偏微分方程数值解
偏微分方程数值解

u
(
x
,
0
)
(
x ),
u (0, t )
g 1 (t ),
t 0, 0 x l
u (x)
t t0 u (l,t) g 2 (t)
0 xl 0tT
二、偏微分方程的差分方法 根本思想:先对求解区域作网格剖分,将自变量的连续变
化区域用有限离散点〔网格点〕集代替;将问题中出现的连续 变量的函数用定义在网格点上离散变量的函数代替;通过用网 格点上函数的差商代替导数,将含连续变量的偏微分方程定解 问题化成只含有限个未知数的代数方程组〔称为差分格式〕。 如果差分格式有解,且当网格无限变小时其解收敛于原微分方 程定解问题的解,那么差分格式的解就作为原问题的近似解。 因此,用差分方法求偏微分方程定解问题一般需要解决以下问 题: 〔i〕选取网格; 〔ii〕对微分方程及定解条件〔内点与边界点〕选择差分近似, 列出差分格式; 〔iii〕差分格式解的存在唯一性,求解差分格式; 〔iv〕讨论差分格式对于微分方程解的收敛性及误差估计。
3、求 u M使得 A(u, v)
F (v)
0,
v
C
1 0
{v(x,
y) C1(), v
1
0}
变分近似方法 1、Ritz方法 2、Galerk in方法
Matlab解法 Matlab中的偏微分方程(PDE)工具箱是用有限元法寻求典型偏微分方程 的数值近似解,该工具箱求解偏微分方程具体步骤与用有限元方法求解偏 微分方程的过程是一致的,包括几个步骤,即几何描述、边界条件描述、 偏微分方程类型选择、有限元划分计算网格、初始化条件输入,最后给出 偏微分方程的数值解(包括画图)。
uxx u yy f (x, y) u( x, y) ( x, y),在 1上
偏微分方程的数值方法

偏微分方程的数值方法偏微分方程(Partial Differential Equations,简称PDEs)是数学中研究的重要分支,广泛应用于物理学、工程学等领域中。
由于一些复杂的PDEs难以找到解析解,因此需要借助数值方法进行求解。
本文将介绍偏微分方程的数值解法,包括有限差分法、有限元法和谱方法等。
一、有限差分法(Finite Difference Method)有限差分法是解偏微分方程最常用的数值方法之一。
它将偏微分方程中的导数用差商来近似,将空间离散成若干个小区间和时间离散成若干个小时间步长。
通过求解离散化后的代数方程,可以得到原偏微分方程的数值解。
以二维的泊松方程为例,偏微分方程可以表示为:∂²u/∂x² + ∂²u/∂y² = f(x, y)其中,u(x, y)为未知函数,f(x, y)为已知函数。
我们可以将空间离散成Nx × Ny个小区间,时间离散成Nt个小时间步长。
利用中心差分法可以近似表示导数,我们可以得到离散化的代数方程组。
二、有限元法(Finite Element Method)有限元法是一种重要的数值解PDEs的方法。
它将求解区域离散化成一系列的单元,再通过插值函数将每个单元上的未知函数近似表达。
然后,利用加权残差方法,将PDEs转化成代数方程组。
在有限元法中,采用形函数来近似未知函数。
将偏微分方程转化为弱形式,通过选取适当的形函数和权函数,可以得到离散化后的代数方程组。
有限元法适用于求解各种各样的偏微分方程,包括静态和动态、线性和非线性、自由边界和固定边界等问题。
三、谱方法(Spectral Method)谱方法是一种基于特殊函数(如正交多项式)的数值方法,用于解PDEs。
谱方法在求解偏微分方程时,利用高阶连续函数拟合初始条件和边界条件,通过调整特殊函数的系数来近似求解解析解。
谱方法具有高精度和快速收敛的特点,适用于各种偏微分方程求解。
偏微分方程数值解法

偏微分方程数值解法
偏微分方程数值解法是一种利用计算机技术获取偏微分方程数值解的方法,它主要目标是解决微分方程的精确、快速、可靠的数值解。
偏微分方程数值解法交叉应用于分析数学、力学、电磁学等不同领域的各种模型,能够大大提高解决微分方程的效率。
偏微分方程数值解法大致分为两个方面:一是求解偏微分方程的离散数值解法;二是精确解对分解数值解法,如多阶谱方法、牛顿法和共轭梯度法等。
其中,离散数值解法是把偏微分方程抽象成一系列数值求解问题,并进行递推叠加求解,而精确解对分解数值解法则是通过优化问题方式求解微分方程精确解,以达到精确求解的目的。
