低EMI、高效的零电压开关反激式开关电源设计
零电压反激式开关电源芯片IRIS4015原理及设计要点

零电压反激式开关电源芯片IRIS4015原理及设计要点摘要:本文介绍了准谐式反激式开关电源IRIS4015的工作原理,并介绍了应用IRIS4015进行电源设计的电路和在设计中应特别注意的几个方面。
叙词:谐振Abstract: The principle of quasi-resonance fly-back SMPS IRIS4015 was in troduced in this paper, and the application circuit of the IRIS4015 in th e design of the SMPS and the design note were also introduced. Keywords:Quasi-Resonance 1. 引言目前单片开关稳压电源有多种多样,如TOP-switch、Tiny-switch、Cool-set等,这些单片开关稳压电源均工作在硬开关状态,开关损耗和EMI较大。
为克服硬开关的缺点可用软开关工作方式。
在反激式开关电源中以无损耗缓冲电路和准谐振工作方式最为简单,而且准谐振工作方式可以实现零电压的开通和关断,在各种准谐振的解决方案中IRIS4015是一种很好的方案。
2. IS4015工作原理分析IRIS4015是单片准谐振式反激式开关电源中MOSFET和控制IC的集成,如图1,有五个功能引脚:源极(S)、漏极(D)、控制IC的接地端(GND)、电源(Vcc)、过电流和电压反馈输入端(OCP/FB)。
IRIS4015可以工作在准谐振模式下,该模式下频率可变,在轻载和高电源电压下达最大。
IR IS4015具有各种保护电路如:温度补偿的逐个脉冲过电流保护(OCP)、过电压锁定保护(OVP)、热关闭电路(TSD);启动电流最大不超过100uA,有源低通滤波器可使轻载时稳定度提高;内置温度补偿基准电压;具有可调门驱动;并且可以通过外部元件调整开关速度用于EMI控制。
反激式开关电源的设计—毕业设计说明

毕业设计说明书反激式开关电源的设计专业 电气工程及其自动化学生姓名 伊利优酸乳班级 XXXXXX学号 XXXXXX 指导教师 XXXXXX完成日期 2XXXXXXXXX反激式开关电源的设计摘要:各种电子设备中,有一个不可或缺的组成部分,那就是电源。
反激式开关电源的设计阐述了反激式开关电源的工作原理;通过方案的对比,选择出了用电流控制型PWM技术;最后详细介绍了利用TOPSwitch 器件设计开关电源的设计过程。
TOPSwitch器件是近代出现的芯片,它有很多功能,如对过流,过热进行保护,能自动重启等。
对TOPSwitch-GX 的工作原理进行了理解,对内部结构进行了分析,对以TOP244Y为控制核心的反激式开关电源进行了设计。
设计出的采用此芯片的反激式开关电源的外围电路很简单,所用元器件少,性能指标高,价格低,有较高的集成度,很有实用价值。
该芯片的开关频率为132kHZ。
设计电路的开关电源输出功率为25W时,可以实现12V/1.2A,5V/2A和30V/20mA三路直流电压输出。
另外,还设计了外围电路,并对此进行了分析。
高频变压器的设计是重点,对磁心,线圈匝数进行了选择。
用此开关电源不但可以使外围电路器件大大减少,成本降低,还能使可靠性大大提高,正常工作时,可以提供多路输出,能在家电、IT等领域被广泛应用。
关键词:开关电源;反激式变换器;TOPSwitch-GX;高频变压器The Design of Single-end Flyback Switching Power SupplyAbstract: There is an integral part of a variety of electronic devices, and that is power. Flyback switching power supply design elaborated flyback switching power supply works; contrast through the program, select a current-controlled PWM technology used; finally describes the use of TOPSwitch device design of switching power supply design process. TOPSwitch device is the modern appearance of the chip, it has many features, such as over current, over temperature protection, can automatically restart and so on. The working principle of TOPSwitch-GX are understood, the internal structure is analyzed, based on TOP244Y has been designed for the flyback switching power supply control center. The use of this chip design flyback switching power supply external circuit is very simple, the use of fewer components, high performance, low price, have a higher degree of integration, very practical value. Theswitching frequency of the chip 132kHZ. Design of circuit switching power supply output power of 25W, you can achieve 12V/1.2A, 5V/2A and 30V/20mA three-way DC voltage output. In addition, the design of the peripheral circuits, and this analyzed. High-frequency transformer design is the key, right core, coil turns is a selection. With this switching power supply can not only greatly reduce the peripheral circuit components, cost reduction, but also to greatly improve the reliability, normal working hours, you can provide multiple outputs in home appliances, IT and other fields are widely used.Key words: Switching power supply;Fly-back converter;TOPSwitch-GX;High frequency transformer目录1 概述 (1)1.1 课题来源及基本技术要求 (1)1.2 设计内容及设计思路 (1)1.3 预期成果及其意义 (2)2 反激式开关电源方案比较与选择 (2)2.1反激式开关电源介绍 (3)2.2 反激式开关电源的方案比较与选择 (3)3 基于TOP244Y芯片的单端反激式开关电源的设计 (7)3.1 TOPSwitch-GX芯片简介 (7)3.2 基本参数确定 (8)3.3 高频变压器设计 (9)3.4 输入整流滤波电路的设计 (13)3.5 钳位保护电路的设计 (14)3.6 输出整流滤波电路的设计 (15)3.7 反馈整流滤波电路设计 (17)3.8 反馈电路设计 (17)3.9 TOPSwitch-GX芯片的外围设计 (21)4 结束语 (20)参考文献 (21)致谢 (24)附录 (23)附录1 反激式开关电源原理图 (26)附录2反激式开关电源PCB图 (28)附录3 反激式开关电源主要元件清单 (29)反激式开关电源的设计1 概述1.1 课题来源及基本技术要求1.1.1课题来源如今,开关电源在生活中的应用极其广泛。
芯片公司反激开关电源设计案例

