直角三角形的边角关系教案上课讲义

合集下载

北师大版九年级下册数学《解直角三角形》直角三角形的边角关系教学说课课件

北师大版九年级下册数学《解直角三角形》直角三角形的边角关系教学说课课件
解:在R
∵∠CAB=90°-∠DAC=50°,
BC
tan ∠CAB,
AB
∴BC=AB·
AB
cos 500
AC
AB
2000
AC

3111(米)
cos 500
cos 500
答:敌舰与A、B两炮台的距离分别约为3111米和2384米.
新课讲解
归纳
解直角三角形只有以下两种情况:
(1)已知道两边
段的长度为( C
)
(A )180 m
(B )260 3 m
(C )(260 3 - 80)m
(D )(260 2 -=45°,c=14;
(2)b=15,∠B=60°.
解:(1)∵∠B=45°,c=14,∠C=90°,
∴∠A=45°,
a b
14
2
7 2
解:过点 B 作 BM⊥FD 于点 M.
在 Rt△ACB 中,∠ACB=90°,∠A=45°,AC=12 2,
所以 BC=AC=12 2.
因为 AB∥CF,所以∠BCM=45°,
所以 CM=BM=BC·sin 45°=12 2 ×
2
=12.
2
在△EFD 中,∠F=90°,∠E=30°,所以∠EDF=60°,
在R
在R
所以AE+CF=9.3+11.85=21.15 cm.
答:此时杯子的最高处与桌面的距离为21.15 cm.
1.4 解直角三角形
第一章
知识要点基础练
综合能力提升练
3
5
12.如图,在R
(1)求AB的值;
(2)求

3
解:(1)在 Rt△ABC 中,sin B= = 5,AC=6,∴AB=10.

北师大版九年级下册第一章直角三角形的边角关系(教案)..4直角三角形公开课

北师大版九年级下册第一章直角三角形的边角关系(教案)..4直角三角形公开课
我还注意到,在总结回顾环节,虽然大多数学生能够跟随我的思路进行复习,但仍有少数学生似乎对某些知识点掌握不够牢固。这让我思考,是否需要设计一些课后巩固练习,帮助学生在家中也能复习和巩固所学内容。
最后,我反思自己的教学方式和方法,是否足够生动有趣,能否吸引所有学生的学习兴趣。我意识到,作为一名教师,我需要不断更新自己的教学策略,寻找更多激发学生学习热情和兴趣的方法。
五、教学反思
在上完这节关于直角三角形边角关系的公开课后,我有一些深刻的体会和思考。首先,我发现学生们对于正弦、余弦、正切的概念掌握程度参差不齐。在讲授过程中,我尽量用简单明了的语言和具体实例来解释这些概念,但仍有部分学生显得有些困惑。我意识到,可能需要通过更多的实际操作和直观演示来帮助他们更好地理解这些抽象的数学概念。
3.成果分享:每个小组将选择பைடு நூலகம்名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正弦、余弦、正切的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直角三角形边角关系的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正弦、余弦、正切的基本概念。正弦是对边与斜边的比值,余弦是邻边与斜边的比值,正切是对边与邻边的比值。它们在解决直角三角形相关问题中起着关键作用。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个直角三角形中某一角度的正弦、余弦、正切值,展示这些概念在实际中的应用,以及如何帮助我们解决问题。
4.培养学生的观察能力、逻辑思维能力和团队协作能力。