偏微分方程数值解法的有效解决的方法,给科学与技术研究带来了很大的帮助。
它不但克服了无法精确解决某些复杂偏微分方程的困难,而且有更快的求解效率,也可以很好地满足实际科技应用的需要。
偏微分方程数值解法的应用已经普遍发挥出重要的作用,不仅可以解决物理科学问题,还可以解决经济学、商业投资、财务分析等复杂的数学模型。
因此,偏微分方程数值解法的应用已在各个领域得到了广泛的应用,为科学与技术研究提供了很大的帮助,在微分方程求解方面产生了重要的影响。
偏微分方程数值求解方法

偏微分方程数值求解方法偏微分方程数值求解方法是使用计算机算法来近似求解偏微分方程的过程。
偏微分方程是描述物理现象和自然现象的主要工具,但大多数偏微分方程不能通过解析方式求解,因此需要使用数值方法进行近似求解。
常用的偏微分方程数值求解方法包括有限差分法、有限元法、谱方法、边界元法和逆时空方法等。
1. 有限差分法有限差分法是一种最简单的数值求解方法,它将偏微分方程中的导数离散化为差分的形式,然后通过有限差分公式求解。
在有限差分法中,将求解区域离散化为网格,然后在每个节点上求解方程,通过节点之间的连通关系建立系数矩阵,最终利用线性代数方法求解线性方程组。
2. 有限元法有限元法是一种广泛运用的数值求解方法,它将求解区域离散化为有限个子域,然后在每个子域内近似求解方程。
有限元法是一种基于变分原理的方法,通过将偏微分方程转化为变分问题,然后在有限维的函数空间中建立逼近函数,最终利用变分方法求解方程。
3. 谱方法谱方法是一种基于傅里叶变换的数值求解方法,它将求解域上的函数表示为傅里叶级数的形式,然后通过求解系数来近似求解方程。
谱方法具有高精度、高效率的优点,但对于非周期边界和奇异性问题可能不适用。
4. 边界元法边界元法是一种基于积分方程的数值求解方法,它将偏微分方程转化为边界积分方程,然后在求解区域表面上求解方程。
边界元法不需要离散化求解区域,仅需在求解区域表面上采集节点,并通过节点之间的关系建立系数矩阵。
5. 逆时空方法逆时空方法是一种利用观测数据反演偏微分方程的数值求解方法,它通过最优化算法将观测数据反演为偏微分方程的参数。
逆时空方法对模型假设和观测数据的噪声较为敏感,但可以应用于各种偏微分方程的求解。
偏微分方程的数值求解方法

偏微分方程的数值求解方法偏微分方程是描述自然现象的重要工具,例如描述热传导、电磁波传播、流体运动等。
然而大多数情况下,这些方程很难通过解析方式求解,因此需要数值求解方法。
本文将介绍偏微分方程的数值求解方法及其应用。
一、有限差分法有限差分法是一种常见的偏微分方程数值求解方法。
它将原本连续的区域离散化,将偏微分方程转化为差分方程。
例如对于一维热传导方程:$$\frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2} $$其中 $u(x, t)$ 是温度,$\alpha$ 是热扩散系数。
我们可以选择将空间分成 $N$ 个网格,时间分成 $M$ 个步骤。
则有:$$u_i^{m+1} = u_i^m + \frac{\alpha\Delta t}{\Deltax^2}(u_{i+1}^m - 2u_i^m + u_{i-1}^m)$$其中 $u_i^m$ 表示在位置 $i\Delta x$,时间 $m\Delta t$ 时的温度值。
这是一个显式求解方程,可以直接按照时间步骤迭代计算。
不过由于它的误差可能会增长,因此需要小心选择时间步长和空间步长,以保证误差不会过大。
二、有限元法有限元法是一种更加通用的偏微分方程数值求解方法。
它将连续区域离散化成一些小段,称为单元。
然后针对每个单元,将其上的偏微分方程转化为局部插值函数的方程求解。
例如对于一维波动方程:$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partialx^2}$$我们可以选择将空间分成 $N$ 个网格,用有限元方法将每个网格分成若干个单元。
则对于每个单元 $i$,我们可以得到一个局部插值函数 $u^i(x, t)$ 来近似解该单元上的偏微分方程。
