频分复用及应用实例
正交频分复用

峰值平均功率
由于OFDM信号在时域上为N个正交子载波信号的叠加,当这N个信号恰好都以峰值出现并将相加时,OFDM信号 也产生最大峰值,该峰值功率是平均功率的N倍。这样,为了不失真地传输这些高峰均值比的OFDM信号,对发送 端和接收端的功率放大器和A/D变换器的线性度要求较高,且发送效率较低。解决方法一般有下述三种途径:
同步技术
与其它数字通信系统一样,OFDM系统需要可靠的同步技术,包括定时同步、频率同步和相位同步,其中频率 同步对系统的影响最大。移动无线信道存在时变性,在传输过程中会出现无线信号的频率偏移,这会使OFDM系统 子载波间的正交性遭到破坏,使子信道间的信号相互干扰,因此频率同步是OFDM系统的一个重要问题。
应用
数字声广播工程
欧洲的数字声广播工程(DAB)-DABEUREKA147计划已成功的使用了OFDM技术。为了克服多个基站可能产生 的重声现象,人们在OFDM的信号前增加了一定的保护时隙,有效的解决了基站间的同频干扰,实现了单频广播, 大大减少了整个广播占用的频带宽度。
HFC
HFC(Hybrid Fiber Cable)是一种光纤/同轴混合。近来,OFDM被应用到有线电视中,在干线上采用光纤传 输,而用户分配络仍然使用同轴电缆。这种光电混合传输方式,提高了图像质量,并且可以传到很远的地方,扩 大了有线电视的使用范围。
⑴可有效对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输;
⑵通过各子载波的联合编码,具有很强的抗衰落能力;
⑶各子信道的正交调制和解调可通过离散傅利叶反变换IDFT和离散傅利叶变换DFT实现;
⑷OFDM较易与其它多种接入方式结合,构成MC-CDMA和OFDM-TDMA等。
发展
OFDM的概念于20世纪50—60年底提出,1970年OFDM的专利被发表,其基本思想通过采用允许子信道频谱重 叠,但相互间又不影响的频分复用(FDM)方法来并行传送数据。OFDM早期的应用有AN/GSC_10高频可变速率数传 调制解调器等。早期的OFDM系统中,发信机和相关接收机所需的副载波阵列是由正弦信号发生器产生的,系统复 杂且昂贵。1972年Weinstein和Ebert提出了使用离散傅立叶变换实现OFDM系统中的全部调制和调解功能的建议, 简化了振荡器阵列以及相关接收机本地载波之间严格同步的问题,为实现OFDM的全数字化方案做了理论上的准备。
正交频分复用技术及其在无线网络中的应用

正交频 分复 用技术及其在无 线网络 中的应用
吉淑娇 ,高林林
( 长春大学 电子信息工程学院 ,吉林 长春 10 2 ) 3 0 2
摘
要: 正交频分 复 用技 术 ( F M) 一 种特 殊 的 多载 波传 输 方 案。 它 能 够有 效地 克服 频 率 选择 OD 是
性 衰 落, 因此 目前 它是 在 宽带无 线通信 中广泛 应 用的 一种技 术。本 论 文主 要是 介 绍 O D 的一 些 FM
为零 。
关键 词 : 交频 分复 用技 术 ( F M) H p rA / ; T A 正 O D ; ieL N 2 MA L B 中图分 类 号 : N 1 . 2 T 997 文献标 识码 : A
OD F M它 可 以被看作 是一 种调制 技 术 , 也可 以当作 一 种 复用 技术 。O D 把 高速 的 数据 流通 过 串并 变 FM 换 , 配到 速度 相对 较低 的若 干个 频率 子信 道 中进 行传 输 , 分 而且 O D F M技 术很 好 地利 用控 制方 法 , 频 率利 使 用率有 所 提高 。 目前 O D 技术 已经 被广 泛应 用于 广播式 的音 频 和视频 领 域和 民用 通信 系统 中, 如数 字 FM 例 视频广 播 、 高清 晰度 电视 、 线局域 网等 … 。 无 Ma a tb是集 数值计 算 、 l 符号运 算及 图形处 理 等强 大 功 能于 一体 的科 学 计 算 语 言 , 以直接 处 理矩 阵 或 可 者数组 , 句精炼 , 程效率 高 ,i l k软件 包是 Maa 境下 的仿 真工具 , 语 编 S i mun tb环 l 它可 以进行 动态 系统建模 、 仿 真及综 合分 析 。Sm l k提供 了 s函数 , iui n 即系统 函数 , 使 用户 可 以 利用 M tb C 语 言 , 它 al , a C+ +语 言 以及 FRR O T AN等语 言 的程序 创建 自定 义的 S l k模块 。 i i mun
频分复用-通信原理