北师大版九年级下册第一章直角三角形的边角关系说课稿.4直角三角形公开课

北师大版九年级下册第一章直角三角形的边角关系说课稿.4直角三角形公开课
2.设计互动性强的课堂活动,如小组讨论、竞赛等,以激发学生的竞争意识和合作精神。
3.使用多媒体工具展示生动的几何图形和动画,帮助学生直观理解直角三角形的边角关系。
4.给予学生成功的体验,通过设计难度适中的练习题,让学生在解决问题中获得成就感,增强学习信心。
5.鼓励学生提出问题和自己的想法,培养他们的探究精神和批判性思维。
4.最后介绍直角三角形的判定与证明方法,通过一系列例题,让学生掌握如何运用这些方法解决实际问题。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.设计一些填空题和选择题,让学生独立完成,以检验他们对基本概念和定理的理解。
2.安排一些证明题,要求学生在小组内合作完成,培养他们的合作能力和逻辑推理能力。
(二)教学反思
在教学过程中,可能遇到的问题包括学生对直角三角形性质的误解、对勾股定理证明过程的困惑以及实际问题解决能力的不足。为应对这些问题,我将采取以下措施:及时澄清误解,通过实例和图示解释概念;分步骤讲解勾股定理的证明,强调每一步的逻辑;设计更多实际问题练习,培养学生的应用能力。课后,我将通过学生的课堂表现、作业完成情况和测验成绩来评估教学效果。具体的反思和改进措施包括:根据学生反馈调整教学方法和进度,针对学生的弱点提供额外的辅导,以及不断更新教学资源,以提高教学质量和学生的学习效果。
2.提供一个自我评价表,让学生根据自己在课堂上的表现和作业完成情况进行自我评价。
3.对学生的表现给予积极的反馈,针对他们的不足提出建设性的建议,帮助他们改进学习方法。
4.鼓励学生相互评价,通过同伴互助,共同提高。
(五)作业布置
课后作业的布置如下:
1.设计一些与直角三角形相关的练习题,包括基本概念的理解题、定理的证明题以及实际问题的应用题。

第一章直角三角形的边角关系锐角三角函数(正弦)教案北师大版九年级数学下册

第一章直角三角形的边角关系锐角三角函数(正弦)教案北师大版九年级数学下册

九年级下册第一章直角三角形的边角关系1.1锐角三角函数(正弦)教学目标:知识技能:1、在了解认识正弦(sinA)的基础上,通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算过程与方法1:经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

2:在直角三角形中,初步建立边、角之间的关系,初步了解解决三角形问题的新途径.情感态度:使学生体验数学活动中充满着探索与创造,并使之能积极参与数学学习活动.教学重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.教学难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

吗? 规律一:当∠A 的大小相等时,比值也 规律二:当∠A 的大小变化时,比值也 (二)归纳: 1、在Rt △ABC 中,∠A 的值确定后,∠A 的对边与斜边的比值是一个 。

2、在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的 。

记作sinA 。

在Rt △ABC 中,∠C=90° sinA =∠A 的对边斜边 =ca律。

可用三角形的相似加以证明。

∠A 的变化引起比值的变化,这种关系是变量与函数的关系。

ppt ppt在运动变化中感受变量与函数之间的关系,帮助学生建立函数模型。

从实验猜想归纳中引入概念。

三、变式训练,激励创新 1、填空: (1)已知Rt △ABC 中,∠C=90°,若AB=10,BC=6,则sinA= ;sinB= ;(2)如图:P 是∠ 的边OA 上一点,且P 点的坐标为(3,4), 则sin α=_____________.【例题】.如图,在Rt △ABC 中,∠C=90°,AB=13,BC=5,求sinA 和sinB 的值.解:在RtABC 中,学生做题,老师巡视指导。

直角三角形的边角关系教案

直角三角形的边角关系教案

第一章直角三角形的边角关系§1.1.1 从梯子的倾斜程度谈起教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计一、从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。

这一章,我们继续学习直角三角形的边角关系。

二、师生共同研究形成概念1、梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。

这就涉及到倾斜角的问题。

用倾斜角刻画倾斜程度是非常自然的。

但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。

1)(重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡;2)如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡;3)如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。

2、想一想(比值不变)☆想一想书本P 3 想一想通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。

3、 正切函数(1) 明确各边的名称(2) 的邻边的对边A A A ∠∠=tan (3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

☆ 巩固练习a 、 如图,在△ACB 中,∠C = 90°,1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB = ; 3) 若AC = 8,AB = 10,则tanA = ;tanB = ;b 、 如图,在△ACB 中,tanA = 。

