2019年全国1卷省份高考模拟理科数学分类---解析几何
2019年高考全国I卷模拟试卷及答案理科数学(六)-精选.pdf

平面 过点 P ,且与直线 BD1 垂直,平面
平面 ABCD m ,根据面面平行的性质, 可得 m∥ AC ,
∴直线 m 与 A1C 所成角即为直线 AC 与直线 A1C 所成的角,即 ACA1 为直线 m 与 A1C 所成角,
在直角 △ ACA1 中, cos ACA1
AA1 A1C
2 3
6 3 ,即 m 与 A1C 所成角的余弦值为
一、选择题:本大题共 合题目要求的.
12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符
1.【 答案 】 A
y x1
【 解析 】 由题意
,解得 x 2 , y 1 ,故 A B
y 2x 5
2,1 .故选 A .
2.【 答案 】 C
2
【 解析 】 z 1 i
1i
i ,则 z i ,故 z z i i 1,故选 C.
且 △ ABC 的面积为 3 3 ,则 △ ABC 的周长为 ______. 2
16. [2019 ·宿州调研 ] 设函数 f x
2 x
ax2 ,若对任意
x1
,0 ,总存在 x2 2, ,使得
f x2 f x1 ,则实数 a 的取值范围 _______.
理科数学 第 3 页(共 8 页)
理科数学 第 4 页(共 8 页)
( 2)如果比赛约定,只能同等级马对战,每次比赛赌注
1000 金,即胜利者赢得对方 1000 金,每月
比赛一次,求田忌一年赛马获利的数学期望.
19.( 12 分)[2019 ·济南期末 ]如图,在四棱锥 P ABCD 中,底面 ABCD 为正方形, PA 平面 ABCD , E 为 AD 的中点, AC 交 BE 于点 F , G 为 △ PCD 的重心. ( 1)求证: FG ∥ 平面 PAD ; ( 2)若 PA AD ,点 H 在线段 PD 上,且 PH 2HD ,求二面角 H FG C 的余弦值.
2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)
sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为
2019年普通高等学校招生全国统一考试(全国I卷)理科数学及答案解析

2019年普通高等学校招生全国统一考试(全国I 卷) 理科数学一、选择题(本大题共12小题,共60分)1.已知集合}24|{<<-=x x M ,}06|{2<--=x x x N ,则=N M ( )A.}34|{<<-x xB.}24|{-<<-x xC. }22|{<<-x xD. }32|{<<x x2.设复数z 满足1z i -=,z 在复平面内对应的点为(,)x y ,则( ) A.22(1)1x y ++= B.22(1)1x y -+= C.22(1)1x y +-= D.22(1)1x y ++= 3.已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A.a b c << B.a c b << C.c a b << D.b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215- .若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是( )A.cm 165B.cm 175C.cm 185D.cm 1905. 函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A.B.C.D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( ) A.516 B.1132 C.2132D.1116 7. 已知非零向量,a b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A.6π B.3π C.23π D.56π 8.右图是求112+12+2的程序框图,图中空白框中应填入( )A.12A A =+ B.12A A =+ C.112A A =+ D.112A A=+ 9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( )A.25n a n =-B.310n a n =-C.228n S n n =- D.2122n S n n =- 10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =,||||1BF AB =,则C 的方程为( )A.1222=+y x B. 12322=+y x C.13422=+y x D.14522=+y x11. 关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③12. 已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,,E F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A.B.C.二、填空题(本大题共4小题,共20分)13.曲线23()xy x x e =+在点(0,0)处的切线方程为 . 14.记n S 为等比数列{}n a 的前n 项和,若113a =,246a a =,则5S = . 15.甲乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该对获胜,决赛结束)根据前期的比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以4:1获胜的概率是 . 16.已知双曲线C:22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的 两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =⋅=uuu r uu u r uuu r uuu r,则C 的离心率为 .三、解答题(本大题共5小题,共60分)17.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(22b c +=,求sin C .18.如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60AA AB BAD ==∠=︒,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.19.已知抛物线x y C 3:2=的焦点为F ,斜率为23的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若PB AP 3=,求||AB .20.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导函数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮实验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在实验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i )证明:1{}(0,1,2,,7)i i p p i +-=为等比数列;(ii )求4p ,并根据4p 的值解释这种实验方案的合理性. 四、选做题(2选1)(本大题共2小题,共10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.23. 