这里不再赘述该函数的形式。
另外,我们还需要满足界面上的连续性和斜率匹配条件,以保证整体解是连续的。
偏微分方程数值解法

偏微分方程数值解法偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象,其在物理学、工程学、经济学等领域有广泛的应用。
然而,对于大多数偏微分方程而言,很难通过解析方法得到精确解,因此需要借助数值解法来求解。
本文将介绍几种常见的偏微分方程数值解法。
一、有限差分法(Finite Difference Method)有限差分法是一种常见且直观的偏微分方程数值解法。
其基本思想是将偏微分方程中的导数通过差分近似来表示,然后通过离散化的方式转化为代数方程组进行求解。
对于一维偏微分方程,可以通过将空间坐标离散化成一系列有限的格点,并使用中心差分格式来近似原方程中的导数项。
然后,将时间坐标离散化,利用差分格式逐步计算每个时间步的解。
最后,通过迭代计算所有时间步,可以得到整个时间域上的解。
对于二维或高维的偏微分方程,可以将空间坐标进行多重离散化,利用多维的中心差分格式进行近似,然后通过迭代计算得到整个空间域上的解。
二、有限元法(Finite Element Method)有限元法是另一种重要的偏微分方程数值解法。
其基本思想是将求解区域分割成有限数量的子区域(单元),然后通过求解子区域上的局部问题来逼近整个求解区域上的解。
在有限元法中,首先选择适当的形状函数,在每个单元上构建近似函数空间。
然后,通过构建变分问题,将原偏微分方程转化为一系列代数方程。
最后,通过求解这些代数方程,可以得到整个求解区域上的解。
有限元法适用于各种复杂的边界条件和几何构型,因此在实际工程问题中被广泛应用。
三、谱方法(Spectral Methods)谱方法是一种基于特定基函数(如切比雪夫多项式、勒让德多项式等)展开解的偏微分方程数值解法。
与有限差分法和有限元法不同,谱方法在整个求解区域上都具有高精度和快速收敛的特性。
在谱方法中,通过选择适当的基函数,并利用其正交性质,可以将解在整个求解区域上展开为基函数系数的线性组合。
偏微分方程的数值解法

偏微分方程的数值解法偏微分方程(Partial Differential Equation,PDE)是描述物理、化学、工程学等许多科学领域中变化的方程。
由于PDE的求解通常是困难的,因此需要使用数值方法。
本文将介绍偏微分方程的数值解法。
一般来说,求解PDE需要求得其解析解。
然而,对于复杂的PDE,往往不存在解析解,因此需要使用数值解法求解。
数值解法可以分为两类:有限差分法和有限元法。
有限差分法是将计算区域分成网格,利用差分公式将PDE转化为离散方程组,然后使用解线性方程组的方法求解。
有限元法则是将计算区域分成有限数量的单元,每个单元内使用多项式函数逼近PDE的解,在单元之间匹配边界条件,得到整个区域上的逼近解。
首先讨论有限差分法。
常见的差分公式包括前向差分、后向差分、中心差分等。
以一维热传导方程为例,其偏微分方程形式为:$$ \frac{\partial u}{\partial t}=\frac{\partial^2 u}{\partial x^2} $$其中,$u(x,t)$表示物理量在时刻$t$和位置$x$处的值。
将其离散化,可得到:$$ \frac{u(x_i,t_{j+1})-u(x_i,t_j)}{\Delta t}=\frac{u(x_{i+1},t_j)-2u(x_i,t_j)+u(x_{i-1},t_j)}{\Delta x^2} $$其中,$x_i=i\Delta x$,$t_j=j\Delta t$,$\Delta x$和$\Delta t$分别表示$x$和$t$上的网格大小。
该差分方程可以通过简单的代数操作化为:$$ u_{i,j+1}=u_{i,j}+\frac{\Delta t}{\Delta x^2}(u_{i+1,j}-2u_{i,j}+u_{i-1,j}) $$其中,$u_{i,j}$表示在网格点$(x_i,t_j)$处的数值解。
由于差分方程中一阶导数的差分公式只具有一阶精度,因此需要使用两个网格点来逼近一阶导数。
偏微分方程数值求解方法