Page 4
FDM应用领域
载波电话系统 调幅广播 调频广播 广播电视 卫星直播电视 闭路电视广播 模拟移动电话 通信卫星中的频分多址
Page 5
5
频分多路复用
概念:多路彼此不相关的消息信号合并 为一个复合的群信号,共同在一条信道 上进行通信称为多路复用。利用调制技 术实施频谱搬移,可以实现频分多路复 用。
舒任成 2801304022
目录
1.频分多路复用介绍。 2.应用介绍。
Page 2
ห้องสมุดไป่ตู้
2
下图为12路信号的频分复用发送系统结构原理图
发送端低通滤波器消除各路基带信号的高频成分,而各个Modem 对各自的输入信号进行调制,实现频谱搬移。频率合成的各个频 率必须彼此分离。
下图为接收端原理图
接收端分离并解调出各路信号。同时,要提高信道利用率, 各频带应该尽量靠近,这要求陡峭的滤波器。 另外,各种信号之间存在相互干扰,叫做串扰。 主要是系统的非线性造成已调信号频谱的展宽,各路信号的频谱交叉重叠。 因此FDM系统的线性要求较高。
频分复用原理及其应用研究

2015届学士学位论文频分复用原理及其应用研究频分复用原理及其应用研究摘要频分复用(FDM)是通信系统中信号多路复用方式中的一种,本质上是依据频率来分隔信道的。
频分复用技术在当今通信领域有着很重要的地位。
根据性质和特点的不同频分复用还可以被细分为传统的频分复用(FDM)和正交频分复用(OFDM)。
本论文主要由以下几个部分组成。
第一部分介绍频分复用基本原理,系统实现以及其应用特点;第二部分介绍正交频分复用的基本原理及DFT的实现;第三部分主要介绍在实际应用中当载波频率接近时,频谱会发生重叠,传统的频分复用解调效果容易出现失真,正交频分复用由于其载波的正交性特点,在频谱发生重叠时可以保证解调效果;最后通过MATLAB程序中的SIMULINK仿真图来表现正交频分复用的优越之处。
关键词频分复用;正交频分复用;MA TLAB仿真Frequency division multiplexing principle and its applicationresearchAbstract Frequency division multiplexing (FDM) is a kind of signal multiplexing mode in communication system, which is divided by frequency channel essentially. Frequency division multiplexing technology is very widely used in today's communication. Frequency division multiplexing can also be divided into the traditional frequency division multiple(FDM) and orthogonal frequency division multiplexing(OFDM) depending on the nature and characteristics.This paper consists of the following parts. The basic principle of frequency division multiplexing, system implementation and its application characteristics are introduced in the first part . The basic principle of orthogonal frequency division multiplexing and its realization of DFT are introduced in the second part .Due to its characteristics ,orthogonal frequency division multiplexing can guarantee the demodulation compare with the traditional frequency division multiplexing when the carrier frequency is close to in the practical application, spectrum overlap happens ,which is introduced in the third part .Finally by SIMULINK of MA TLAB simulation diagram to show the superiority of the orthogonal frequency division multiplexing.Keywords Frequency division multiplexing; Orthogonal frequency division Multiplexing ;MA TLAB simulation淮北师范大学2015届学士毕业论文频分复用原理及其应用目录1.引言 (1)2频分复用基本原理及实现 (2)2.1频分复用的基本原理 (2)2.2 频分复用系统应用及其特点 (2)3正交频分复用基本原理及实现 (4)3.1正交频分复用原理 (4)3.2 DFT的实现 (6)3.3 正交频分复用的优缺点 (8)4频分复用原理的应用 (9)4.1系统仿真主要模块的介绍 (9)4.2频分复用系统仿真的实际应用分析 (9)4.3 仿真结果分析 (14)结论 (15)参考文献 (16)致谢 (17)淮北师范大学2015届学士毕业论文频分复用原理及其应用1.引言在通信系统中,一般情况下用来传输信号的物理信道的传输能力是比一路传输信号的需求要大的很多,这时候就可以让多路信号共同来利用该物理信道。
频分复用的原理和优缺点

