化工原理课程设计(乙醇和水的分离)-精品资料

化工原理课程设计(乙醇和水的分离)-精品资料
化工原理课程设计(乙醇和水的分离)-精品资料

化工原理课程设计

课题名称乙醇-水分离过程筛板精馏塔设计

院系可再生能源学院

班级应用化学0901班

学号 1091100128

学生姓名蔡文震

指导老师覃吴

设计周数 1

目录

一、化工原理课程设计任务书 (4)

1.1设计题目 (4)

1.2原始数据及条件: (4)

二、塔板工艺设计 (4)

2.1精馏塔全塔物料衡算 (4)

2.2乙醇和水的物性参数计算 (5)

2.2.1 温度 (5)

2.2.2 密度 (6)

2.2.3相对挥发度 (9)

2.2.4混合物的黏度 (9)

2.2.5混合液体的表面张力 (9)

2.3塔板的计算 (10)

2.3.1 q、精馏段、提留段方程计算 (10)

2.3.2理论塔板计算 (12)

2.3.3实际塔板计算 (12)

2.4操作压力的计算 (13)

三、塔体的工艺尺寸计算 (13)

3.1塔径的初步计算 (13)

3.1.1气液相体积流量计算 (13)

3.1.2塔径计算 (13)

3.2塔体有效高度的计算 (15)

3.3精馏塔的塔高计算 (16)

3.4溢流装置 (16)

3.4.1堰长 (16)

3.4.2溢流堰高度 (16)

3.4.3弓形降液管宽度和截面积 (17)

3.5塔板布置 (17)

3.5.1塔板的分块 (17)

3.5.2边缘区宽度的确定 (18)

3.5.3开孔区面积计算 (18)

3.5.4筛孔计算及其排列 (18)

四、筛板的流体力学验算 (19)

4.1塔板压降 (19)

4.1.1干板阻力 (19)

4.1.2气体通过液层的阻力 (19)

4.1.3液体表面张力的阻力(很小可以忽略不计) (20)

4.1.4气体通过每层板的压降 (20)

4.2液沫夹带 (20)

4.3漏液 (21)

4.4液泛 (21)

五、塔板负荷性能图 (22)

5.1漏液线 (22)

5.2液沫夹带线 (22)

5.3液相负荷下限线 (24)

5.4液相负荷上限线 (24)

5.5液泛线 (24)

5.6图表汇总及负荷曲线图 (26)

六、主要工艺接管尺寸的计算和选取 (26)

七、课程设计总结 (27)

八、参考文献 (28)

一、化工原理课程设计任务书

1.1设计题目

分离乙醇一水筛板精馏塔的设计

1.2原始数据及条件:

生产能力:年处理乙醇一水混合液2.6万吨/年(约为87吨/天)。 原料:来自原料罐,温度20℃,乙醇含量为46%(质量分率,下同)。 分离要求:塔顶乙醇含量不低于95%。 塔底乙醇含量不高于0. 05%。 塔顶压力P=105KPa 。 进料状态为冷进料。

塔釜为饱和蒸汽直接加热。

二、塔板工艺设计

2.1精馏塔全塔物料衡算

F :进料量(Kmol/s ) 原料组成:F X D :塔顶产品流量(Kmol/s ) 塔顶组成:D X W :塔底残液流量(Kmol/s ) 塔底组成:W X

原料乙醇组成:%25185446464646

=+=

F X 塔顶组成:%14.8818

546954695

=+=

D X

塔底组成:%020.018

5

.994605.04605.0≈+=W X 进料量:s Kmol F /540.003600

243001895

.04605.010********.2/6.2≈??+???==)(

年万吨

物料衡算式:F=D+W

W D F X W X D X F ?+?=?

联立求解:D =0.0153Kmol/s W =0.0387Kmol/s

2.2乙醇和水的物性参数计算 2.2.1 温度

根据表中数据可以求得F t D t W t

1.31

.23257

.8208.2631.233.827.82:--=--F

F t t ℃46.82=F t 2.72.7414.8841

.7843.8972.7415.7841.78:

--=--D

D t t ℃17.78=D t

3.0

020.0100

90.105.95100:--=

--W W t t ℃95.99=W t

4.精馏段平均温度:℃32.8021=+=D

F t t t

5.提留段平均温度:℃21.912

2=+=

W

F t t t 2.2.2 密度

已知:混合液密度:

B

B

A

A

l

a a ρρρ+

=

1

混合气密度:

004.22TP M P T V =

ρ

塔顶温度:℃17.78=D t 气相组成:43

.8910015

.7817.7843.8915.7815.7841.78:--=--D D y y %56.88=D y

进料温度:℃46.82=F t 气相组成:45

.541007

.8246.8280.5545.543.827.82--=--=F F y y %26.55=F y

塔底温度:℃

95.99=W t

气相组成:W

W y y 100095

.991000.1705.95100:--=-- %19.0≈W y

(1) 精馏段

液相组成:%57.5621=+=

F

D x x x 气相组成:%91.712

1=+=F

D y y y

所以mol kg M L /84.33)5657.01(185657.0461=-?+?= mol kg M V /13.38)7191.01(187191.0461=-?+?= (2) 提留段

液相组成:%51.1222=+=

F

W x x x 气相组成:%72.272

2=+=F

W

y y y 所以mol kg M L /50.21)1251.01(181251.0462=-?+?= mol kg M V /76.25)2772.01(182772.0462=-?+?=

℃46.82=F t

3

.7428046.821.7303.7429080:

--=--CF CF ρρ 3

/3.739m kg CF =ρ

8

.9718046.823.9658.9719080:

--=--wF wF ρρ 3

/2.970m kg wF =ρ

2

.97046.013.73946.01

-+=

F

ρ 3

/3.848m kg F =ρ ℃17.78=D t

2

.7547017.783.7422.7548070:

--=--CD CD ρρ 3

/5.744m kg CD =ρ

8

.9777017.788.9718.9778070:

--=--wD wD ρρ 3

/9.972m

kg wD =ρ

9

.97292.015.74492.01

-+=

D

ρ 3

/75.758m kg D =ρ ℃95.99=W t

1

.7309095.994.7171.73010090:

--=--CW CW ρρ 3

/46.717m kg CW =ρ

3

.9659095.994.9583.96510090:

--=--wW wW ρρ 3

/43.958m kg wD =ρ

43

.958005.0146.717005.01

-+=

W

ρ 3

/54.952m kg W =ρ

所以31/53.8032m kg D

F L =+=ρρρ

32

/65.8552

m kg W F L =+=ρρρ

mol kg x x M D D LD /68.42)1(1846=-?+?= mol kg x x M F F LF /25)1(1846=-?+?=

mol kg x x M W W LW /00.18)1(1846=-?+?=

mol kg M M M LF

LD L /84.3321=+=

mol kg M M M LF

LW L /5.212

2=+=

mol kg y y M D D VD /80.42)1(1846=-?+?= mol kg y y M F F VF /47.33)1(1846=-?+?=

mol kg y y M W W VW /05.18)1(1846=-?+?=

mol kg M M M VF

VD V /14.3821=+=

mol kg M M M VF

VW V /76.252

2=+=

3

1

1

01/32.14.22m kg t M T V V ==

ρ

32

2

02/86.04.22m kg t M T V V ==

ρ

2.2.3相对挥发度

%25=F x %26.55=F y 71.325

.015526.0125.05526.0==

--F α

%14.88=D x %56.88=D y 04.18814

.018856.018814.08856.0==

--D α

%020.0=W x %19.0=W y 52.9%

02.01%19.01%02.0%19.0==

--W α

(1)精馏段平均相对挥发度

38.22

1=+=

D

F ααα

(2)提留段平均挥发度

62.62

2=+=

W

F ααα

2.2.4混合物的黏度

6℃32.801=t 查手册得s mpa ?=3565.0水μ s mpa ?=954.0乙醇μ

℃21.912=t 查手册得s mpa ?=3130.0水μ s mpa ?=254.0乙醇μ

(1)精馏段黏度:

s mpa x x ?=+=4348.0-1111)(水乙醇μμμ

(2)提留段黏度:

s mpa x x ?=+=2703.0-1222)(水乙醇μμμ

2.2.5混合液体的表面张力

查物理化学手册可得

水的表面张力的经验公式:)]

291(002.01[07275.0--?=T σ

所以可以求得m mN WF /37.63=σ,m mN WD /99.63=σ,m mN WW /83.60=σ

m mN WF /07.17`=σ,m mN WD /47.17`=σ,m mN WW /51.15`=σ

塔顶表面张力:444`)1(WD D WD D D x x σσσ+-=, m mN D /87.20=σ

444`)1(WF F WF F F x x σσσ+-=, m mN F /42.47=σ 444

`)1(WW D WW W W x x σσσ+-=, m mN W /82.60=σ

(1)精馏段的平均表面张力:m mN /15.342

42

.4787.201=+=

σ

(2)提馏段的平均表面张力:m mN /12.542

42

.4782.602=+=σ

2.3塔板的计算

2.3.1 q 、 精馏段、提留段方程计算

25.0=F x 泡点温度82.46℃

平均温度:

℃23.512

20

46.822+=+t T 乙醇的摩尔热容K kmol kJ c mA ?=?=/92.1384602.3 乙醇的摩尔汽化焓kmol kJ r A /2.42053462.914=?= 水的摩尔热容K kmol kJ c mB ?=--?-+?=/2.75]50

6051

23.51)178.4183.4(178.4[18

水的汽化潜热kmol kJ r B /43056182392=?=

)/(13.91K kmol kJ x c x c c B mB A mA mP ?=+=

平均汽化热

kmol

kJ x r x r r B B A A /3.42805=+=

13.1)(1=-+

=t T r

c q mP

对25.0=F x 不论q=1还是q=1.13 挟点均是切点。所以最小回流比一样,在x=0.和x=1.0之间拟合平衡曲线

2557.0)1963.1exp(2173.0+=x y

液相中乙醇的摩尔分数 气相中乙醇的摩尔分数 液相中乙醇的摩尔分数 气相中乙醇的摩尔分数 0.0 0.0 0.25 0.551 0.01 0.11 0.30 0.575 0.02 0.175 0.40 0.614 0.04 0.273 0.50 0.657 0.06 0.34 0.60 0.698 0.08 0.392 0.70 0.755 0.10 0.43 0.80 0.82 0.14 0.482 0.894 0.894 0.18 0.153 0.95 0.942 0.20

0.525

1.0

1.0

计算得)6726.0,5445.0(),(=q q y x

19944.0)(min min ≈==D

L

R

min )0.2~2.1(R R opt =根据工艺要求取1.8 s kmol RD L /0275.00153.08.1=?==

s kmol D R V /0428.00153.08.2)1(=?=+= s

kmol qF L L /0885.0`=+=

s kmol F q V V /0358.0)1(`=-+=

精馏段方程:

3148.0643.011+=+++=

x y R X

X R R y D

提留段方程:

0002.047.2`

``-=-=

x y X V W x V L y W

2.3.2理论塔板计算

58.3lg )11lg(

1min =-?-=

αF

F

D D x x x x N 精馏

29.3lg )11lg(

2

min =-?-=

αW

W F F

x x x x N 提馏

87.6min =全塔N

根据吉利兰关联图,已知

29.01

min

≈+-R R R 对应41.01min =+-T T

N N N 33.12=T N 取13块板,精馏段7块,提留段5块(塔釜一块)

2.3.3实际塔板计算

39.0lg 616.0-17.01==μT E 精馏

47.0lg 616.0-17.01==μT E 提馏

实际塔板数:2947

.05

39.07=+=q N 全塔效率:%3.4129

12===

q T T N N E

2.4操作压力的计算

取每块板的压降为0.7KPa

三、塔体的工艺尺寸计算

3.1塔径的初步计算 3.1.1气液相体积流量计算

(1)精馏段:

质量流量:s kg L M L L /931.00275.084.3311=*== s kg L M V V /049.10275.014.3811=*== 体积流量:s m L L L S /0012.053

.803931

.031

1

1==

=

ρ

s m V V V s /795.032

.1049

.131

1

1==

=ρ (2)提留段:

质量流量:s kg L M L L /903.10885.05.21`22=*== s kg L M V V /770.00358.014.38`22=*== 体积流量:s m L L L S /0022.065

.855903

.132

2

2==

=

ρ

s m V V V s /895.086

.0770

.032

2

2==

=

ρ 3.1.2塔径计算

板式塔的塔径依据流量公式计算,即

D = 式中 D —— 塔径m ;

V s —— 塔内气体流量m 3/s ; u —— 空塔气速m/s 。

由上式可见,计算塔径的关键是计算空塔气速u 。设计中,空塔气速u 的计算方法是,先求得最大空塔气速u max ,然后根据设计经验,乘以一定的安全系数,即

max (0.6~0.8)u u =

最大空塔气速u max 可根据悬浮液滴沉降原理导出,其结果为

max L V

V

u C

ρρρ-= 式中 u max ——允许空塔气速,m/s ;

ρV ,ρL ——分别为气相和液相的密度,kg/m 3 ;

C ——气体负荷系数,m/s ,对于浮阀塔和泡罩塔可用图4-1确定;

图中的气体负荷参数C 20仅适用于液体的表面张力为0.02N/m ,若液体的表面张力为6N/m ,则其气体负荷系数C 可用下式求得:

2.020)02

.0(σ

C C =

所以,初步估算塔径为: u

V

D 785.0/=

其中,u ——适宜的空塔速度,m/s 。

由于精馏段、提馏段的汽液流量不同,故两段中的气体速度和塔径也可能不同。在初算塔径中,精馏段的塔径可按塔顶第一块板上物料的有关物理参数计算,提馏段的塔径可按釜中物料的有关物理参数计算。也可分别按精馏段、提馏段的平均物理参数计算。

图中 HT ——塔板间距,m ; hL ——板上液层高度,m ;V ,L ——分别为塔内气、液两相体积流量,m3/s ; ρV ,ρL ——分别为塔内气、液相的密度,kg/m3

0372.032

.153.803795.00012.01111=*=*V L S S V L ρρ 取m H T 4.0= m h L 06.0= m h H L T 34.0=- 查图得075.020=C

083.0)20

15.34(

075.0)20

(

2

.02.01

20=?==σC C 05.232

.132

.153.803083.0max =-*

=u m/s

取安全系数0.7则空塔气速s m u u /44.17.0max 1== D=0.84m

0775.086

.065

.855895.00022.02222=*=*V L S S V L ρρ 取m H T 4.0= m h L 06.0= m h H L T 34.0=- 查图得075.020=C

092.0)20

12.54(

075.0)20

(

2

.02.02

20=?==σC C s m u /90.286

.086

.065.855092.0`max =-*

=

取安全系数0.7则空塔气速s m u u /03.2`7.0max 2== D=0.75m

精馏段与提留段相差不大,根据JB-1153-73圆整塔径取D=1m

22785.04

m D A T ==

π

实际气速:精馏段m u 795.0=,提留段m u 895.0`=

3.2塔体有效高度的计算

m

H N Z T P 2.114.0*)129()1(=-=-=

3.3精馏塔的塔高计算

实际塔板数:块29=P N

选取每9层塔建立一个人孔,故人孔数为3个 设人孔处的板间距;m H P 6.0= 进料段高度:m H F 5.0= 取m H H T D 72.08.1== 取塔底停留时间为5min

m

H B 44.11*785.00022

.0*60*52

==

B F P T P D H H H S H S N H H ++?+?--+=)2(

14.06m H =

3.4溢流装置 3.

