称重传感器
称重传感器选型手册

称重传感器选型手册一、引言称重传感器是一种用于测量重量或负荷的装置,广泛应用于工业领域、医疗设备、交通运输等各个行业。
本手册将介绍称重传感器的基本原理及选型要点,帮助读者了解如何选择适合自己需求的称重传感器。
二、称重传感器原理称重传感器基于压阻效应、电容效应或电磁效应等原理进行测量。
不同的传感器类型适用于不同的应用场景。
以下是常见的几种传感器类型:1. 压阻式称重传感器:基于压阻效应,将外部施加的压力通过压阻片转换为电阻值的变化。
2. 电容式称重传感器:基于电容效应,通过测量电容的变化来间接测量重量或负荷。
3. 电磁式称重传感器:基于电磁效应,通过测量磁场的变化来获得重量的信息。
三、选型要点在选型称重传感器时,需考虑以下几个重要要点:1. 测量范围:根据实际需求确定所需测量的重量范围。
不同的传感器有不同的测量范围。
2. 精度要求:确定所需的测量精度,即测量结果与实际重量之间的误差容忍度。
精度通常以百分比或小数形式表示。
3. 环境条件:考虑传感器的使用环境,包括温度、湿度、振动等因素。
选择适应环境条件的传感器,以确保其正常运行和准确度。
4. 物体特性:了解待测物体的形状、大小、材质等特性。
不同的物体特性可能需要不同类型的传感器来实现准确测量。
5. 可靠性和耐久性:选择可靠性高、寿命长的传感器,以减少维护和更换的成本。
四、常见应用场景及推荐传感器类型根据不同的应用场景,我们可以推荐以下传感器类型:1. 工业生产线:适用于重量稳定的物体,推荐压阻式称重传感器或电容式称重传感器。
2. 货物运输:适用于重量范围较大的物体,推荐电磁式称重传感器。
3. 医疗设备:通常涉及轻微的重量测量,推荐压阻式称重传感器。
4. 食品加工:要求高精度测量,推荐压阻式称重传感器或电容式称重传感器。
五、选型实例分析为了更好地理解选型的过程,我们来看一个实际的选型实例。
假设我们需要测量一台工业机器上放置的物体重量,该物体的重量范围在10公斤至50公斤之间,测量精度要求在±0.5%以内,环境条件较恶劣,温度较高(50°C左右),并且存在一定的振动。
称重传感器结构原理

称重传感器结构原理称重传感器是一种用于测量物体重量的装置,常见于工业生产、医疗设备、交通工具等领域。
它是通过将物体的重力转化为电信号来实现测量的。
称重传感器的结构通常由以下几个部分组成:1. 弹性体:弹性体是称重传感器的核心组成部分,它承受物体的重力并产生弹性形变。
弹性体可以采用不同的材料,如金属、聚合物等,具有良好的弹性特性。
2. 力传感器:力传感器用于测量弹性体受到的力。
它通常是一种电子元件,如应变片或压阻传感器。
当弹性体发生形变时,力传感器会产生相应的电信号。
3. 信号处理电路:信号处理电路用于放大和处理力传感器输出的电信号。
它可以将微弱的信号放大为可测量的电压或电流信号,以便进行后续的数据处理。
4. 数据处理单元:数据处理单元对信号处理电路输出的数据进行进一步处理和分析。
它可以校准传感器的灵敏度、温度补偿等,以提高测量的准确性和稳定性。
整个称重传感器的工作原理可以简单描述为:当物体施加在弹性体上时,弹性体产生弹性形变,力传感器测量到相应的力,然后通过信号处理电路和数据处理单元,最终转化为可以读取和理解的重量数值。
通过称重传感器的结构原理,我们可以实现对物体的精确测量和控制。
它在生产过程中起到了重要的作用,帮助我们实现物料配料、质量检测等工作。
同时,在医疗设备中,称重传感器可以帮助医生精确计量药物剂量,确保治疗的安全性和有效性。