畅通无阻!频分复用的原理和优缺点
随着移动通信技术的不断发展,对信号传输效率和带宽的需求越
来越高。
频分复用技术应运而生,成为现代通信网络中不可或缺的一环。
本文将从原理和优缺点两个方面来详细介绍频分复用技术。
一、原理
频分复用技术是将一个频段分成若干个较窄的子频段,每个子频
段只用于传输一路信号。
每个子频段都可以独立传输一个通信信道,
这样可以在同一个频段上实现多个信道之间的并行传输。
例如:一个频段大小为10MHz,它被分成5个大小为2MHz的子频段。
每个子频段可以独立传输一个通信信道,这样就可以在同一个频
段上同时传输5条不同的通信信道。
这样,每条信道就不会相互干扰,相互之间独立运行。
这种方法可以迅速提高信道的数量,从而提高整
个系统的信道带宽和通信吞吐量。
二、优缺点
频分复用技术的优点在于:
1.可以提高信道的数量和带宽,增加数据传输速率。
2.不同的频道之间互相独立,互不干扰,提高了通信质量和稳定性。
3.可以充分利用现有频谱资源,减少频谱的浪费。
缺点在于:
1.频分复用技术需要具备高计算能力,需要运用复杂的算法实现对信号的分割和传输控制。
2.由于各信道之间采用的是分时复用方式,传输速率较低,对实时性要求高的场景不太适用。
结语:
总的来说,频分复用技术是一种非常优秀的信号传输技术,它可以大大提高通信质量和效率,但它也有一些缺点需要克服。
我们相信在未来的通信技术中,频分复用技术将会发挥越来越重要的作用,为人们的通信带来畅通无阻的体验。
时分复用和频分复用

时分复用和频分复用时分复用频分复用简介数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(MultiplexiI1g)。
采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。
频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。
举个例最简单的例子:从A地到B地坐公交2块。
打车要20块为什么坐公交便宜呢这里所讲的就是“多路复用”的原理。
频分复用(FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。
因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。
在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。
在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。
为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。
根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。
①前群,又称3路群。
它由3个话路经变频后组成。
各话路变频的载频分别为12,16,20千赫。
取上边带,得到频谱为12~24千赫的前群信号。
②基群,又称12路群。
它由4个前群经变频后组成。
各前群变频的载频分别为84,96,108,120千赫。
取下边带,得到频谱为 60~108千赫的基群信号。
浅析频分复用技术及在数字电视中的应用.doc