4.1堰长

m D l w 65.065.0==

3.4.2溢流堰高度

ow L w h h h -=选用平直堰

3

2

}3600{100084.2w

s ow l L E h =

E 近似取1计算得

精馏段:m h ow 012.0=

m h h h ow L w 048.0=-=

提留段:m

h ow 017.0`=

m h h h ow L w 043.0```=-=

3.4.3弓形降液管宽度和截面积

因为

65.0=D

l w

查弓形降液管参数图得 072.0=T

f A A

12.0=D

W d

故2057.0072.0m A A T f ==

m D W d 12.012.0==

根据h

T

f L H A 3600=

θ验算降液管内停留时间

精馏段:s s 519>=θ 提留段:s s 536.10`>=θ 故设计合理。

3.4.4降液管底隙高度0h (1)精馏段

取降液管底隙的流速s m u /08.00= 则m u l L h w s 023.00

1

0==

(2)提留段

取降液管底隙的流速s m u /08.0`0= 则m u l L h w s 042.0``0

2

0==

3.5塔板布置 3.5.1塔板的分块

故分3块

3.5.2边缘区宽度的确定

取m W W s s 07.0`== m W c 035.0=

3.5.3开孔区面积计算

开孔区面积a A 按下式计算,即

)sin 180(212

2

2r

x r x r x A a -+

-=π 其中m W W D x s d 31.0)07.012.0(21

)(2=+-=+-=

m W D r c 47.0035.02

1

2=-=-=

故212

2

2

54.0)sin 180(2m r

x

r x r x A a =+

-=-π 3.5.4筛孔计算及其排列

由于乙醇和水物系无腐蚀性,可选用mm 3=δ碳钢板,取筛孔直径mm d 50=筛孔按正三角形排列,取孔中心距t 为

mm d t 1530==

筛孔数目n 为

个2772155.12

==

t A n a

开孔率为

%1.10)(

907.02

0==t

d φ 气体通过阀孔的速度 精馏段:s m A V u s /58.1454

.0*101.0795

.0010===

提留段:s m A V u s /41.1654

.0*101.0895

.0`010===

四、筛板的流体力学验算

4.1塔板压降 4.1.1干板阻力

)()(

051.0200L v

c c u h ρρ=

67.13

5

==

δ

d 查图772.00=c 故

精馏段: m h c 030.0)53.80332

.1()772.058.14(

051.02== 提留段:m h c 023.0)65

.85586

.0()772.041.16(051.02==

4.1.2气体通过液层的阻力

L l h h β=

f

T s

a A A V u -=

v a u F ρ=0

精馏段:s m u a /09.1=

)/(25.15

.05.00m s kg F ?=

查充气系数关联图可知

62.0=β

m h h h h ow l L l 044.0)(=+==ββ

提留段:s

m u a /23.1=

)/(14.15

.05.00m s kg F ?=

查充气系数关联图可知

64.0=β

m h h h h ow l L l 049.0)(=+==ββ

4.1.3液体表面张力的阻力(很小可以忽略不计) 4.1.4气体通过每层板的压降

l c p h h h += g h P L p ρ=?

精馏段:m h h h l c p 074.0=+= Pa g h P L p 583==?ρ 提留段:m h h h l c p 072.0=+= Pa g h P L p 604==?ρ

4.2液沫夹带

2.36

)(

107.5f

T a

L

V h H u e -?=

m h h L f 15.05.2==

精馏段:气液气液kg kg kg kg h H u e f

T a

V /1.0/029.0)(

107.52.31

6

<=-?=

提留段:气液气液kg kg kg kg h H u e f

T a

V /1.0/017.0)(

107.52.32

6

<=-?=

故设计符合要求

化工原理乙醇水_课程设计汇总

化工原理课程设计 分离乙醇-水混合物精馏塔设 计 学院:化学工程学院 专业: 学号: 姓名: 指导教师: 时间: 2012年6月13日星期三 化工原理课程设计任务书 一、设计题目:分离乙醇-水混合物精馏塔设计 二、原始数据: a)原料液组成:乙醇 20 % 产品中:乙醇含量≥94% 残液中≤4% b)生产能力:6万吨/年 c)操作条件 进料状态:自定操作压力:自定 加热蒸汽压力:自定冷却水温度:自定 三、设计说明书内容: a)概述 b)流程的确定与说明 c)塔板数的计算(板式塔);或填料层高度计算(填料塔) d) 塔径的计算 e)1)塔板结构计算; a 塔板结构尺寸的确定; b塔板的流体力学验算;c塔板的负荷性能图。 2)填料塔流体力学计算;

a 压力降; b 喷淋密度计算 f )其它 (1) 热量衡算—冷却水与加热蒸汽消耗量的计算 (2) 冷凝器与再沸器传热面的计算与选型(板式塔) (3) 除沫器设计 g )料液泵的选型 h )计算结果一览表 第一章 课程设计报告内容 一、精馏流程的确定 乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品经冷却器冷却后送至贮槽。塔釜采用间接蒸汽向沸热器供热,塔底产品经冷却后送入贮槽。 二、塔的物料衡算 (一) 料液及塔顶、塔底产品含乙醇摩尔分数 (二) 平均摩尔质量 (三) 物料衡算 总物料衡算 F W D =+ 易挥发组分物料衡算 F x W x D x F w D =+ 联立以上三式得 三、塔板数的确定 (一) 理论塔板数T N 的求取 根据乙醇、水的气液平衡数据作y-x 图 乙醇—水气液平衡数据

