

222

C A B

π+?

=-

222()C A B π?=-+. 29实数与向量的积的运算律:设λ、μ为实数,那么: (1) 结合律:λ(μa )=(λμ) a ;

(2)第一分配律:(λ+μ) a =λa +μa ;

(3)第二分配律:λ(a +b )=λa +λb . 30a 与b 的数量积(或积):a ·b =|a ||b |cos θ。 31平面向量的坐标运算:

(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.

(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.

(5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212()x x y y +. 32 两向量的夹角公式:

121

cos ||||

a b

a b x θ?=

=

?+a =11(,)x y ,b =22(,)x y ).

33 平面两点间的距离公式:

,A B d =||AB AB AB =

?(=11(,)x y ,B 22(,)x y ).

34 向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0,则:

a ||

b ?b =λa 12210x y x y ?-=.(交叉相乘差为零)

a ⊥

b (a ≠0)? a ·b =012120x x y y ?+=.(对应相乘和为零)

35 线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P

P 的分点,λ是实数,且12

PP PP λ=,则12

1

211x x x y y y λλλλ+?=??+?+?=?+?

?12

1OP OP OP λλ+=+ ?12(1)OP tOP t OP =+-(1

1t λ

=

+). 36三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC

的重心的坐标是123123

(,)33

x x x y y y G ++++.

37三角形五“心”向量形式的充要条件:

设O 为ABC ?所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则

(1)O 为ABC ?的外心2

2

2

OA OB OC ?==. (2)O 为ABC ?的重心0OA OB OC ?++=.

(3)O 为ABC ?的垂心OA OB OB OC OC OA ??=?=?. (4)O 为ABC ?的心0aOA bOB cOC ?++=. (5)O 为ABC ?的A ∠

的旁心aOA bOB cOC ?=+. 38常用不等式:

(1),a b R ∈?2

2

2a b ab +≥(当且仅当a =b 时取“=”号).

(2),a b R +

∈?

2

a b

+≥当且仅当a =b 时取“=”号). (3)333

3(0,0,0).a b c abc a b c ++≥>>>

(4)b a b a b a +≤+≤-.

(5

)22ab a b a b +≤≤≤+当且仅当a =b 时取“=”号)。 39极值定理:已知y x ,都是正数,则有

(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值24

1s . (3)已知,,,a b x y R +

∈,若1ax by +=则有

21111()()by ax ax by a b a b x y x y x y

+=++=+++≥++。 (4)已知,,,a b x y R +

∈,若1a b x y

+=则有

2()()a b ay bx

x y x y a b a b x y x y

+=++=+++≥++=

40 一元二次不等式2

0(0)ax bx c ++><或2

(0,40)a b ac ≠?=->,如果a 与2

ax bx c ++同号,则

其解集在两根之外;如果a 与2

ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异

号两根之间.即:

121212()()0()x x x x x x x x x <

121212,()()0()x x x x x x x x x x <>?--><或.

41 含有绝对值的不等式 :当a> 0时,有

22x a x a a x a

22x a x a x a >?>?>或x a <-.

42 斜率公式 :

21

21

y y k x x -=

-(111(,)P x y 、222(,)P x y ).

43 直线的五种方程:

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).

(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式

11

2121

y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (1212,x x y y ≠≠)).

两点式的推广:211211()()()()0x x y y y y x x -----=(无任何限制条件!)

(4)截距式 1x y

a b

+=(a b 、分别为直线的横、纵截距,00a b ≠≠、)

(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

直线0Ax By C ++=的法向量:(,)l A B '=,方向向量:(,)l B A =-

44 夹角公式:

(1)21

21

tan |

|1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)

(2)12

21

1212

tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是

2

π.

45 1l 到2l 的角公式:

(1)21

21

tan 1k k k k α-=

+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)

(2)1221

1212

tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).

直线12l l ⊥时,直线l 1到l 2的角是

2

π. 46 点到直线的距离

:d =点00(,)P x y ,直线l :0Ax By C ++=).

47 圆的四种方程:

(1)圆的标准方程 2

2

2

()()x a y b r -+-=.

(2)圆的一般方程 2

20x y Dx Ey F ++++=(22

4D E F +->0).

(3)圆的参数方程 cos sin x a r y b r θ

θ

=+??