芯片公司反激开关电源设计案例反激开关电源是一种常用的电源设计方案,它采用了开关元件的控制来实现高效率的能量转换。
对于芯片公司来说,设计一个稳定可靠的反激开关电源是至关重要的。
下面以一个具体案例来介绍芯片公司如何设计反激开关电源。
案例背景:芯片公司计划设计一款用于智能手表的反激开关电源。
该电源需要满足以下要求:输出电压为3.3V,最大输出电流为200mA,输入电压范围为3V到5V。
同时,该电源需要具备稳定可靠、高效率等特点。
设计步骤:1.电源需求分析:首先,需要对电源的工作条件进行分析。
智能手表作为一种可佩戴设备,体积小巧、功耗低是重要的特点。
因此,反激开关电源是一种理想的选择。
在电源需求分析中,需要确定输出电压和电流的要求,并考虑输入电压的范围。
2.开关电源拓扑选择:根据电源需求分析,可以选择反激开关电源作为设计方案。
反激开关电源可以提供相对较高的转换效率,并且适用于较宽的输入电压范围。
3.电源拓扑设计:在选择了反激开关电源后,需要设计电源的拓扑结构。
该案例中可以选择基于反激变换器的设计方案,使用变压器实现能量的传输。
通过选择合适的变压器匹配,可以实现输入电压到输出电压的转换。
4.元件选择:根据设计要求,选择合适的元件来搭建反激开关电源。
包括开关管、二极管、电感、电容等。
在选择元件时,需要考虑其参数和性能,并保证其可靠性和稳定性。
5.控制电路设计:反激开关电源需要一个控制电路来实现对开关管的控制。
控制电路可以采用传统的PWM或者脉冲频率调制(PFM)的控制方法。
通过控制开关管的导通与断开,实现对输出电压和电流的调节。
6.稳压电路设计:为了保证输出电压的稳定性,需要设计稳压电路。
可以采用负反馈稳压电路,通过对输出电压进行采样和比较,控制开关管的工作状态,使得输出电压能够稳定在设定值。
7.效率优化:为了提高转换效率,需要优化设计。
可以采用切换频率较高的开关管、合理选择电感和电容等方法。
通过优化设计,使能量转换更为高效。
低电压反激电源设计方案