专科分离工程试卷答案样本

专科《分离工程》 一、 ( 共46题,共150分) 1. 按所依据的物理化学原理, 传质分离过程能够分为________分离过程和 ________分离过程, 常见的平衡分离过程有________、 ________、 ________。( 5分) .标准答案: 1. 平衡;2. 速率;3. 精馏;4. 吸收;5. 闪蒸; 2. 表征表征能量被利用的程度有两类效率: ____________和____________。要降低分离过程的能耗, 提高其____________效率, 就应该采取措施减小过程的有效能损失。有效能损失是由____________引起的。 ( 4分) .标准答案: 1. 热效率;2. 热力学效率;3. 热力学;4. 过程的不可逆性; 3. 泡露点计算是分离过程设计中最基本的汽液平衡计算, 按规定哪些变量和计算哪些变量可分为如下四种类型: ________________________、 ________________________、 ________________________和 ________________________。 ( 4分) .标准答案: 1. 泡点温度计算;2. 泡点压力计算;3. 露点温度计算;4. 泡点压力计算; 4. 影响气液传质设备处理能力的主要因素有________、 ________、 ________和________。 ( 4分) .标准答案: 1. 液泛;2. 雾沫夹带;3. 压力降;4. 停留时间; 5. 多组分多级分离过程严格计算中围绕非平衡级所建立的MERQ方程分别是指 ________________________、 ________________________、 ________________________和________________________。 ( 4分) .标准答案: 1. 物料衡算方程;2. 能量衡算方程;3. 传递方程;4. 界面相平衡方程; 6. 常见的精馏过程节能途径有________________________________________、 ________________________________________、 ________________________________________。 ( 3分) .标准答案: 1. 单个精馏塔的调优节能;2. 精馏系统的综合优化节能;3. 精馏系统与整个工艺过程的综合优化节能; 7. 理想气体和理想溶液混合物传热速率________最小分离功, 非理想溶液混和物传热速率________最小分离功, 最小分离功的大小标志着________。 ( 3分) .标准答案: 1. 等于;2. 不等于;3. 物质分离的难易程度; 8. 假设相对挥发度与组成关系不大且不同组分的塔板效率相同, 经过对若干不同组分系统的精馏计算结果分析研究发现, ( )下组分的分配比接近于实际操作回流比下的组分分配比。 ( 2分) A.高回流比 B.低回流比 C.全回流 D.最小回流比 .标准答案: C 9. 在多组分混合物的吸收过程中, 不同组分和不同塔段的吸收程度是不同的。( )一般主要在靠近塔顶的几级被吸收, 在其余级变化很小。 ( 2分) A.轻关键组分 B.重关键组分 C.轻非关键组分 D.重非关键组分 .标准答案: C 10. 多组分精馏与多组分吸收过程均不能对所有组分规定分离要求, 而只能对分离操作中起关键作用的组分即关键组分规定分离要求, 其中多组分精馏过程最多只能有( )个关键组分, 多组分吸收过程最多只能有( )个关键组分。 ( 2分)

化工原理课程设计报告

课程设计任务书 设计题目:水冷却环己酮换热器的设计 一、设计条件 1、处理能力53万吨/年 2、设备型式列管式换热器 3、操作条件 a.环己酮:入口温度120℃,出口温度为43℃ b.冷却介质:自来水,入口温度20℃,出口温度40℃ c.允许压强降:不大于1×105Pa d.每年按330天计,每天24小时连续运行 4、设计项目 a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 b.换热器的工艺计算:确定换热器的传热面积。 c.换热器的主要结构尺寸设计。 d.主要辅助设备选型。 e.绘制换热器总装配图。 二、设计说明书的内容 1、目录; 2、设计题目及原始数据(任务书); 3、论述换热器总体结构(换热器型式、主要结构)的选择; 4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直 径等); 5、设计结果概要(主要设备尺寸、衡算结果等); 6、主体设备设计计算及说明;

目录 1. 前言 (1) 1.换热器简介 (1) 2. 列管式换热器分类: (2) 2. 设计方案简介 (2) 2.1换热器的选择 (2) 2.2流程的选择 (2) 2.3物性数据 (2) 3. 工艺计算 (3) 3.1试算 (3) 3.1.1计算传热量 (3) 3.1.2计算冷却水流量 (3) 3.1.3计算两流体的平均传热温度 (3) 3.1.4计算P、R值 (3) 3.1.5假设K值 (4) 3.1.6估算面积 (5) 3.1.7拟选管的规格、估算管内流速 (5) 3.1.8计算单程管数 (5) 3.1.9计算总管数 (5) 3.1.10管子的排列 (6) 3.1.11折流板 (6) 3.2核算传热系数 (6) 3.2.1计算管程传热系数 (6) 3.2.2计算壳程传热系数 (7) 3.2.3污垢热阻 (7) 3.2.4计算总传热系数 (7) 3.3核算传热面积 (7) 3.3.1计算估计传热面积 (7) 3.3.2计算实际传热面积 (8) 3.4压降计算 (8) 3.4.1计算管程压降 (8) 3.4.2计算壳程压降 (8) 3.5附件 (9) 3.5.1接管 (9) 3.5.2拉杆 (9) 4. 换热器结果一览总表 (10) 5. 设计结果概要 (11) 1.结果 (11) 6. 致谢 (12)

化工分离工程复习题及答案..