总结一下,称重传感器的结构原理是通过弹性体的形变和力传感器的测量,将物体的重力转化为电信号,并经过信号处理和数据处理,最终实现对物体重量的准确测量。
它在工业生产、医疗设备等领域发挥着重要作用,提高了生产效率和治疗质量。
称重传感器指标

称重传感器指标
摘要:
一、称重传感器的简介
二、称重传感器的分类
三、称重传感器的性能指标
1.线性度
2.灵敏度
3.迟滞
4.温度漂移
5.蠕变
四、称重传感器的应用领域
正文:
称重传感器是一种将质量变化转换为电信号输出的传感器,广泛应用于各种需要测量重量的场合,如工业生产、医疗设备、科研实验等。
称重传感器主要分为电阻应变式、电容式、电磁式、光纤式等几种类型。
不同类型的传感器各有其特点和适用范围,用户可以根据实际需求选择合适的传感器。
在评价称重传感器的性能时,通常关注以下几个指标:
1.线性度:线性度是衡量传感器输出信号与输入信号之间关系的指标,理想情况下应接近1。
线性度越高,传感器的测量精度越高。
2.灵敏度:灵敏度表示单位质量变化引起的传感器输出电压变化,单位为
mV/V。
灵敏度越高,传感器对质量变化的反应越快。
3.迟滞:迟滞是指在相同输入信号下,传感器输出信号的波动范围。
迟滞越小,传感器的稳定性越好。
4.温度漂移:温度漂移是指传感器在不同温度下输出信号的变化。
温度漂移越小,传感器在不同温度环境下的稳定性越好。
5.蠕变:蠕变是指在长时间内,传感器输出信号随时间而产生的变化。
蠕变越小,传感器的使用寿命越长。
称重传感器广泛应用于各种领域,如工业生产中的物料称重、医疗设备中的体重秤、科研实验中的质量测量等。
称重传感器常用技术参数

称重传感器常用技术参数1. 承重范围(Rated Load Range):指称重传感器能够承受的最大重量,通常以公斤(kg)或吨(t)为单位。
不同的应用场景有不同的要求,选择合适的承重范围是非常重要的。
2. 灵敏度(Sensitivity):指称重传感器输出信号的变化与输入负荷变化之间的关系,通常以每个单位负荷变化导致的电压、电流或频率变化计算。
灵敏度越高,称重传感器能够更准确地测量小负荷变化。
3. 偏移(Offset):指在称重传感器未受到任何负荷时的输出信号。
传感器的输出信号应为零,但由于各种因素(如器件本身的固有偏移),可能会存在一个偏移值。
偏移值可以通过校准来调整,以确保传感器输出的准确性。
4. 归零(Zero Balance):指在称重传感器受到满量程负荷之后,解除负荷后的输出信号。
理想情况下,归零值应为零,但由于传感器在负荷过程中可能会发生不可避免的畸变,归零值可以根据需要进行精确调整。
5. 线性度(Linearity):指称重传感器输出信号与输入负荷之间的最大偏差。
线性度越高,表示传感器的输出信号与输入负荷之间的关系越准确。
6. 公差(Tolerance):指称重传感器的输出信号与其标定值之间的误差。
公差的大小直接影响传感器的准确性和可靠性。
7. 重复性(Repeatability):指称重传感器在多次使用时,对相同负荷的测量结果的一致性。
重复性好的传感器能够以较高的精度重复测量相同负荷。
8. 温度影响(Temperature Effect):指称重传感器的性能参数对温度变化的敏感程度。
温度会对传感器的性能产生影响,这些影响可能包括传感器输出信号的漂移、灵敏度的变化等。
9. 防护等级(Protection Level):指称重传感器的防尘、防水等能力。
根据不同的应用场景,可以选择不同防护等级的传感器。