已知,,a b c 为正数,且满足1abc =,证明: (1)222111a b c a b c++≤++ (2)333()()()24a b b c c a +++++≥2019年普通高等学校招生全国统一考试(全国I 卷)理科数学答案1.答案:C 解答:由题意可知,}32|{<<-=x x N ,又因为}24|{<<-=x x M ,则}22|{<<-=x x N M ,故选C . 2.答案:C 解答:∵复数z 在复平面内对应的点为(,)x y , ∴z x yi =+ ∴1x yi i +-= ∴22(1)1x y +-= 3.答案:B 解答:由对数函数的图像可知:2log 0.20a =<;再有指数函数的图像可知:0.221b =>,0.300.21c <=<,于是可得到:a c b <<. 4.答案:B 解答: 方法一:设头顶处为点A ,咽喉处为点B ,脖子下端处为点C ,肚脐处为点D ,腿根处为点E ,足底处为F ,t BD =,λ=-215, 根据题意可知λ=BD AB ,故t AB λ=;又t BD AB AD )1(+=+=λ,λ=DF AD ,故t DF λλ1+=; 所以身高t DF AD h λλ2)1(+=+=,将618.0215≈-=λ代入可得t h 24.4≈.根据腿长为cm 105,头顶至脖子下端的长度为cm 26可得AC AB <,EF DF >;即26<t λ,1051>+t λλ,将618.0215≈-=λ代入可得4240<<t 所以08.1786.169<<h ,故选B.方法二:由于头顶至咽喉的长度与头顶至脖子下端的长度极为接近,故头顶至脖子下端的长度cm 26可估值为头顶至咽喉的长度;根据人体的头顶至咽喉的长度与咽喉至肚脐的长度之比是215-(618.0215≈-称为黄金分割比例)可计算出咽喉至肚脐的长度约为cm 42;将人体的头顶至咽喉的长度与咽喉至肚脐的长度相加可得头顶至肚脐的长度为cm 68,头顶至肚脐的长度与肚脐至足底的长度之比是215-可计算出肚脐至足底的长度约为110;将头顶至肚脐的长度与肚脐至足底的长度相加即可得到身高约为cm 178,与答案cm 175更为接近,故选B.5.答案:D 解答: ∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x+-+()f x =-, ∴()f x 为奇函数,排除A ,又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D.6.答案:A 解答:每爻有阴阳两种情况,所以总的事件共有62种,在6个位置上恰有3个是阳爻的情况有36C 种,所以36620526416C P ===.答案: 7.答案B 解答:设a 与b 的夹角为θ, ∵()a b b -⊥∴2()cos a b b a b b θ-⋅=-=0 ∴1cos =2θ ∴=3πθ.8.答案:A解答:把选项代入模拟运行很容易得出结论选项A 代入运算可得1=12+12+2A ,满足条件,选项B 代入运算可得1=2+12+2A ,不符合条件, 选项C 代入运算可得12A =,不符合条件,选项D 代入运算可得11+4A =,不符合条件.9.答案:A 解析:依题意有415146045S a d a a d =+=⎧⎨=+=⎩,可得132a d =-⎧⎨=⎩,25n a n =-,24n S n n =-.10.答案:B解答:由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又 ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 21=,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程12222=+b y a x ,得32=a ,2222=-=c a b ,∴椭圆C 的方程为12322=+y x .11.答案:C解答:因为()sin sin()sin sin ()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,①正确, 因为52,(,)632ππππ∈,而52()()63f f ππ<,所以②错误, 画出函数()f x 在[],ππ-上的图像,很容易知道()f x 有3零点,所以③错误, 结合函数图像,可知()f x 的最大值为2,④正确,故答案选C. 12.答案:D 解答:设PA x =,则2222222-42cos =22PA PC AC x x x APC PA PC x x x++--∠==⋅⋅⋅ ∴2222cos CE PE PC PE PC APC =+-⋅⋅∠22222222424x x x x x x x -=+-⋅⋅⋅=+∵90CEF ∠=︒,1,22xEF PB CF ===∴222CE EF CF +=,即222344x x ++=,解得x =∴PA PB PC ===又2AB BC AC ===易知,,PA PB PC 两两相互垂直,故三棱锥P ABC -∴三棱锥P ABC -的外接球的体积为343π⋅=⎝⎭,故选D. 13.答案:3y x = 解答:∵23(21)3()xxy x e x x e '=+++23(31)xx x e =++,∴结合导数的几何意义曲线可知在点(0,0)处的切线方程的斜率为3k =, ∴切线方程为3y x =. 14.答案:5S =1213解答:∵113a =,246a a = 设等比数列公比为q∴32511()a q a q =∴3q =∴5S =121315.答案:0.18解答:甲队要以4:1,则甲队在前4场比赛中输一场,第5场甲获胜,由于在前4场比赛中甲有2个主场2个客场,于是分两种情况:1221220.60.40.50.60.60.50.50.60.18C C ⋅⋅⋅⋅+⋅⋅⋅⋅=.16.答案:2解答:由112,0F A AB F B F B =⋅=uuu r uu u r uuu r uuu r 知A 是1BF 的中点,12F B F B⊥uuu r uuu r,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1F OA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=︒,2e ===.17.答案:略 解答:(1)由()22sin sin sin sin sin B C A B C -=-得222sin sin sin sin sin B C A B C +-= 结合正弦定理得222b c a bc +-=∴2221cos =22b c a A b c +-=⋅⋅又(0,)A π∈,∴=3A π.(22b c +=sin 2sin A B C +=,()sin 2sin A A C C ++=∴sin()2sin 23C C π++=,1cos 22C C -=∴sin()6C π-=又203C π<<∴662C πππ-<-< 又sin()06C π->∴062C ππ<-<∴cos 62C π⎛⎫-= ⎪⎝⎭ ∴sin sin()66C C ππ=-+=sin cos cos sin 6666C C ππππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=.18.答案: (1)见解析; (2解答:(1)连结,M E 和1,B C ,∵,M E 分别是1BB 和BC 的中点,∴1//ME B C 且112ME B C =, 又N 是1A D ,∴//ME DN ,且ME DN =,∴四边形MNDE 是平行四边形, ∴//MN DE ,又DE ⊂平面1C DE ,MN ⊄平面1C DE ,∴//MN 平面1C DE.