化工分离过程试题库(复习重点) 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(汽液传质分离)过程的基础。相平衡的条件是(所有相中温度压力相等,每一组分的化学位相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有(轻)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。 10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。 12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。 15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis 提出了等价于化学位的物理量(逸度)。 18、设计变量与独立量之间的关系可用下式来表示( Ni=Nv-Nc即设计变量数=独立变量数-约束关系 ) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越高对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(V = SL)。 23、精馏有(两个)个关键组分,这是由于(双向传质)的缘故。 24、精馏过程的不可逆性表现在三个方面,即(通过一定压力梯度的动量传递),(通过一定温度梯度的热量传递或不同温度物流的直接混合)和(通过一定浓度梯度的质量传递或者不同化学位物流的直接混合)。 25、通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的(理论板数),为表示塔实际传质效率的大小,则用(级效率)加以考虑。 27、常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。 28、恒沸剂与组分形成最低温度的恒沸物时,恒沸剂从塔(顶)出来。

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计(乙醇_水溶液连续精馏塔优化设计)

专业资料 化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计

目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7.参考文献 (23) 8.课程设计心得 (23)

精馏塔优化设计任务书 一、设计题目 乙醇—水溶液连续精馏塔优化设计 二、设计条件 1.处理量: 16000 (吨/年) 2.料液浓度: 40 (wt%) 3.产品浓度: 92 (wt%) 4.易挥发组分回收率: 99.99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强:1.03 atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务 a) 流程的确定与说明; b) 塔板和塔径计算; c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计 (某大学化学化工学院) 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。 关键词:精馏塔,浮阀塔,精馏塔的附属设备。 (Department of Chemistry,University of South China,Hengyang 421001) Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme. Keywords: rectification column, valve tower, accessory equipment of the rectification column.

化工分离工程考试答案

2013化工分离过程期中考试试题答案 一、填空题(每空1分,共20分) 1. 传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 2. 分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 3. 汽液相平衡是处理(传质分离)过程的基础,相平衡的条件是(各相温度压力相等, 各组分在每一相中的化学位相等)。 4. 当混合物在一定的温度、压力下,进料组成 乙和相平衡常数K 满足 ( K i Z 1, z K i 1 )条件即处于两相区,可通过(物料平衡和相平衡)计算 求出其平衡汽液相组成。 5. 精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 6. 多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 7. 最低恒沸物,压力降低使恒沸组成中汽化潜热(小)的组分增加。 8. 萃取精馏中塔顶产品不合格时,经常采取(增加萃取剂用量)或(减小进料量)的措 施使 产品达到分离要求。 9. 吸收有(1个)关键组分,这是因为(单向传质)的缘故。 10. 吸收剂的再生常采用的是(用蒸汽或惰性气体的蒸出塔)、(用再沸器的蒸出塔)和(用 蒸馏塔)。 二、单项选择题(每小题1分,共10分) 1. 吸收属于(A ) A.平衡分离;B.速率分离;C.机械分离;D.膜分离。 C 2. 计算溶液泡点时,若 K i X i 1 0,则说明(C ) 1 A.温度偏低; B.正好泡点; C.温度偏高。 3. 如果体系的汽相为理想气体,液相为非理想溶液;则相平衡常数可以简化表示为(D ) 4. 汽液相平衡K 值越大,说明该组分越(A ) A.易挥发; B.难挥发; C.沸点高; D.蒸汽压小 5. 如果塔顶采用全凝器,计算塔顶第一级的温度可以利用方程( A.泡点方程; B.露点方程; C.闪蒸方程; D.相平衡方程。 6. 计算在一定温度下与已知液相组成成平衡的汽相组成和压力的问题是计算 (B )A. 泡点温度;B.泡点压力;C.等温闪蒸;D.露点压力。 7. 精馏中用HN 表示(C ) A.轻关键组分; B.重关键组分; C.重非关键组分; D.轻非关键组分。 8. 以下描述中,不属于萃取精馏中溶剂的作用的是( D ) A. K i L i V i B. K i P S C. K i D. K i ?R s i i

乙醇水精馏塔设计化工原理课程设计

题目:乙醇水精馏筛板塔设计 设计时间: 化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。

3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4) 1概述 (5) 1.1设计目的 (5) 1.2塔设备简介 (6) 2设计说明书 (7) 2.1流程简介 (7) 2.2工艺参数选择 (8) 3工艺计算 (8) 3.1物料衡算 (8) 3.2理论塔板数的计算 (8) 3.2.1查找各体系的汽液相平衡数据 (8) 如表3-1 (8) 3.2.2q线方程 (9) 3.2.3平衡线 (9) 3.2.4回流比 (10) 3.2.5操作线方程 (11) 3.2.6理论板数的计算 (11) 3.3实际塔板数的计算 (11) 3.3.1全塔效率ET (11) 3.3.2实际板数NE (12) 4塔的结构计算 (13)