10. 使用环境要求(Environmental requirements):称重传感器通常要求在特定的环境条件下工作,如温度范围、湿度范围等。
称重传感器原理

称重传感器原理称重传感器,也称为秤盘传感器或者称重传动器,是一种广泛应用于工业、商业和医疗领域中的传感器。
它的主要作用是测量一个物体的重量或质量。
称重传感器的原理和工作方式是什么呢?下面我们将详细介绍。
称重传感器的原理基于牛顿第二定律。
牛顿第二定律简单地说,当一个物体受到一个力时,它经历的加速度与它的质量成反比。
也就是说,一个物体越重,所需的力就越大,才能让它产生相同的加速度。
称重传感器就是利用这一原理来测量物体的重量。
它通过记录受力传感器的反应来测量所需要的力。
同时,称重传感器利用材料的光电效应和应变,来测量所需要的力。
称重传感器是由以下几个组成部分构成的:1. 称盘:它是测量目标物体重量的平台。
2. 弹簧:称重传感器上的弹簧根据受力的方向,可以承受不同程度的压缩或拉伸。
3. 应变计:它是一种被装在弹簧上的传感器,用于测量动态或静态的压力或应力。
4. 支座:它是用于固定弹簧的支架。
当重量施加在称盘上时,它会产生压力,从而让称重传感器下的弹簧变形。
这一变形会导致称重传感器上的应变计产生一个电压信号,用于测量受力大小。
另一方面,称重传感器上的应变计可以在动态或静态条件下产生电压信号。
同时,称重传感器的输出会由数字或模拟信号逐渐变化,用于测量目标物体的重量。
需要注意的是,称重传感器在测量时必须保证准确性。
因为它们是使用材料中的不均质性来测量重量的,所以任何倾斜、小振动或者机械干扰都会对它们的测量结果造成影响。
因此,称重传感器必须安装在稳定的环境中,并保证没有机械干扰。
总之,称重传感器是一种广泛应用于工业、商业和医疗领域中的传感器。
它的工作原理和基本组成部分都比较简单,但是在实际应用中,需要特别注意测量环境和其他因素的影响,以保证测量准确和可靠。
称重传感器常用技术参数大全

称重传感器常用技术参数大全1. 额定负荷:称重传感器的额定负荷是指传感器能够稳定工作的最大重量或负荷。
常见的额定负荷有1kg、10kg、100kg、1000kg等不同的规格。
2.精确度:精确度是称重传感器测量数据与实际值之间的偏差。
它通常以百分比或小数来表示。
例如,精确度为0.1%表示称重传感器的测量结果与实际值之间的误差不超过0.1%。
3. 分辨率:分辨率是指称重传感器能够分辨的最小重量变化。
它是通过测量范围除以最小变化值来计算的。
例如,如果一个称重传感器的测量范围为100kg,最小变化为0.1kg,则它的分辨率为0.1kg。
4.零点漂移:零点漂移是指称重传感器输出信号在没有施加负荷时的变化。
它可能是由于环境温度、长期使用等因素引起的。
小的零点漂移可以提高称重传感器的稳定性和准确性。
5.频率响应:频率响应是指称重传感器对输入信号频率的响应能力。
它通常以Hz为单位来表示。
频率响应较高的称重传感器可以更准确地测量快速变化的负荷。
6.工作温度范围:工作温度范围是指称重传感器正常工作的温度范围。
它可以从低温到高温,例如-20℃至+80℃。
7.线性度:线性度是指称重传感器输出信号与施加负荷之间的线性关系。
线性度越高,称重传感器输出信号与负荷之间的关系越准确。
8.防护等级:防护等级是指称重传感器对外部环境的保护能力。
它通常由IP加一个两位数来表示,例如IP67、IP67表示称重传感器对固体物体和液体的防护能力较强。
9.输出信号:输出信号是称重传感器将测量结果转换成电信号输出的形式。