(2)以D 为原点建立如图坐标系,由题(0,0,0)D ,(2,0,0)A ,1(2,0,4)A,M1(0,0,4)A A =-uuu r,1(2)A M =--u u u u r ,1(2,0,4)A D =--uuu r ,设平面1AA M 的法向量为1111(,,)n x y z =u r,平面1DA M 的法向量为2222(,,)n x y z =u u r,由111100n A A n A M ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuuu r得11114020z x z -=⎧⎪⎨-+-=⎪⎩,令1x =得1n =u r , 由212100n A D n A M ⎧⋅=⎪⎨⋅=⎪⎩u u r uuu r u u r uuuu r得2222224020x z x z --=⎧⎪⎨-+-=⎪⎩,令22x =得2(2,0,1)n =-u u r ,∴121212cos ,n n n n n n ⋅==⋅u r u u ru r u u r u r u u r 1A MA N --19.答案:(1)07128=+-x y ;(2)3134.解答:设直线l 的方程为b x y +=23,设),(11y x A ,),(22y x B , (1)联立直线l 与抛物线的方程:⎪⎩⎪⎨⎧=+=xy b x y 3232消去y 化简整理得0)33(4922=+-+b x b x ,0494)33(22>⨯--=∆b b ,21<∴b ,9)33(421b x x -⨯=+,依题意4||||=+BF AF 可知42321=++x x ,即2521=+x x ,故259)33(4=-⨯b ,得87-=b ,满足0>∆,故直线l 的方程为8723-=x y ,即07128=+-x y .(2)联立方程组⎪⎩⎪⎨⎧=+=xy b x y 3232消去x 化简整理得0222=+-b y y ,084>-=∆b ,21<∴b ,221=+y y ,b y y 221=, 3=,可知213y y -=,则222=-y ,得12-=y ,31=y ,故可知23-=b 满足0>∆,∴3134|13|941||11||212=+⨯+=-⋅+=y y k AB . 20.答案:略 解答:(1)对()f x 进行求导可得,1()cos 1f x x x '=-+,(1)2x π-<< 取1()cos 1g x x x=-+,则21()sin (1)g x x x '=-++, 在(1,)2x π∈-内21()sin (1)g x x x '=-++为单调递减函数,且(0)1g =,21()102(1)2g ππ=-+<+所以在(0,1)x ∈内存在一个0x ,使得()0g x '=,所以在0(1,)x x ∈-内()0g x '>,()f x '为增函数;在0(,)2x x π∈内()0g x '<,()f x '为减函数,所以在()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)可知当(1,0)x ∈-时,()f x '单调增,且(0)0f '=,可得()0'<x f则()f x 在此区间单调减;当0(0,)x x ∈时,()f x '单调增,且(0)0f '=,()0f x '>则()f x 在此区间单调增;又(0)0f =则在0(1,)x x ∈-上()f x 有唯一零点0x =.当0(,)2x x π∈时,()f x '单调减,且0()0,()02f x f π''><,则存在唯一的10(,)2x x π∈,使得1()0f x '=,在01(,)x x x ∈时,()0f x '>,()f x 单调增;当1(,)2x x π∈时,()f x 单调减,且()1ln(1)1ln 022f e ππ=-+>-=,所以在0(,)2x x π∈上()f x 无零点; 当(,)2x ππ∈时,s i n y x =单调减,ln(1)y x =-+单调减,则()f x 在(,)2x ππ∈上单调减,()0ln(1)0f ππ=-+<,所以在(,)2x ππ∈上()f x 存在一个零点.当(,)x π∈+∞时,()sin ln(1)1ln(1)0f x x x π=-+<-+<恒成立,则()f x 在(,)x π∈+∞上无零点. 综上可得,()f x 有且仅有2个零点.21.答案:(1)略;(2)略 解答:(1)一轮实验中甲药的得分有三种情况:1、1-、0.得1分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则(1)(1)P X αβ==-; 得1-分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则(1)(1)P X αβ=-=-; 得0分时是都治愈或都未治愈,则(0)(1)(1)P X αβαβ==+--.则X 的分布列为:(2)(i )因为0.5α=,0.8β=,则(1)0.4a P X ==-=,(0)0.5b P X ===,(1)0.1c P X ===. 可得110.40.50.1i i i i p p p p -+=++,则110.50.40.1i i i p p p -+=+, 则110.4()0.1()i i i i p p p p -+-=-,则114i ii i p p p p +--=-,所以1{}(0,1,2,,7)i i p p i +-=为等比数列.(ii )1{}(0,1,2,,7)i i p p i +-=的首项为101p p p -=,那么可得:78714p p p -=⨯, 67614p p p -=⨯,………………2114p p p -=⨯,以上7个式子相加,得到76811(444)p p p -=⨯+++,则886781111441(1444)143p p p p --=⨯++++=⨯=-,则18341p =-, 再把后面三个式子相加,得23411(444)p p p -=⨯++,则4423411844141311(1444)334141257p p p --=⨯+++==⨯==-+. 4p 表示“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”,因为0.5α=,0.8β=,αβ<,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”这种情况的概率是非常小的,而41257p =的确非常小,说明这种实验方案是合理的. 22.答案:略 解答:(1)曲线C :由题意得22212111t x t t-==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x +=(1)x ?而直线l :将cos ,sin x y ρθρθ==代入即可得到2110x +=(2)将曲线C 化成参数方程形式为则d ==所以当362ππθ+=23.答案:见解析: 解答: (1)1abc =,111bc ac ab a b c∴++=++.由基本不等式可得:222222,,222b c a c a b bc ac ab +++≤≤≤, 于是得到222222222111222b c a c a b a b c a b c +++++≤++=++.(2)由基本不等式得到:332()8()a b a b ab +≥+≥,332()8()b c b c bc +≥⇒+≥,332()8()c a c a ac +≥+≥.于是得到333333222()()()8[()()()]a b b c c a ab bc ac +++++≥++824≥⨯=。
2019年一般高等学校招生全国统一考试理科数学解析(全国一卷)

5.函数f(x)= 在[—π,π]的图像大致为
A. B.
C. D.
【答案】D
【分析】
先判定函数的奇偶性,得 是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.