偏微分方程数值求解方法引言偏微分方程是数学中研究复杂现象的重要工具之一,它在许多领域都有广泛的应用,例如物理学、工程学和生物学等。
通过求解偏微分方程,我们可以获得系统的解析解或数值解,从而揭示底层的物理规律或实现工程设计。
在本文中,我们将介绍偏微分方程数值求解的常见方法,包括有限差分法、有限元法和谱方法等。
我们将详细介绍这些方法的基本原理、数值算法和实际应用。
有限差分法基本原理有限差分法是偏微分方程数值求解中最常用的方法之一。
它将连续的偏微分方程离散化为差分方程,通过计算差分方程的解来近似原方程的解。
有限差分法的基本思想是将求解域划分为离散的网格,然后在网格点上近似表示原方程。
数值算法有限差分法的数值算法主要包括离散化、边界条件处理和迭代求解三个步骤。
首先,我们将连续的偏微分方程在空间和时间上进行离散化,将其转化为差分方程。
然后,我们需要确定边界条件,即在边界上如何近似表示原方程。
最后,通过迭代计算差分方程的解,直到满足收敛条件。
实际应用有限差分法在许多领域都有广泛的应用。
例如,在流体力学中,它可以用来模拟气体或液体的流动。
在热传导方程中,它可以用来求解物体的温度分布。
此外,有限差分法还可以用来模拟结构力学中的弹性变形和振动问题等。
有限元法基本原理有限元法是一种基于分片线性函数空间的数值方法,用于求解偏微分方程。
它将求解域划分为离散的小单元,然后在每个单元上构造局部基函数,通过组合这些基函数来近似表示原方程的解。
数值算法有限元法的数值算法主要包括离散化、单元刚度矩阵的计算和全局方程的组装三个步骤。
首先,我们将连续的偏微分方程在空间上进行离散化,将其转化为离散的代数方程。
然后,针对每个单元,我们需要计算其对应的刚度矩阵和载荷向量。
最后,通过组装所有单元的刚度矩阵和载荷向量,得到全局方程,并通过求解全局方程来计算原方程的近似解。
实际应用有限元法在结构力学、固体力学和流体力学等领域有广泛的应用。
例如,在结构力学中,它可以用来计算材料的应力和变形分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3.1 波动方程求解
t t
x 0 a)初值问题
x
0
l
b)混合问题
对于初值问题,是已知t=0时,u与 依赖于x的函 u数形式,求解不同位置,不同时刻的u值。而 u是定义在
的二元函数,即上半平面的函数。
t
对于混合问题除初值外,还有边值。是已知0 初值t 及 x= 0,及 x =l 时x u依 赖 于t的函数,求解不同位置x,不同
微分方程的定解问题
离散系统的求解问题
5.2 离散化公式
将自变量在时间和空间上以一定的间隔进行离散化,则应变量就变成了这些离散变量的函数。
一阶偏导的离散化公式
u i n ,j,k u ( t,x ,y ,z ) t n t,x i x ,y j y ,z k z
一般采用欧拉公式表示
有时为了保证系统和稳定性, 对时间的差分往往采用向后公式
5.1 微分方程的求解思路
求微分方程数值解的一般步骤:
Step1区域剖分:首先按一定规则将整个定义域分成若干小块
Step2微分方程离散:构造离散点或片的函数值递推公式或方程
Step3初始、边界条件离散:根据递推公式,将初值或边界值离散化,补充方程,启动递推 运算
Step4 数值解计算:求解离散系统问题
偏微分方程数值解
1
本章要求
教学目的 教学要求
教学重点 教学难点
讲解: 偏微分方程离散格式及求解的一般过程
熟记 精通 探索 延伸
一阶及二阶偏微分方程的离散格式; 用EXCEL迭代对偏微分方程求解; 用两数组交替更新的办法进行编程求解; 对化学反应工程中物理场的模拟进行尝试。
各种偏微分方程的离散与求解 EXCEL 循环迭代问题
偏微分方程的分类
5.1 偏微分方程简介
2 u 2 u 2 u u u a ( ) x 2 b ( ) x y c ( ) y 2 d ( ) x e ( ) y f ( ) u g ( ) 0
线性微分方程 Linear partial differencial equation
un i , j,k
y t nt ,x ix ,y jy ,z k z
y
u
u u n
n
i , j,k 1
i , j,k
z t nt ,x ix ,y jy ,z k z