常见的输出信号有模拟信号、数字信号和脉冲信号等。
10.脱机传输和存储:有些称重传感器具有脱机传输和存储功能,可以将测量数据保存在传感器中,并在需要时通过无线传输或USB接口等方式传输到计算机中进行分析和处理。
以上是一些常用的称重传感器的技术参数,根据不同的使用场景和需求,还有许多其他的技术参数可以进行选择和定制。
称重传感器的原理及应用

称重传感器的原理及应用1.压阻式原理压阻式称重传感器是最简单、最常见的一种称重传感器,它基于材料的电阻值与受力大小成正比关系。
在压阻式称重传感器中,传感器材料内部有一个弹性薄膜,当物体施加力后,薄膜产生变形,从而导致电阻值的变化。
通过测量电阻值的变化,可以推算出物体的重量。
2.应变电阻式原理应变电阻式称重传感器基于材料的应变与受力大小成正比关系。
在应变电阻片上有一个电阻片电桥,当物体施加力后,应变电阻片产生应变,从而导致电桥产生电阻的变化。
使用一个称重传感器时,当物体施加在传感器上时,电桥电阻会发生改变,通过测量电阻值的变化,可以计算出物体的重量。
3.电磁式原理电磁式称重传感器基于洛伦兹力原理。
当物体施加在传感器上时,它会改变传感器内部的电流分布,从而使得电磁感应力发生变化。
通过测量电磁感应力的变化,可以推断出物体的重量。
4.电容式原理电容式称重传感器基于电容值与物体间隙大小成反比关系。
在电容式称重传感器中,传感器内部有两块电容板,当物体施加力后,两块电容板之间的间隙发生变化,从而导致电容值的变化。
通过测量电容值的变化,可以计算出物体的重量。
除了以上的原理,还有其他一些新型的称重传感器技术,如声波称重、振动称重等。
称重传感器在工业中的应用非常广泛,例如在电子秤、汽车称重系统、电子配料秤、自动化生产线中的物体检测、控制等方面。
此外,医疗领域也使用称重传感器来测量患者的体重、服用药物的剂量等。
在农业领域,称重传感器被应用在农作物、饲料、鱼虾等的称重中,帮助农民掌握产品的重量和质量情况,以便进行适当的加工和销售。
另外,称重传感器还被用于交通领域中的过磅站和重量限制检测。
总之,称重传感器是一种非常重要的传感器设备,它通过转换物体重力作用为电信号,实现了对物体质量或重量的测量。
它的应用领域广泛,可以帮助人们实现精确、高效的称重操作。
称重传感器工作原理

称重传感器工作原理
称重传感器是一种用于测量物体重量的传感器,它能够将物体的重力作用转化为电信号输出,从而实现对物体重量的测量。
称重传感器的工作原理主要包括物理原理和电子原理两个方面。
首先,从物理原理来看,称重传感器的工作原理是基于胡克定律和牛顿第二定律的。
根据胡克定律,弹簧的伸长或压缩与外力成正比,即F=kx,其中F为弹簧所受外力,k为弹簧的弹性系数,x 为弹簧的伸长或压缩量。
而根据牛顿第二定律,物体所受的力与物体的加速度成正比,即F=ma,其中F为物体所受的力,m为物体的质量,a为物体的加速度。
通过这两个物理定律,称重传感器能够将物体的重力作用转化为弹簧的伸长或压缩量,进而测量出物体的重量。
其次,从电子原理来看,称重传感器的工作原理是基于应变片和电桥的。
应变片是一种能够随物体受力而产生应变变化的材料,当物体受力时,应变片会产生微小的形变,从而改变其电阻值。
而电桥是一种能够测量电阻变化的电路,通过电桥可以测量出应变片的微小电阻变化,进而得到物体受力的大小。
通过应变片和电桥的组合,称重传感器能够将物体的重力作用转化为电信号输出,实现
对物体重量的测量。
总的来说,称重传感器的工作原理是基于物理原理和电子原理的结合,通过将物体的重力作用转化为电信号输出,实现对物体重量的准确测量。