【详解】由 ,得 是奇函数,其图象关于原点对称.又 .应选D.
所求椭圆方程为 ,应选B.
总结:此题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,专门好的落实了直观想象、逻辑推理等数学素养.
11.关于函数 有下述四个结论:
①f(x)是偶函数②f(x)在区间( , )单调递增
③f(x)在 有4个零点④f(x)的最大值为2
其中所有正确结论的编号是
(1)利用正弦定理化简已知边角关系式可得: ,从而可整理出 ,依照 可求得结果;(2)利用正弦定理可得 ,利用 、两角和差正弦公式可得关于 和 的方程,结合同角三角函数关系解方程可求得结果.
【详解】(1)
即:
由正弦定理可得:
(2) ,由正弦定理得:
又 ,
整理可得:
解得: 或
因为 因此 ,故 .
(2)法二: ,由正弦定理得:
总结:对利用排列组合计算古典概型问题,第一要分析元素是不是可重复,第二要分析是排列问题仍是组合问题.此题是重复元素的排列问题,因此大体事件的计算是“住店”问题,知足条件事件的计算是相同元素的排列问题即为组合问题.
7.已知非零向量a,b知足 =2 ,且(a–b) b,则a与b的夹角为
A. B. C. D.
总结:准确计算,是解答此类问题的大体要求.此题由于涉及幂的乘方运算、繁分式分式计算,部份考生易显现运算错误.
2019年高考全国Ⅰ卷解析几何试题评析及备考建议

1. 3
在 △AF1F2 √
中, 由余弦定理得 −4n2 +4n2 −2·2n·2n· 1 3
=
3
√
√
4, 得 n = . 所以 2a = 4n = 2 3, 所以 a = 3, 所以
22
据椭圆定义列出方程, 得到 A 点的特殊位置; 再根据图形的 特殊性解题, 如解法 1 利用共线向量坐标运算或者用相似三 角形确定 B 的坐标, 再由方程思想迅速求解. 若没有关注到 特殊图形, 还可用余弦定理, 借助同角或互为补角的余弦关 系列方程求解, 如解法 2 在两个三角形中对同一个角 A 运算 (也可对角 B), 体现了算两次的思想方法; 解法 3 在两个三角 形中对互补的两个角运算, 巧妙消去余弦, 充满了整体与对 称的美感. 解法 4 则高屋建瓴, 运用极坐标方程处理焦半径, 颇有牛刀杀鸡的意味, 供学有余力的学生参考.
=
−−→ 3F B,
则
k
=(
)
A. 1
√ B. 2
√ C. 3
D. 2
题源 3 (2010 年全国 I 卷理 16) 已知 F 是椭圆 C 的一 个焦点, B 是短轴的一个端点, 线段 BF 的延长线交 C 于点
解法 4 因为点 B 在渐进线 y = b x 上, 可设 B(am, bm),
−−→ −−→
2
b2 = a2 − c2 = 3 − 1 = 2, 所以选 B.
解 法3 在 △AF1F2 和 △BF1F2 中, 由 余 弦
定理
得
4n2 + 4 − 2 · 2n · 2 · cos ∠AF2F1 = 4n2, n2 + 4 − 2 · n · 2 · cos ∠BF2F1 = 9n2,
2019年全国高考理科数学数学分类汇编---解析几何

2019年全国高考理科数学分类汇编——解析几何1.(2019北京理科)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A. a 2=2b 2B. 3a 2=4b 2C. a =2bD. 3a =4b【答案】B 【解析】 【分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式. 【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.2.(2019北京理科)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A. ① B. ②C. ①②D. ①②③【答案】C 【解析】 【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围. 【详解】由221x y x y+=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.【点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题解决问题的能力考查,渗透“美育思想”.3.(2019北京理科)已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【答案】(Ⅰ) 24x y =-,1y =;(Ⅱ)见解析. 【解析】 【分析】(Ⅰ)由题意结合点的坐标可得抛物线方程,进一步可得准线方程;(Ⅱ)联立准线方程和抛物线方程,结合韦达定理可得圆心坐标和圆的半径,从而确定圆的方程,最后令x =0即可证得题中的结论.【详解】(Ⅰ)将点()2,1-代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程为:24x y =-,其准线方程为:1y =. (Ⅱ)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=. 故:12124,4x x k x x +=-=-设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-,直线OM方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭, 易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+- ⎪⎝⎭,圆的半径为:1222x x -, 且:()1212122222x x k x x x x ++==,12222x x -==则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=,即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.【点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的方程的求解及其应用等知识,意在考查学生的转化能力和计算求解能力.4.(2019全国1卷理科)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足.的,称为黄金分割比例),著名的“断臂维纳斯”便是.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则262611052x x y +==+,得42.07, 5.15x cmy cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.