=+?.

(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).

48点与圆的位置关系:点00(,)P x y 与圆2

2

2

)()(r b y a x =-+-的位置关系有三种:

若d =d r >?点P 在圆外;

d r =?点P 在圆上; d r

49直线与圆的位置关系:直线0=++C By Ax 与圆2

22)()(r b y a x =-+-的位置关系有三种

(2

2

B

A C

Bb Aa d +++=

):

0相离r d ;0=???=相切r d ;0>???<相交r d .

50 两圆位置关系的判定方法:设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21,则:

条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

条公切线相交22121??+<<-r r d r r ; 条公切线内切121??-=r r d ;

无公切线内含??-<<210r r d .

51 椭圆22

221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ

=??=?.

离心率c e a ==,

准线到中心的距离为2a c

,焦点到对应准线的距离(焦准距)2b p c =。

过焦点且垂直于长轴的弦叫通经,其长度为:2

2b a

.

52 椭圆22

221(0)x y a b a b

+=>>焦半径公式及两焦半径与焦距构成三角形的面积:

21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221||tan 2

F PF P F PF

S c y b ?∠==。

53椭圆的的外部:

1+r 2

r 2-r o

(1)点00(,)P x y 在椭圆22

221(0)x y a b a b +=>>的部2200221x y a b

?+<.

(2)点00(,)P x y 在椭圆22

221(0)x y a b a b +=>>的外部2200221x y a b

?+>.

54 椭圆的切线方程:

(1) 椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y

a b +=.

(2)过椭圆22221x y a b +=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y

a b +=.

(3)椭圆22221(0)x y a b a b

+=>>与直线0Ax By C ++=相切的条件是22222

A a

B b c +=.

55 双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==准线到中心的距离为2

a c ,焦点到对应

准线的距离(焦准距)2b p c =。过焦点且垂直于实轴的弦叫通经,其长度为:2

2b a .

焦半径公式21|()|||a PF e x a ex c =+=+,2

2|()|||a PF e x a ex c

=-=-,

两焦半径与焦距构成三角形的面积1221cot 2

F PF F PF

S b ?∠=。

56 双曲线的方程与渐近线方程的关系:

(1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a

b

y ±=.

(2)若渐近线方程为x a

b

y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x .

(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22

22b

y a x

(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 。

57双曲线的切线方程:

(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y

a b -=.

(2)过双曲线22221x y a b -=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y

a b -=.

(3)双曲线22221x y a b -=与直线0Ax By C ++=相切的条件是22222

A a

B b c -=.

58抛物线px y 22

=的焦半径公式:

抛物线2

2(0)y px p =>焦半径02

p CF x =+.

过焦点弦长p x x p

x p x CD ++=+++=21212

2.

59二次函数2

2

24()24b ac b y ax bx c a x a a

-=++=+

+(0)a ≠的图象是抛物线: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-; (3)准线方程是241

4ac b y a

--=.

60 直线与圆锥曲线相交的弦长公式 AB =

或1212||||AB x x y y ==-=-

(弦端点A ),(),,(2211y x B y x ,由方程???=+=0

)y ,x (F b kx y 消去y 得到02

=++c bx ax

0?>,α为直线AB 的倾斜角,k 为直线的斜率,12||x x -=61证明直线与平面的平行的思考途径:

(1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.

62证明直线与平面垂直的思考途径:

(1)转化为该直线与平面任一直线垂直; (2)转化为该直线与平面相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面。 63证明平面与平面的垂直的思考途径:

(1)转化为判断二面角是直二面角; (2)转化为线面垂直;

(3) 转化为两平面的法向量平行。 64 向量的直角坐标运算:

设a =123(,,)a a a ,b =123(,,)b b b 则: (1) a +b =112233(,,)a b a b a b +++; (2) a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4) a ·b =112233a b a b a b ++; 65 夹角公式:

设a =123(,,)a a a ,b =123(,,)b b b ,则2cos ,a b a <>=.

66 异面直线间的距离 :

||

||

CD n d n ?=

(12,l l 是两异面直线,其公垂向量为n ,C D 、是12,l l 上任一点,d 为12,l l 间的距离). 67点B 到平面α的距离:

||||

AB n d n ?=(n 为平面α的法向量,A α∈,AB 是α的一条斜线段).