直角三角形的边角关系课件

直角三角形的边角关系课件

相等
(3)如果改变B2在梯子上的位置(如B3C3 )呢?
类似三角形的对应2 C1
思考:由此你得出什么结论?
直角三角形中,锐角大小确定后,对应的对边和邻边的比 值也就确定了
在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻边的 比便随之确定,这个比叫做∠A的正切,记作tanA,即
解析:∵∠ACB=90°,坡度为1∶3,
BC 1 . AC 3
∵BC=2米,∴AC=3BC=3×2=6(米).
AB AC2 BC2 36 4 2 10.
典例精析
例4.如图,李佳怡和王慧珍将两根木棒分别斜靠在墙上,其中 AB=10 cm,CD=6 cm,BE=6 cm,DE=2 cm,你能判断出哪根木棒 更陡吗?说明理由.
A
E
B
C
F
D
问题2 如图,梯子AB和EF哪个更陡?你是怎样判断的? 当铅直高度一样,水平宽度越小,梯子越陡 当水平宽度一样,铅直高度越大,梯子越陡
乙 甲
问题3 如图,梯子AB和EF哪个更陡?你是怎样判断的? 当铅直高度与水平宽度的比相等时,梯子一样陡 E A
6m 4m
B 2m C
F
3m D
问题4 你有几种方法比较梯子AB和EF哪个更陡? 当铅直高度与水平宽度的比越大,梯子越陡. 倾斜角越大,梯子越陡.
A1
B2
生活中的梯子
梯子与地面的夹角∠ABC称为倾斜角. 斜边
A 从梯子的顶端A到墙角 铅 C的距离,称为梯子的 直 高 铅直高度. 度
B 水平宽度 C 从梯子的底端B到墙角C的距离,称为梯子的水平宽度.
1 正切的定义 —
问题1 梯子AB和CD哪个更陡?你是怎样判断的?你有几种判断

第一章直角形的边角关系全章教案

第一章直角形的边角关系全章教案
1.教学重点
-理解并掌握直角三角形的定义及其内角和特性。
-熟练运用勾股定理解决直角三角形相关问题。
-掌握正弦、余弦、正切三角函数的定义及其应用。
-理解并运用相似直角三角形的性质和比例关系。
-将所学知识应用于解决实际生活中的直角三角形问题。
教学过程中,教师应着重讲解和强调上述核心内容,通过丰富的例题和练习,使学生深入理解并掌握直角三角形的性质和运用。
第一章直角形的边角关系全章教案
一、教学内容
第一章直角形的边角关系
1.1直角三角形的定义与性质
-直角三角形的定义
-直角三角形的内角和
-直角三角形的边角关系(勾股定理)
1.2直角三角形中的特殊角
-三角函数的定义(正弦、余弦、正切)
-三角函数值的计算
-特殊角的三角函数值
1.3直角三角形的相似性质
-相似直角三角形的判定
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形的基本概念、勾股定理和三角函数的重要性及其应用。同时,我们也通过实践活动和小组讨论加深了对直角三角形边角关系的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-难点三:相似直角三角形的判定和应用
-学生在判定相似直角三角形时,可能忽视对应角和对应边的关系。
-举例:在两个直角三角形中,如何判定它们是否相似,并运用相似性质解决问题。
-难点四:实际应用问题
-学生在解决实际问题时,可能难以将问题抽象为直角三角形的模型。
-举例:如何将现实生活中的问题转化为直角三角形问题,并运用所学知识求解。

九年级数学下册第一章直角三角形的边角关系教案新版北师大版

九年级数学下册第一章直角三角形的边角关系教案新版北师大版

ACBa cb第一章 直角三角形的边角关系一、教学目标:1、以问题的形式梳理本章的内容,使学生进一步会运用三角函数解直角三角形,并解决与直角三角形有关的实际问题。

2、通过实例进一步掌握锐角三角函数的定义,并能熟练掌握特殊角的三角函数值。

3、已知锐角求出它的三角函数值;由已知三角函数值求出它对应的锐角。

4、使学生进一步体会数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题。

二、基本技能1、定义:在Rt △ABC 中,如果锐角∠A 确定,那么锐角∠A 的对边与邻边的比、对边与斜边的比、邻边与斜边的比也随之确定。

这个比叫做∠A 的正切、∠A 的正弦、∠A 的余弦。

记作:的邻边的对边A A A ∠∠=tan ;sinA 斜边的对边A ∠= ; co sA 斜边的邻边A ∠=。

其中:锐角∠A 的正弦、余弦、正切都是∠A 的三角函数。

注意:(1)比值大小只与∠A 的大小有关,而与直角三角形的边长无关.(2)梯子的倾斜程度:梯子AB 越陡,tanA 、sinA 的值越大 , cosA 的值越小 2、解直角三角形的基本理论依据:在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c 。