(2019全国1卷理科)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D.22154x y += 【答案】B【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,A F F B F F ∠∠互补,2121c o s c o s 0A F F B F F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.6.(2019全国1卷理科)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 【分析】通过向量关系得到1F A AB =和1OA F A ⊥,得到1AOB AOF ∠=∠,结合双曲线的渐近线可得21,BOF AOF ∠=∠02160,BOF AOF BOA ∠=∠=∠=从而由0tan 60ba==可求离心率. 【详解】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====. 【点睛】本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题.7.(2019全国1卷理科)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【解析】 【分析】(1)设直线l :3y =x m 2+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得121x x =+;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果.【详解】(1)设直线l 方程为:3y =x m 2+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+=联立2323y x m y x⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系.8.(2019全国2卷理科)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p = A. 2 B. 3 C. 4 D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.(2019全国2卷理科)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A.B.C. 2D.【答案】A 【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.10.(2019全国2卷理科)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.【答案】(1)详见解析(2)详见解析 【解析】 【分析】(1)分别求出直线AM 与BM 的斜率,由已知直线AM 与BM 的斜率之积为−12,可以得到等式,化简可以求出曲线C 的方程,注意直线AM 与BM 有斜率的条件;(2)(i )设出直线PQ 的方程,与椭圆方程联立,求出P ,Q 两点的坐标,进而求出点E 的坐标,求出直线QE 的方程,与椭圆方程联立,利用根与系数关系求出G 的坐标,再求出直线PG 的斜率,计算PQ PG k k 的值,就可以证明出PQG 是直角三角形;(ii )由(i )可知,,P Q G 三点坐标,PQG 是直角三角形,求出,PQ PG 的长,利用面积公式求出PQG 的面积,利用导数求出面积的最大值. 【详解】(1)直线AM 的斜率为(2)2y x x ≠-+,直线BM 的斜率为(2)2y x x ≠-,由题意可知:22124,(2)222y y x y x x x ⋅=-⇒+=≠±+-,所以曲线C 是以坐标原点为中心,焦点在x 轴上,不包括左右两顶点的椭圆,其方程为()221,242x yx +=≠±;(2)(i )设直线PQ 的方程为y kx =,由题意可知0k >,直线PQ 的方程与椭圆方程2224x y +=联立,即22,2 4.x y kx x y y ⎧=⎪=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩,点P 在第一象限,所以P Q ,因此点E的坐标为直线QE 的斜率为2QE k k =,可得直线QE方程:2k y x =2222 4.k y x x y ⎧=⎪⎨⎪+=⎩,消去y得,22222128(2)021k k x k ++=+(*),设点11(,)G x y ,显然Q和1x 是方程(*)的解所以有222112128212k k x x k +-+=⇒=+,代入直线QE 方程中,得31y =G的坐标为23,直线PG 的斜率为; 3322222(2)1642(2)PGk k k k k k k -+===-+-+, 因为1()1,PQ PG k k k k=⋅-=-所以PQ PG ⊥,因此PQG 是直角三角形; (ii )由(i)可知:P Q ,G的坐标为23,PQ ==,PG ==,34218()2252PQGk k S k k ∆+==++ 42'4228(1)(1)(232)(252)k k k k S k k -+-++=++,因为0k >,所以当01k <<时,'0S >,函数()S k 单调递增,当1k >时,'0S <,函数()S k 单调递减,因此当1k =时,函数()S k 有最大值,最大值为16 (1)9 S=.【点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了利用导数求函数最大值问题.11.(2019全国3卷理科)双曲线C:22 42x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A.B. C. 12xxD.【答案】A【解析】【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.详解】由2,,a b c===.,2PPO PF x=∴=,又P在C的一条渐近线上,不妨设为在2y x=上,11224PFO PS OF y∴=⋅==△,故选A.【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.12.(2019全国3卷理科)设12F F,为椭圆22:+13620x yC=的两个焦点,M为C上一点且在第一象限.若12MF F△为等腰三角形,则M 的坐标为___________.【答案】(【【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.13.(2019全国3卷理科)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或. 【解析】 【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d t d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =。