68球的半径是R ,则其体积343

V R π=,其表面积2

4S R π=.

69球的组合体:

(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.

(2)球与正方体的组合体:正方体的切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体

的面对角线长, 正方体的外接球的直径是正方体的体对角线长.

(3)球与正四面体的组合体: 棱长为a

(

正四面体高3a 的14),

外接球的半径为4a (

正四面体高3a 的34

). 70 分类计数原理(加法原理):12n N m m m =+++.

分步计数原理(乘法原理):12n N m m m =??

?.

71排列数公式 :m

n A =)1()1(+--m n n n =!

!)(m n n -.(n ,m ∈N *,且m n ≤).规定1!0=.

72 组合数公式:m

n

C =m n m m

A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N *,m N ∈,且m n ≤).

组合数的两个性质:(1)m n C =m

n n

C - ;(2) m n C +1

-m n

C =m n C 1+.规定10

=n C .

73 二项式定理 n

n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式r

r n r n r b a C T -+=1)210(n r ,,,

=. 2012()()n n n f x ax b a a x a x a x =+=++++的展开式的系数关系:

012(1)n a a a a f ++++=; 012(1)(1)n n a a a a f -++

+-=-;0(0)a f =。

74 互斥事件A ,B 分别发生的概率的和:P(A +B)=P(A)+P(B).

n 个互斥事件分别发生的概率的和:P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 75 独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B).

n 个独立事件同时发生的概率:P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).

76 n 次独立重复试验中某事件恰好发生k 次的概率:()(1).k k n k

n n P k C P P -=-

77 数学期望:1122n n E x P x P x P ξ=++++

数学期望的性质

(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=. (3) 若ξ服从几何分布,且1

()(,)k P k g k p q p ξ-===,则1E p

ξ=

. 78方差:()()()2

2

2

1122n n D x E p x E p x E p ξξξξ=-?+-?+

+-?+

标准差:σξ=ξD . 方差的性质:

(1)()2

D a b a D ξξ+=;

(2)若ξ~(,)B n p ,则(1)D np p ξ=-.

(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ

-===,则2

q D p ξ=

. 方差与期望的关系:()2

2D E E ξξξ=-.

79正态分布密度函数:(

)()()2

2

26,,x f x x μ--

=

∈-∞+∞,

式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差.

对于2

(,)N μσ,取值小于x 的概率:()x F x μσ-??

???

. ()()()12201x x P x x P x x x P <-<=<<

80 )(x f 在0x 处的导数(或变化率):

00000()()()lim

lim x x x x f x x f x y

f x y x x

=?→?→+?-?''

===??. 瞬时速度:00()()

()lim lim

t t s s t t s t s t t t

υ?→?→?+?-'===??. 瞬时加速度:00()()

()lim lim

t t v v t t v t a v t t t

?→?→?+?-'===??. 81 函数)(x f y =在点0x 处的导数的几何意义:

函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 82 几种常见函数的导数:

(1) 0='C (C 为常数).(2) 1

()()n n x nx

n Q -'=∈.(3) x x cos )(sin ='.

(4) x x sin )(cos -='. (5) x x 1

)(ln =';1(log )log a a x e x

'=.

(6) x x e e =')(; a a a x

x ln )(='.

83 导数的运算法则:

(1)'

'

'

()u v u v ±=±.(2)'

'

'

()uv u v uv =+.(3)''

'2

()(0)u u v uv v v v

-=≠. 84 判别)(0x f 是极大(小)值的方法:

当函数)(x f 在点0x 处连续时,

(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值. 85 复数的相等:,a bi c di a c b d +=+?==.(,,,a b c d R ∈)

86 复数z a bi =+的模(或绝对值)||z =||a bi +87 复平面上的两点间的距离公式:

12||d z z =-=111z x y i =+,222z x y i =+).

88实系数一元二次方程的解

实系数一元二次方程2

0ax bx c ++=,

①若2

40b ac ?=->,则1,22b x a -=;

②若2

40b ac ?=-=,则122b x x a

==-;

③若2

40b ac ?=-<,它在实数集R 没有实数根;在复数集C 有且仅有两个共轭复数根

240)x b ac =-<.

相关主题
相关文档
最新文档