x
5.2 离散化公式 对于二阶偏导,我们可以通过对泰勒展开式处理技术得到下面离散化计算公式:
2u t2
u n1 i , j,k
2
u
n i,
j
,k
( t )2
u n1 i , j,k
t nt ,x ix , y jy ,z kz
2u x 2
un i1, j,k2来自un i,j
,k
( x )2
un i1, j,k
t nt ,x ix , y jy ,z kz
2u y2
un i , j1,k
2
u
n i,
j
,
k
( y )2
un i1, j,k
二式相加得:
u k 1u kh u x kh 22 ! 2 x u 2 kO (h 3)
x2u2 uk1
2uk uk1 (x)2
5.3几种常见偏微分方程的离散化计算 1、 波动方程
当 合问该u题波u 。动t x2t方0u20程只a(提1x2(供t)初,)x2,u值u2ut 条xt件l0f时(,x称,2t((此)xt 方)) 程为波动方程uu的tx初其00值中问:(1题x(t,)),,二uut者xt均t0提供2时((tx称))为波动为为方初边程值值的条条件件混
时刻的u值。此时u是定义在
的带形区域上的二元函数。
5.3.1 波动方程求解
2u t2
a2
2u x 2
f (x,t)
u n1 i
u
t0
(
x
),
u t
t0
(x)
u
n i
u n1 i
τn
u
x0
1 ( t ), u
xl
2 (t )
x xi
方程离散化
uin1(2 u ti)n2uin1a2uin 1 ( 2u xin )2uin 1f(x,t)
u
uin , j,1kuin ,j,k
tt(n1)t,xix,yjy,zkz
t
u
u n1 i , j,k
un i , j,k
t t nt ,x ix ,y jy ,z k z
t
u
un i 1 , j,k
un i , j,k
x t nt ,x ix ,y jy ,z k z
x
u
un i , j 1 ,k
t nt ,x ix , y jy ,z kz
2u z2
un i , j,k 1
2
u
n i,
j
,
k
(z)2
un i , j,k 1
t nt ,x ix , y jy ,zkz
5.2 离散化公式推导
将uk+1在uk处按二阶泰勒式展开:
将uk-1在uk处按二u 阶k 泰 勒1式 展开u :kh u x kh 22 ! 2 x u 2 kO (h 3)
b24ac0
双曲线方程 Hyperbolic
b2 4ac0
物理实际问题的归类:
b 波动方程(双曲型)一维弦振动模型:24ac0
热传导方程(抛物线型)一维线性热传导方程
拉普拉斯方程(椭圆型)稳态静电场或稳态温度分布场)
2u t 2
2
2u x 2
u t
2u x 2
u2 2u x2 y2 0
(i1,2, ,m -1) (n1,2, )
整理可得:
边界条件 初始条件 离散化
u i n 1 a 2 ( ( x t ) ) 2 2 u i n 1 ( 2 2 a 2 ( ( x t ) ) 2 2 ) u i n a 2 ( ( x t ) ) 2 2 u i n 1 u i n 1 ( x ) 2 f ( x ,t )
特殊边界条件的引入与应用
5. 1 偏微分方程简介
偏微分方程
如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方 程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
在化工或化学动态模拟方程中,常常有一个自变量是时间,其它的自变量为空间位置。如果 只考虑一维空间,则只有两个自变量;如果考虑两维空间,则有3个自变量。 许多化工过程 均是通过对偏微分方程的求解进行工艺参数的确定或数值模拟。
拟线性微分方程 Quasilinear partial differencial equation
x, y
非线性微分方程 Nonlinear partial differencial equation
x,y,un1/x,y
x,y,un/x,y
5.1 偏微分方程简介
数学上的分类:
椭圆方程 Elliptic 抛物线方程 Parabolic