2019年高考全国各地数学理科真题分类汇编18个专题(解析版)

2019年高考全国各地数学理科真题分类汇编(解析版)专题一集合-------------------------------------------------------------- 2 专题二函数-------------------------------------------------------------- 3 专题三三角函数 ------------------------------------------------------ 16 专题四解三角形 ------------------------------------------------------ 26 专题五平面向量 ------------------------------------------------------ 29 专题六数列------------------------------------------------------------ 34 专题七不等式--------------------------------------------------------- 46 专题八复数------------------------------------------------------------ 48 专题九导数及其应用 ------------------------------------------------ 50 专题十算法初步 ------------------------------------------------------ 62 专题十一常用逻辑用语 --------------------------------------------- 65 专题十二概率统计 --------------------------------------------------- 67 专题十三空间向量、空间几何体、立体几何-------------------- 75 专题十四平面几何初步 -------------------------------------------- 95 专题十五圆锥曲线与方程 ----------------------------------------- 99 专题十六计数原理------------------------------------------------- 118 专题十七不等式选讲 ---------------------------------------------- 120 专题十八坐标系与参数方程--------------------------------------- 123专题一 集合(2019·全国Ⅰ理科)1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅱ理科)设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅲ理科)已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A【分析】先求出集合B 再求出交集.【详解】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A . 【点睛】本题考查了集合交集的求法,是基础题. (2019·天津理科)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R …,则()A CB =( )A. {}2B. {}2,3C. {}1,2,3-D. {}1,2,3,4【答案】D【分析】先求A B ⋂,再求()A C B 。
2019年高考全国1卷理科数学最全解析

2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则( ) A. 22+11()x y += B. 22(1)1x y -+=C. 22(1)1x y +-=D. 22(+1)1y x +=3.已知0.20.32log 0.2,2,0.2a b c ===,则( )A. a b c <<B. a c b <<C. c a b <<D. b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为( )A.B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11167.已知非零向量a ,b 满足a =2b ,且(a–b )⊥b ,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π68.如图是求112122++的程序框图,图中空白框中应填入( )A. A =12A + B. A =12A +C. A =112A+D. A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( ) A. 25n a n =-B.310n a n =-C. 228n S n n =-D. 2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是( ) A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为( )A. B. C.D.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国1卷省份高考模拟理科数学分类----解析几何1.(2019安徽理科模拟)已知点(1,2)是双曲线(a>b>0)上一点,则其离心率的取值范围是()A.(1,)B.(1,)C.,D.,【解答】解:把(1,2)代入双曲线方程得:1,∴b2+4,∴e>,故选:C.2.(2019安徽理科模拟)已知直线l是抛物线y2=2px(p>0)的准线,半径为3的圆过抛物顶点0和焦点F与l相切,则抛物线的方程为.解:∵圆过点O和F(,0),∴圆心横坐标为,∵圆与准线x相切,故圆的半径r3,∴p=4,即抛物线的方程为y2=8x.故答案为:y2=8x.3.(2019安徽理科模拟)已知P是圆F1:(x+1)2+y2=16上任意一点,F2(1,0),线段PF2的垂直平分线与半径PF1交于点Q,当点P在圆F1上运动时,记点Q的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)记曲线C与x轴交于A,B两点,M是直线x=1上任意一点,直线MA,MB与曲线C的另一个交点分别为D,E,求证:直线DE过定点H(4,0).