在实际应用中,称重传感器广泛用于工业生产、商业交易、医疗保健等领域,为各行各业提供了重要的数据支持。
希望本文能够帮助大家更加深入地了解称重传感器的工作原理,为相关领域的工程技术人员提供参考和借鉴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•称重传感器工作原理o随着技术的进步,由称重传感器制作的衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。
1.高速定量分装系统本系统由微机控制称重传感器的称重和比较,并输出控制信号,执行定值称量,控制外部给料系统的运转,实行自动称量和快速分装的任务。
系统采用MCS-51单片机和V/F电压频率变换器等电子器件,其硬件电路框图如图1所示,用8031作为中央处理器,BCD拔码盘作为定值设定输入器,物料装在料斗里,其重量使传感器弹性体发生变形,输出与重量成正比的电信号,传感器输出信号经放大器放大后,输入V/F转换器进行A/D转换,转换成的频率信号直接送入8031微处理器中,其数字量由微机进行处理。
微机一方面把物重的瞬时数字量送入显示电路,显示出瞬时物重,另一方面则进行称重比较,开启和关闭加料口、放料于箱中等一系列的称重定值控制。
图1 原理框图在整个定值分装控制系统中,称重传感器是影响电子秤测量精度的关键部件,选用GYL-3应变式称重测力传感器。
四片电阻应变片构成全桥桥路,在所加桥压U不变的情况下,传感器输出信号与作用在传感器上的重力和供桥桥压成正比,而且,供桥桥压U的变化直接影响电子称的测量精度,所以要求桥压很稳定。
毫伏级的传感器输出经放大后,变成了0-10V的电压信号输出,送入V/F变换器进行A/D转换,其输出端输出的频率信号加到单片机8031定时器1的计数、输入端T1上。
在微机内部由定时器0作计数定时,定时器0的定时时间由要求的A/D转换分辩率设定。
定时器1的计数值反映了测量电压大小即物料的重量。
在显示的同时,计算机还根据设定值与测量值进行定值判断。
测量值与给定值进行比较,取差值提供PID运算,当重量不足,则继续送料和显示测量值。
一旦重量相等或大于给定值,控制接口输出控制信号,控制外部给料设备停止送料,显示测量终值,然后发出回答令,表示该袋装料结束,可进行下袋的装料称重。
图2 自动称重和装料装置图2所示为自动称重和装料装置。
每个装料的箱子或袋子沿传送带运动,直到装有料的电子称下面,传送带停止运动,电磁线圈2通电,电子称料斗翻转,使料全部倒入箱子或袋子中,当料倒完,传送带马达再次通电,将装满料的箱子或袋子移出,并保护传送带继续运行,直到下一次空袋或空箱切断光电传感器的光源,与此同时,电子称料箱复位,电磁线圈1通电,漏斗给电子秤自动加料,重量由微机控制,当电子秤中的料与给定值相等时,电磁线圈1断电,弹簧力使漏斗门关上。
装料系统开始下一个装料的循环。
当漏斗中的料和传送带上的箱子足够多时,这个过程可以持续不断地进行下去。
必要时,*作人员可以随时停止传送带,通过拔码盘输入不同的给定值,然后再启动,即可改变箱或袋中的重量。
本系统选用不同的传感器,改变称重范围,则可以用到水泥、食糖、面粉加工等行业的自动包装中。
2.传感器在商用电子秤中的应用目前,商用电子计价秤的使用非常普及,逐渐会取代传统的杆称和机械案秤。
电子计价秤在秤台结构上有一个显着的特点:一个相当大的秤台,只在中间装置一个专门设计的传感器来承担物料的全部重图3 计价秤内部结构示意图量,如图3所示。