低电压反激电源设计方案电源设计对于电子系统的性能和稳定性有着至关重要的作用。
其中一种常见的设计方案是低电压反激电源。
本文将介绍低电压反激电源的设计方案及其相关问题。
低电压反激电源设计方案低电压反激电源是一种采用反激变压器技术的电源设计方案,其输入电压通常为AC220V,输出电压通常为DC5V至DC24V。
常用的IC 包括TOPSwitch、UCC28600、ICE2A0565等。
① 输入滤波电路为了保证电源的稳定性和抑制电磁干扰,输入端需要加入滤波电路。
常用的组成为:X2级安全电容,二极管桥整流电路,电容滤波电路和NTC电感式温度控制器等。
② 自启动电路在输入AC电源端不需要使用开关时,需要加入自启动电路。
TOPSwitch系列产品具有自启动电路,UCC28600和ICE2A0565需要外接电路加以实现。
③ 反激变压器反激变压器是低电压反激电源的核心。
其通过互感性能将输入电压转换为输出电压。
常常采用EE型矩形磁芯设计。
在EE型变压器中,X1是输入绕组,X2是输出绕组。
两个绕组的电流通过空气隙耦合,使整个系统达到了适当的功率转换。
④ 控制电路控制电路是实现低电压反激电源工作的关键。
在消除潜在共模电压和电磁干扰方面,具有较好的稳定性和抗干扰能力。
常使用高端品牌的反激IC TOPSwitch系列产品,可提供电流和电压两种调节模式。
⑤ 输出电路输出电路连接在变压器的输出端。
配合适当大小的二极管扼流圈和电容,可保证稳定的DC输出,同时也可以降低输出电压波动。
常见问题及解决方案问题一:输出电压波动大解决方案:增加大电容的电源过滤电容、加大输出线圈的扼流电感电阻、加强输出电压的控制电路。
问题二:温度过高解决方案:采用高温材料,如高温电容和磁芯,在变压器环节加入散热器等。
问题三:输出电流波动大解决方案:增加输出电容容量、加大扼流电感电阻、调节控制电路等。
总结低电压反激电源是一种经典的电源设计方案。
其优点在于功率转换效率高、输出电压稳定、工作可靠。
一种高效率低成本的软开关反激式开关电源设计_于昊

-66-科技论坛一种高效率低成本的软开关反激式开关电源设计于昊(哈尔滨富创硕电子科技有限公司,黑龙江哈尔滨150090)引言反激式变换器以其结构简单、价格低廉、可靠性高等优点,在中小功率场合得到广泛应用。
但其效率不高、纹波大、电压负载稳定度高等缺点,又限制了其应用。
本文研究了将软开关技术引进到反激式变换器中,使其始终工作在临界模式下获得零电压导通,并将其应用到24V/4.2A ,100W 的开关电源中。
1软开关反激式变换器工作原理总体方案如图1所示。
采用标准的反激式电路拓扑,电流模式控制。
电路置于临界模式下运行,副边绕组电流降至零后重启开关管,电路变频运行。
电路工作过程是:上电后,U1的1、2脚均为高电平,3脚输出高电平,通过推挽驱动电路驱动功率晶体管V1,电路自激导通。
初级电流开始流过变压器初级绕组,在电阻R3上形成压降,加在晶体管V5的基极上。
随着电流的逐渐增大,晶体管V5的基极电压也逐步提高,使其导通,以至U1的2脚变为低电平,3脚输出低电平,关断功率晶体管V1。
次级绕组导通,向负载供电。
同时,辅助绕组Np1的同铭端为正电平,使晶体管V4导通,以至U1的1脚变为低电平,钳位U3的3脚为低电平。
当次级电流为零时,各绕组同铭端的电位翻转,次级整流管截止,晶体管V4重新截止,U1的1脚变为高电平,功率晶体管V1重新导通,周而复始。
图1软开关反激式变换器示意图2设计24V/4.2A ,100W 的开关电源2.1电气原理图开关电源的电气原理图如图2所示。
图2电气原理图2.2变压器设计变压器是开关电源的核心部件,设计一款开关电源的主要工作就是计算变压器的诸多参数,变压器设计的好坏决定着开关电源的性能。
但又不易透彻掌握工作情况(包括磁材料特性的非线性,特性与温度、频率、气隙的依赖性和不易测量性),这就使设计变得复杂,常需要根据实际情况,重新迭代反复计算。
2.2.1选择磁芯大小设定开关电源工作在100KHz ,要求磁性材料在工作频率上的功耗尽可能小,同时还要求磁性材料饱和磁感应强度高、温度稳定好,再考虑到性能价格比,我选用铁氧体磁芯。
反激式开关电源电路设计(毕业设计).docx