【解答】(Ⅰ)由已知|QF1|+|QF2|=|QF1|+|QP|=|PF1|=4,所以点Q的轨迹为以为F1,F2焦点,长轴长为4的椭圆,故2a=4,a=2,c=1,b2=a2﹣c2=3所以曲线C的方程为(Ⅱ)由(Ⅰ)可得A(﹣2,0),B(2,0),设点M的坐标为(1,m)直线MA的方程为:将与联立消去y整理得:(4m2+27)x2+16m2x+16m2﹣108=0,设点D的坐标为(x D,y D),则,故,则直线MB的方程为:y=﹣m(x﹣2)将y=﹣m(x﹣2)与联立消去y整理得:(4m2+3)x2﹣16m2x+16m2﹣12=0 设点E的坐标为(x E,y E),则,故,则HD的斜率为HE的斜率为因为k1=k2,所以直线DE经过定点H.4.(2019河南百校联盟理科模拟)已知双曲线的左焦点为F,以OF为直径的圆与双曲线C的渐近线交于不同原点O的A,B两点,若边边形AOBF的面积为,则双曲线C的渐近线方程为()A.B.C.y=±x D.y=±2x解:根据题意,OA⊥AF,双曲线C的焦点F到C的一条渐近线的距离为,则|AF|=b,所以|OA|=a,所以,所以,所以双曲线C的渐近线方程为y=±x.故选:C.5. 已知A,B为抛物线x2=2py(p>0)上的两个动点,以AB为直径的圆C经过抛物线的焦点F,且面积为2π,若过圆心C作该抛物线准线l的垂线CD,垂足D,则|CD|的最大值为()A.2 B C D.1 2解:根据题意,,∴.设|AF|=a,|BF|=b,过点A作AQ⊥l于Q,过点B作BP⊥l于P,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ中,∴2|CD|=|AQ|+|BP|=a+b,由勾股定理得,8=a2+b2,∵,所以|CD|≤2(当且仅当a=b时,等号成立)..故选:A.5.(2019山西理科模拟)抛物线y=4x2的焦点坐标为()A.(1,0)B.(2,0)C.(0,)D.(0,)解:抛物线的方程为:y=x2,变形可得x2y,其焦点在y轴正半轴上,且2p,则其焦点坐标为(0,),故选:D.6.(2019福建理科模拟)已知点,是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为2,则()A.2 B.4 C.6 D.8【答案】C【解析】利用抛物线的抛物线的定义写出弦长公式,利用中点横坐标来求得弦长.【详解】设,,则,而的中点的横坐标为,所以.故选C.【点睛】本题考查直线与抛物线的位置关系,以及抛物线的定义和性质,考查运算求解能力和化归与转化的数学思想.7.(2019福建理科模拟)在平面直角坐标系中,过双曲线上的一点作两条渐近线的平行线,与两条渐近线的交点分别为,,若平行四边形的面积为3,则该双曲线的离心率为()A.B.C.D.【答案】A【解析】设出C点的坐标,利用直线和直线的方程求得点的坐标,由此求得,利用点到直线的距离公式求得到直线的距离,利用平行四边形的面积列方程,求得含有的等式,利用C在双曲线上这一条件列方程,由此求得的值,进而求出的值以及离心率. 【详解】如图,设,则直线:,直线:,可求得交点的坐标为,所以.又点到直线:的距离,所以平行四边形的面积为,即.因为,所以,所以,从而,.故选A.【点睛】本题考查双曲线的渐近线与离心率,考查化归与转化的数学思想方法,考查运算求解能力.属于中档题.解题过程中首先考虑的是将平行四边形的面积表示出来,这是方程的思想,也即是要求一个未知数,通过未知数满足的一个方程来求解出来.8.(2019福建理科模拟)已知椭圆:过点,且它的焦距是短轴长的倍.(1)求椭圆的方程.(2)若,是椭圆上的两个动点(,两点不关于轴对称),为坐标原点,,的斜率分别为,,问是否存在非零常数,使当时,的面积为定值?若存在,求的值;若不存在,请说明理由.【答案】(1);(2)存在这样的常数,此时.【解析】(1)将点的坐标代入椭圆方程,结合和列方程组,解方程组求得椭圆的标准方程.(2)设直线的方程为和两点的坐标,将两点两点坐标代入,化简得到①.联立直线的方程和椭圆方程,写出韦达定理,利用点到直线距离公式和弦长公式求得三角形的面积的表达式,结合①解得和的值.【详解】解:(1)因为椭圆:过点,所以,又因为该椭圆的焦距是短轴长的倍,所以,从而.联立方程组,解得,所以.(2)设存在这样的常数,使,的面积为定值.设直线的方程为,点,点,则由知,,所以.①联立方程组,消去得.所以,点到直线的距离,的面积.④将②③代入①得,化简得,⑤将⑤代入④得,要使上式为定值,只需,即需,从而,此时,,所以存在这样的常数,此时.【点睛】本小题主要考查椭圆标准方程的求解,考查直线和椭圆的位置关系,考查直线和椭圆相交所得弦的弦长的求法,考查与椭圆有关的三角形面积的求解,考查方程的思想,综合性较强,属于难题.9.(2019安徽淮南理科模拟)已知点P是双曲线右支上一点,、分别是双曲线的左、右焦点,I为的内心,若成立,则双曲线的渐近线方程为A. B. C. D.【答案】A【解析】解:如图,设圆I与的三边、、分别相切于点E、F、G,连接IE、IF、IG,则,,,它们分别是:,,的高,,,,其中r是的内切圆的半径.,,两边约去得:,,根据双曲线定义,得,,,,可得双曲线的渐近线方程为故选:A.设圆I与的三边、、分别相切于点E、F、G,连接IE、IF、IG,可得,,可看作三个高相等且均为圆I半径r的三角形利用三角形面积公式,代入已知式,化简可得,再结合双曲线的定义与渐近线方程可得所求.本题将三角形的内切圆放入到双曲线当中,用来求双曲线的离心率,着重考查了双曲线的基本性质、三角形内切圆的性质和面积计算公式等知识点,属于中档题.10.(2019安徽淮南理科模拟)在平面直角坐标系中,设点,定义,其中O为坐标原点,对于下列结论:符合的点p的轨迹围成的图形面积为8;设点p是直线:上任意一点,则;设点p是直线:上任意一点,则使得“最小的点有无数个”的必要条件是;设点p是椭圆上任意一点,则.其中正确的结论序号为A. B. C. D.【答案】D【解析】解:由,根据新定义得:,由方程表示的图形关于x,y轴对称和原点对称,且,画出图象如图所示:根据图形得到:四边形ABCD为边长是的正方形,面积等于8,故正确;为直线:上任一点,可得,可得,当时,;当时,;当时,可得,综上可得的最小值为1,故正确;,当时,,满足题意;而,当时,,满足题意.“使最小的点P有无数个”的充要条件是“”,不正确;点P是椭圆上任意一点,则可设,,,,,,正确.则正确的结论有:、、.故选:D.根据新定义由,讨论x的取值,得到y与x的分段函数关系式,画出分段函数的图象,由图象可知点P的轨迹围成的图形为边长是的正方形,求出正方形的面积即可;运用绝对值的含义和一次函数的单调性,可得的最小值;根据大于等于或,把代入即可得到当最小的点P有无数个时,k等于1或;而k等于1或推出最小的点P有无数个,得到是“使最小的点P有无数个”的充要条件;把P的坐标用参数表示,然后利用三角函数的化积求得的最大值说明命题正确.此题考查学生理解及运用新定义的能力,考查了数形结合的数学思想,关键是对题意的理解,是中档题.11.(2019安徽淮南理科模拟)若直线经过抛物线的焦点,则______.【答案】2【解析】解:直线过点,即抛物线的焦点F为,,则;故答案为:2.由直线方程求出直线过点,从而得到抛物线的焦点坐标,则p可求;本题考查了抛物线的简单性质,是基础题.12.