常用的电子计价秤传感器的结构如图4所示,其中图4(a)为双连椭圆孔弹性体,秤盘用悬臂梁端部上平面的两个螺孔紧固;图4(b)为梅花型四连孔弹性体,秤盘用悬臂梁端部侧面的三个螺孔坚固,中间支杆上粘贴补偿用的应变片。
这两种形式的传感器,在计价秤中用得最多。
图4(c)为三梁式弯曲弹性体,采样弯曲应力,对重量反应敏感,宜用来制作小称量计价秤。
图4(d)为三梁式剪切弹性体,采样中间敏感梁的剪切应力,宜用来制作几百公斤称量范围计价秤。
图4 计价秤用弹性体结构用这些复梁型高精度传感器来支承一个大的称重平台,被称重物又可能放置在任何称台的任意位置上,必然会产生四角示值误差,对图4(a),(b)两种结构形式的传感器,可通过锉磨的形式进行角差修正。
对图4(c),(d),它有上下两根局部削弱的柔性辅助梁,使传感器对侧向力、横向力和扭转力矩具有很强的抵抗能力,可以通过锉磨辅助梁的柔性部位来调整传感器的灵敏系数和四角误差。
图5为一种商用电子计价秤的电路框图。
传感器采用的是图4(b)所示的梅花型四连孔结构,该秤具有置零、自动清除单价、零位自动跟踪、自动去皮、次数累计和金额累计、打印输出等功能,7段绿色荧光数码管显示,使用十分方便。
图5 电子计价秤的电路框图图6是采用CHBL3型号S型双连孔弹性体称重传感器制作的便携式家用电子手提秤的原理图,由称重传感器、放大电路、A/D转换和液晶显示四部分组成。
图中,E为9V的叠层电池,R1-R4是称重传感器的4个电阻应变片,R5、R6与W1组成零点调整电路。
当载荷为零时,调节RW1使液晶显示屏显示为零。
A1,A2为双运放集成电路LM358中的两个单元电路,组成了一个对称的同相放大器,A/D转换器采用ICL7106双积分型A/D转换器,液晶显示采用3 1/2液晶显示片。
该电子秤精度高,简单实用,携带方便。
称重传感器是一种高精度的传感器,必须按规定的规格使用。
若不按规定的规格使用,不仅不能发挥称重的作用,而且容易损坏,尤其是绝对不准超过负荷安全值使用。
图6 手提秤的电路框图对于因温度变化对桥接零点和输出,灵敏度的影响,即使采用同一批应变片,也会因应变片之间稍有温度特性之差而引起误差,所以对要求精度较高的传感器,必须进行温度补偿,解决的方法是在被粘贴的基片上采用适当温度系数的自动补偿片,并从外部对它加以适当的补偿。
非线性误差是传感器特性中最重要的一点。
产生非线性误差的原因很多,一般来说主要是由结构设计决定,通过线性补偿,也可得到改善。
滞后和蠕变是关于应变片及粘合剂的误差。
由于粘合剂为高分子材料,其特性随温度变化较大,所以称重传感器必须在规定的温度范围内使用。
在露天下使用传感器,还应考虑阳光直射产生的温度影响和风压的影响。
以上资料为国内目前称重传感器的基本情况。
而目前较为先进的称重传感器(高频响,高精度,高量程)其工作原理及电气则有很大不同,比如,应用在水下的称重传感器就有天壤之别。
•称重传感器的种类o称重传感器按转换方法分为光电式、液压式、电磁力式、电容式、磁极变形式、振动式、陀螺仪式、电阴应变式等8类,以电阻应变式使用最广。
光电式传感器包括光栅式和码盘式两种。
光栅式传感器利用光栅形成的莫尔条纹把角位移转换成光电信号。
光栅有两块,一为固定光栅,另一为装在表盘轴上的移动光栅。
加在承重台上的被测物通过传力杠杆系统使表盘轴旋转,带动移动光栅转动,使莫尔条纹也随之移动。
利用光电管、转换电路和表,即可计算出移过的莫尔条纹数量,测出光栅转动角的大小,从而确定和读出被测物质量。
码盘式传感器的码盘(符号板)是一块装在表盘轴上的透明玻璃,上面带有按一定编码方法编定的黑白相间的代码。