第一章开关电源设计任务书 (1)1.1课程设计的目的 (1)1・2课程设计的要求 (1)1.2. 1 题目 (1)1.2.2设计装置的主要技术数据 (1)1.2.3课程设计主要内容 (2)1.2.4课程设计的要求 (2)1.3课程设计报告的基本格式 (2)第二章总体方案的确定 (3)2.1反激式开关电源的介绍 (3)2.2 UC3842开关电源简介 (4)2.2.1 UC3842内部工作原理简介 (4)2.2.2 UC3842的使用特点 (6)2.23 UC3842组成的反激式开关电源 (6)2.3 总体方案的确定 (7)第三章具体电路设计 (8)3.1 EMI滤波电路 (8)3.2整流滤波电路的设计 (9)3.3高频变压器的设计 (10)3.4控制电路的选择 (17)3.5反馈电路的设计 (18)3.5.1 电压反馈电路 (18)3.5.2 输出电流反馈 (18)3.6保护电路的设计 (19)3.6.1 输出电压保护电路 (19)3.6.2输入欠压过压保护 (20)3.7输出整流滤波电路设计 (21)第四章个人心得体会 (22)附录1重薄膜绝缘导线参数.............................................. *23附录2设计完整电路图............................................... 附大图致谢. (24)参考文献 (24)第一章开关电源设计任务书1.1 课程设计的目的通过开关电源技术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题,特别是解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
4、培养学生运用仿真工具的能力。
5、提高学牛课稈设计报告撰写水平。
1.2 课程设计的要求1.2.1题目题目:反激式开关电源电路设计注意事项:①学生也可以选择规定题目方向外的其他开关电源电路设计。
反激式开关电源设计方法

反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。
它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。
当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。
2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。
(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。
(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。
(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。
(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。
3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。
(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。
(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。
(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。
(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。
总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。
通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。
(完整版)反激式开关电源的设计方法

1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。
做为设计开发、品质检验、生产测试等的依据。
2.2 设计线路图、零件选用。
2.3 PCB Layout.外形尺寸、接口定义,散热方式等。
2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。
当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低EMI、高效的零电压开关反激式开关电源设计
反激式开关电源以电路简单电磁干扰相对小得到广泛应用,而采用自激型反激式开关电源减小EMI将导致电源效率下降,发热量大,可靠性下降。
因而需要一种低EMI,高效的反激式开关电源。
本文的“零电压”开关方式,复位过程无损耗,因此效率高。
同时电感电流也为零,开通时刻因寄生振荡所产生的输出电压尖峰和EMI大幅度降低。
反激式开关电源以电路简单电磁干扰相对小而得到广泛应用,对开关电源的输出电压尖峰和EMI也提出了更高的要求,通常减小EMI的方法主要是采用自激型反激式开关电源,用开关速度相对慢的双极晶体管作为主开关;加大缓冲电路电容量来降低关断过程的dz/dt,di/dt产生的EMI用减缓导通过程减小开通EMI,付出的代价是电源效率下降,发热量大,可靠性下降。
因而需要一种低EMI,高效的反激式开关电源,软开关反激式开关电源,便是比较理想的解决方案。
零电压开关
变压器通过次级绕组、输出整流二极管向输出端释放储能。
变压器次级电流为:
变压器次级电流降到零,变压器储能全部释放,输出整流二极管自然关断,电路进人缓冲电路复位阶段。
缓冲电路复位阶段对应t3-t4期间为使缓冲电容器在下一个开关周期能起到缓冲作用,保证开关管“零电压”关断和“零电压”开通,需将缓冲电容器放电,将电荷全部泄放,即复位。
与有损耗缓冲电路不同,无损耗缓冲电路采用LC谐振方式将缓冲电容器复位,本文电路的复位电感为变压器初级电。