(2019安徽淮南理科模拟)设椭圆:的左、右焦点分别为,,上顶点为A,过点A与垂直的直线交x轴负半轴于点Q,且,过A,Q,三点的圆恰好与直线:相切.求椭圆C的方程;过右焦点作斜率为k的直线l与椭圆C交于M,N两点,问在x轴上是否存在点,使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由.【答案】解:设椭圆C的焦距为,则点的坐标为,点的坐标为,设点Q的坐标为,且,如下图所示,,,,则,所以,,则点Q的坐标为,直线与直线AQ垂直,且点,所以,,,由,得,则,.为直角三角形,且为斜边,线段的中点为,的外接圆半径为2c.由题意可知,点到直线的距离为,所以,,,,因此,椭圆C的方程为;由题意知,直线l的斜率,并设,则直线l的方程为,设点、将直线l的方程与椭圆C的方程联立,消去x得,由韦达定理得,.,.所以,线段MN的中点为点.由于以PM,PN为邻边的平行四边形是菱形,则,则,所以,.由两点连线的斜率公式可得,得.由于,则,所以,,所以,.因此,在x轴上存在点,使得以PM,PN为邻边的平行四边形是菱形,且实数m的取值范围是.【解析】设点Q的坐标为,且,利用以及得出点Q 的坐标,将直角的外接圆与直线相切转化为其外接圆圆心到该直线的距离等于半径,可求出c的值,进而得出a与b的值,从而得出椭圆C的方程;令,得出,设点、,将直线l的方程与椭圆C的方程联立,列出韦达定理,并求出线段MN的中点E的坐标,将条件“以PM,PN为邻边的平行四边形是菱形”转化为,得出这两条直线的斜率之积为,然后得出m的表达式,利用不等式的性质可求出实数m的取值范围.本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理设而不求法在椭圆综合中的应用,同时也考查了向量的坐标运算,属于中等题.13.(2019福建漳州理科模拟)已知点M为双曲线C:的左支上一点,,分别为C的左、右焦点,则A. 1B. 4C. 6D. 8【答案】B【解析】解:双曲线C:,可得,,,则点M为双曲线C:的左支上一点,,分别为C的左、右焦点,则.故选:B.利用双曲线方程,通过双曲线的定义,转化求解即可.本题考查双曲线的简单性质以及双曲线的定义的应用,考查计算能力.14.(2019福建漳州理科模拟)设O为坐标原点,动点M在椭圆C:上,该椭圆的左顶点A到直线的距离为.求椭圆C的标准方程;若线段MN平行于y轴,满足,动点P在直线上,满足证明:过点N且垂直于OP的直线过椭圆C的右焦点F.【答案】解:左顶点A的坐标为,,,解得或舍去,椭圆C的标准方程为,证明:由题意,,,则依题意可知,由可得,,,整理可得,由,可得,整理可得,由可得,,,,故过点N且垂直于OP的直线过椭圆C的右焦点F.【解析】根据点到直线的距离公式即可求出a的值,可得椭圆方程,由题意,,,根据,可得,由,可得,再根据向量的运算可得,即可证明.本题考查了椭圆方程的求法,直线和椭圆的关系,向量的运算,考查了运算求解能力和转化与化归能力,属于中档题15.(2019广州理科模拟)己知点A与点B(1,2)关于直线x+y+3=0对称,则点A的坐标为DA.(3,4)B. (4,5)C. (-4,-3)D. (-5,-4)16.(2019广州理科模拟)过双曲线的左焦点F作圆的切线,切点为E,延长FE交双曲线右交于点P,若,则双曲线的离心率为AA. B. C. D.17.(2019广州理科模拟)若曲线y= x3 -2x2 +2在点A处的切线方程为y=4x-6,且点A在直线mx+ ny -l=0(其中m>0,n>0)上,则的最小值为 CA.4B. 3+2C. 6+4D.818.(2019广州理科模拟)已知点P在直线x+2y-l=0上,点Q在直线x+2y+3=0上,PQ的中点为M(x o,y o),且1≤y o -x o≤7,则的取值范围为 BA. B. C. D.19.(2019广州理科模拟)在平面直角坐标系中,动点M 分别与两个定点A(-2,0),B(2,0)的连线的斜率之积为(1)求动点M 的轨迹C 的方程;(2)设过点(-1,0)的直线与轨迹C 交于P ,Q 两点,判断直线x=与以线段PQ 为直径的圆的位置关系,并说明理由.解:(1)设动点M 的坐标为(),x y ,因为2MA y k x =+()2x ≠-,2MB yk x =-()2x ≠,所以1222MA MBy y k k x x =⨯=-+-. 整理得22142x y +=. 所以动点M 的轨迹C 的方程22142x y +=()20x y ≠±≠或. (2)解法1:过点()1,0-的直线为x 轴时,显然不合题意.所以可设过点()1,0-的直线方程为1x my =-,设直线1x my =-与轨迹C 的交点坐标为P ()11,x y ,()22,Q x y ,由221,1,42x my x y =-⎧⎪⎨+=⎪⎩得()222230m y my +--=. 因为()()2221220m m ∆=-++>,由韦达定理得+1y 2y =222m m +,1y 2y =232m -+. 注意到+1x 2x =()122422m y y m -+-=+. 所以PQ 的中点坐标为222,22m N m m -⎛⎫⎪++⎝⎭.因为12PQ y =-==点N 到直线52x =-的距离为()22252562222m d m m +=-=++. 因为2d -24PQ =()422292012042m m m ++>+,即d >2PQ, 所以直线52x =-与以线段PQ 为直径的圆相离. 解法2:①当过点()1,0-的直线斜率不存在时,直线方程为1x =-,与22142x y +=交于1,P ⎛- ⎝⎭和Q ⎛- ⎝⎭两点,此时直线52x =-与以线段PQ 为直径的圆相离. ②当过点()1,0-的直线斜率存在时,设其方程为()1y k x =+, 设直线()1y k x =+与轨迹C 的交点坐标为P ()11,x y ,()22,Q x y ,由()221,1,42y k x x y ⎧=+⎪⎨+=⎪⎩得()()2222214240k x k x k +++-=.因为()()()2222244212424160kk k k ∆=-+-=+>,由韦达定理得12x x +=22421k k -+,12x x =222421k k -+.注意到()121222221ky y k x x k k +=++=+.所以PQ 的中点坐标为2222,2121k k N k k ⎛⎫- ⎪++⎝⎭.因为12PQ x =-==.点N 到直线52x =-的距离为()22225265221221k k d k k +=-=++. 因为2d -24PQ =()4222122090421k k k ++>+,即d >2PQ , 所以直线52x =-与以线段PQ 为直径的圆相离. 20.(2019广州理科模拟)若点(1,1)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --= 答案:D考点:圆的标准方程,直线方程。