浅析频分复用技术及在数字电视中的应用作者:曹勇来源:《大陆桥视野·下》2013年第06期摘要复用是一种将若干个彼此独立的信号合并为一个可在同一信道上传输的复合信号的方法。
譬如,在电话系统中,传输的语音信号的频谱一般在300 Hz~3400 Hz内。
为了使若干个这种信号能在同一信道上传输,可以使它们的频谱调制到不同的频段,合并在一起而不致相互影响,并能在接收端分离开来,本文就此技术进行详细阐述。
关键词信道复用频分复用技术一、常见的信道复用技术及其原理常见的信道复用采用按频率区分或按时间区分信号。
按频率区分信号的方法称为频分复用;按时间区分信号的方法称为时分复用。
通常,在通信系统中,信道所能提供的带宽往往要比传送一路信号所需的带宽宽得多。
因此,一个信道只传送一路信号有时是非常浪费的。
为了充分利用信道的带宽,因而提出了信道频分复用的问题。
见图1。
合并后的复用信号原则上可以在信道中传输,但有时为了更好地利用信道的传输特性,也可以再进行一次调制。
再频分复用系统的接收端,可以利用相应的带通滤波器来区分开各路信号的频谱。
然后,通过各自的相干解调器便可恢复各路的调制信号。
频分复用系统的最大优点是信道复用率高,容许复用的路数多,同时分路也很方便。
因此。
它成为目前模拟通信中最主要的一种复用方式,特别是在有线和微波通信系统中,应用十分广泛。
由于基带传输系统采用串行传输的方法传输数字信号,不能在带宽上划分。
TDM技术在信道使用时间上进行划分,按一定原则把信道连续使用时间划分为一个个很小的时间片,把各个时间片分配给不同的通信过程使用;由于时间片的划分一般较短暂,可以想象成把整个物理信道划分成了多个逻辑信道交给各个不同的通信过程来使用,相互之间没有任何影响,相邻时间片之间没有重叠,一般也无须隔离,信道利用率更高。
二、STDM同步时分多利复用技术和ATDM异步时分多路复用技术STDM同步时分多利复用技术和ATDM异步时分多路复用技术,是通常采用的技术。
频分复用与时分复用

4.调制过程不是线性时不变系统。 4.调制过程不是线性时不变系统。 调制过程不是线性时不变系统 5.在抽样系统分析中, 5.在抽样系统分析中,经常需要哟娜到频域卷积 在抽样系统分析中 定理分析频谱变换和选定低通滤波函数的截止频 率和幅度以保证完全恢复原始信号。 率和幅度以保证完全恢复原始信号。
时钟 (CP)
T
1 0 1 1 0
1 f 若脉码速率 = ,相应的 T 单个Sa波形表达式为 π Sa t ,它的频谱函数 T 1 B , 为矩形频带 = 。 2T 所占带宽减半。 所占带宽减半。
Sa函数 码型
2T
t1
t0
的整数倍各时刻其抽样值为零, 在T的整数倍各时刻其抽样值为零,因而 的整数倍各时刻其抽样值为零 接收端以此处为抽样判决点, 接收端以此处为抽样判决点,保证不会出 现误判。 现误判。
三、码速与带宽
(a)时钟 (CP)
T
0
1
1 码速: f 码速: = T
0
1 1
(b)矩形
归零码
0
1
0
1 带宽: 带宽:
τ
τ
(c)矩形
不归零码
T
码速≈ 码速≈ 带宽
1 带宽: 带宽: T
选用带宽外高频 分量相对较小的 码型
(d )升余弦码
T
2T
t0
t1
1 带宽: 带宽: T
利用Sa Sa函数码型避免码间串扰 四、利用Sa函数码型避免码间串扰
§ 5.8 频分复用与时分复用
主要内容
频分复用 频分复用 时分复用 时分复用 码速与带宽 码速与带宽 利用Sa函数码型避免码间串扰 利用Sa 利用Sa函数码型避免码间串扰
重点:频分复用与时分复用 重点: 难点:利用Sa函数码型避免码间串扰 难点:利用Sa Sa函数码型避免码间串扰
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频分复用及应用实例
频分复用
频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。
频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。
频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。
频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。
频分复用及应用实例
一、频分复用
概念:多路复用是将若干路彼此无关的消息信号合并在一起,在一个信道中进行传输。