(1)三边的关系:a 2+b 2=c 2(勾股定理); (2)两锐角的关系:∠A+∠B=90°(互余) (3)边与角之间的关系sinA=c a , cosA=c b , ta nA=b a ; sinB =c b , cosB =c a , tanB=ab。

例1、在Rt △ABC 中,∠C= 90° ,a 、b 、c 分别为△ ABC 的对边, 根据下列条件求出直角三角形的其他元素。

(1)62,66a b == (2)c=20,∠A= 45°例2、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D , tan ∠B =31,且BC =9 cm , ABC∠A 的对边∠A 的邻边斜边求:AC 、CD 和sin A 、tan ∠BCD 的值 3、习题精选1、在 Rt △ABC 中,∠C=90°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形的边角关
系教案
第一章直角三角形的边角关系
§1.1.1 从梯子的倾斜程度谈起
教学目标
1、经历探索直角三角形中边角关系的过程
2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明
3、能够运用三角函数表示直角三角形中两边的比
4、能够根据直角三角形中的边角关系,进行简单的计算
教学重点和难点
重点:理解正切函数的定义
难点:理解正切函数的定义
教学过程设计
一、从学生原有的认知结构提出问题
直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。

这一章,我们继续学习直角三角形的边角关系。

二、师生共同研究形成概念
1、梯子的倾斜程度
在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。

这就涉及到倾斜角的问题。

用倾斜角刻画倾斜程度是非常自然的。

但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。

1)(重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡;
2)如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡;
3)如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;
通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。

2、想一想(比值不变)
☆想一想书本P 3 想一想
通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,
而与直角三角形的大小无关。

收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
3、 正切函数
(1) 明确各边的名称
(2) 的邻边的对边A A A ∠∠=tan (3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

☆ 巩固练习
a 、 如图,在△ACB 中,∠C = 90°,
1) tanA = ;tanB = ;
2) 若AC = 4,BC = 3,则tanA = ;tanB = ;
3) 若AC = 8,AB = 10,则tanA = ;tanB = ;
b 、
如图,在△ACB 中,tanA = 。

(不是直角三角形)
(4) tanA 的值越大,梯子越陡
4、 讲解例题 例1 图中表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?
分析:通过计算正切值判断梯子的倾斜程度。

这是上述结论的直接应用。

例2 如图,在△ACB 中,∠C = 90°,AC = 6,4
3tan =
B ,求B
C 、AB 的长。

分析:通过正切函数求直角三角形其它边的长。

5、 正切函数的应用
A B C A B C ∠A 的对边∠A 的邻边
斜边A B C 8m α5m 5m β13m A B C
书本P 5
教师可以介绍概念
坡度与坡角
结合图6-34讲述坡度概念,并板书:坡面的铅直
高度h和水
平宽度l的比叫做坡度(或叫做坡比),一般用i
表示。

即i=l
h

把坡面与水平面的夹角α叫做坡角.
引导学生结合图形思考,坡度i与坡角α之间具有什么关系?
答:i=l
h
=tanα
这一关系在实际问题中经常用到。

设置练习,加以巩固.
练习(1)一段坡面的坡角为60°,则坡度i=______;,坡角α______度.
为了加深对坡度与坡角的理解,培养学生空间想象力。

还可以提问:
(1)坡面铅直高度一定,其坡角、坡度和坡面水平宽度有什么关系?举例说明.
(2)坡面水平宽度一定,铅直高度与坡度有何关系,
举例说明.
答:(1)
如图,铅直高度AB一定,水平宽度BC增加,α将
变小,坡度减小,
因为 tanα=BC
AB
,AB不变,tanα随BC增大而减

(2)
与(1)相反,水平宽度BC不变,α将随铅直高度增大
而增大,tanα
也随之增大,因为tanα=BC
AB
不变时,tanα随AB的增大而增大
收集于网络,如有侵权请联系管理员删除
三、随堂练习
1、书本 P 6 随堂练习
2、《练习册》 P 1
四、小结
正切函数的定义。

五、作业
书本 P 6 习题1.1 1、2。

六、教学后记
收集于网络,如有侵权请联系管理员删除。

相关文档
最新文档