加在承重台上的被测物通过传力杠杆使表盘轴旋转时,码盘也随之转过一定角度。
光电池将透过码盘接受光信号并转换成电信号,然后由电路进行数字处理,最后在显示器上显示出代表被测质量的数字。
光电式传感器曾主要用在机电结合秤上。
液压式传感器在受被测物重力P作用时,液压油的压力增大,增大的程度与P 成正比。
测出压力的增大值,即可确定被测物的质量。
液压式传感器结构简单而牢固,测量范围大,但准确度一般不超过1/100。
电磁力式传感器它利用承重台上的负荷与电磁力相平衡的原理工作。
当承重台上放有被测物时,杠杆的一端向上倾斜;光电件检测出倾斜度信号,经放大后流入线圈,产生电磁力,使杠杆恢复至平衡状态。
对产生电磁平衡力的电流进行数字转换,即可确定被测物质量。
电磁力式传感器准确度高,可达1/2000~1 /60000,但称量范围仅在几十毫克至10千克之间。
电容式传感器它利用电容器振荡电路的振荡频率f与极板间距d 的正比例关系工作。
极板有两块,一块固定不动,另一块可移动。
在承重台加载被测物时,板簧挠曲,两极板之间的距离发生变化,电路的振荡频率也随之变化。
测出频率的变化即可求出承重台上被测物的质量。
电容式传感器耗电量少,造价低,准确度为1/200~1/500。
磁极变形式传感器铁磁元件在被测物重力作用下发生机械变形时,内部产生应力并引起导磁率变化,使绕在铁磁元件(磁极)两侧的次级线圈的感应电压也随之变化。
测量出电压的变化量即可求出加到磁极上的力,进而确定被测物的质量。
磁极变形式传感器的准确度不高,一般为1/100,适用于大吨位称量工作,称量范围为几十至几万千克。
振动式传感器弹性元件受力后,其固有振动频率与作用力的平方根成正比。
测出固有频率的变化,即可求出被测物作用在弹性元件上的力,进而求出其质量。
振动式传感器有振弦式和音叉式两种。
振弦式传感器的弹性元件是弦丝。
当承重台上加有被测物时,V形弦丝的交点被拉向下,且左弦的拉力增大,右弦的拉力减小。
两根弦的固有频率发生不同的变化。
求出两根弦的频率之差,即可求出被测物的质量。
振弦式传感器的准确度较高,可达1/1000~1/10000,称量范围为100克至几百千克,但结构复杂,加工难度大,造价高。
音叉式传感器的弹性元件是音叉。
音叉端部固定有压电元件,它以音叉的固有频率振荡,并可测出振荡频率。
当承重台上加有被测物时,音叉拉伸方向受力而固有频率增加,增加的程度与施加力的平方根成正比。
测出固有频率的变化,即可求出重物施加于音叉上的力,进而求出重物质量。
音叉式传感器耗电量小,计量准确度高达1/10000~1/200000,称量范围为500g~10kg。
陀螺仪式传感器转子装在内框架中,以角速度ω绕X轴稳定旋转。
内框架经轴承与外框架联接,并可绕水平轴Y 倾斜转动。
外框架经万向联轴节与机座联接,并可绕垂直轴Z 旋转。
转子轴(X轴)在未受外力作用时保持水平状态。
转子轴的一端在受到外力(P/2)作用时,产生倾斜而绕垂直轴Z 转动(进动)。
进动角速度ω与外力P/2成正比,通过检测频率的方法测出ω,即可求出外力大小,进而求出产生此外力的被测物的质量。
陀螺仪式传感器响应时间快(5秒),无滞后现象,温度特性好(3ppm),振动影响小,频率测量准确精度高,故可得到高的分辨率(1/100000)和高的计量准确度(1/30000~1/60000)。
电阻应变式传感器利用电阻应变片变形时其电阻也随之改变的原理工作(图11)。
主要由弹性元件、电阻应变片、测量电路和传输电缆4部分组成。