化工原理课程设计报告样本

化工原理课程设计报告样本

《化工原理课程设计》报告 48000吨/年乙醇~水精馏装置设计 年级 专业 设计者姓名 设计单位 完成日期年月日 7

目录 一、概述 (4) 1.1 设计依据 (4) 1.2 技术来源 (4) 1.3 设计任务及要求 (5) 二:计算过程 (6) 1. 塔型选择 (6) 2. 操作条件的确定 (6) 2.1 操作压力 (6) 2.2 进料状态 (6) 2.3 加热方式 (7) 2.4 热能利用 (7) 3. 有关的工艺计算 (7) 3.1 最小回流比及操作回流比 的确定 (8) 3.2 塔顶产品产量、釜残液量及 7

加热蒸汽量的计算 (9) 3.3 全凝器冷凝介质的消耗量9 3.4 热能利用 (10) 3.5 理论塔板层数的确定 (10) 3.6 全塔效率的估算 (11) 3.7 实际塔板数P N (12) 4. 精馏塔主题尺寸的计算 (12) 4.1 精馏段与提馏段的体积流 量 (12) 4.1.1 精馏段 (12) 4.1.2 提馏段 (14) 4.2 塔径的计算 (15) 4.3 塔高的计算 (17) 5. 塔板结构尺寸的确定 (17) 5.1 塔板尺寸 (18) 5.2 弓形降液管 (18) 5.2.1 堰高 (18) 5.2.2 降液管底隙高度h019 7

5.2.3 进口堰高和受液盘 19 5.3 浮阀数目及排列 (19) 5.3.1 浮阀数目 (19) 5.3.2 排列 (20) 5.3.3 校核 (20) 6. 流体力学验算 (21) 6.1 气体通过浮阀塔板的压力 降(单板压降) h (21) p 6.1.1 干板阻力 h (21) c 6.1.2 板上充气液层阻力1h (21) 6.1.3 由表面张力引起的阻 (22) 力h 6.2 漏液验算 (22) 6.3 液泛验算 (22) 6.4 雾沫夹带验算 (23) 7. 操作性能负荷图 (23) 7.1 雾沫夹带上限线 (23) 7

化工分离工程试题答卷及参考答案

MESH方程。 一、填空(每空2分,共20分) 1. 如果设计中给定数值的物理量的数目等于 设计变量,设计才有结果。 2. 在最小回流比条件下,若只有重组分是非分 配组分,轻组分为分配组分,存在着两个 恒浓区,出现在精镏段和进料板 位置。 3. 在萃取精镏中,当原溶液非理想性不大时, 加入溶剂后,溶剂与组分1形成具有较强正 偏差的非理想溶液,与组分2形成 负偏差或理想溶液,可提高组分1对2的 相对挥发度。 4. 化学吸收中用增强因子表示化学反应对传质 速率的增强程度,增强因子E的定义是化学吸 收的液相分传质系数(k L)/无化学吸收的液相 分传质系数(k0L)。 5. 对普通的N级逆流装置进行变量分析,若组 分数为C个,建立的MESH方程在全塔有 NC+NC+2N+N=N(2C+3) 个。 η; 6. 热力学效率定义为= 实际的分离过程是不可逆的,所以热力学效 率必定于1。 7. 反渗透是利用反渗透膜选择性的只透过 溶剂的性质,对溶液施加压力,克服溶 剂的渗透压,是一种用来浓缩溶液的膜 分离过程。 二、推导(20分) 1. 由物料衡算,相平衡关系式推导图1单 级分离基本关系式。 ——相平衡常数; 式中: K i ψ——气相分 率(气体量/进料量)。 2. 精馏塔第j级进出物料如图1,建立

三、简答(每题5分,共25分) 1.什么叫相平衡相平衡常数的定义是什么 由混合物或溶液形成若干相,这些相保持物理平衡而共存状态。热力学上看物系的自由焓最小;动力学上看相间表观传递速率为零。 K i =y i /x i 。 2.关键组分的定义是什么;在精馏操作中, 一般关键组分与非关键组分在顶、釜的 分配情况如何 由设计者指定浓度或提出回收率的组分。 LK绝大多数在塔顶出现,在釜中量严格控制; HK绝大多数在塔釜出现,在顶中量严格控制; LNK全部或接近全部在塔顶出现; HNK全部或接近全部在塔釜出现。 3.在吸收过程中,塔中每级汽、液流量为 什么不能视为恒摩尔流 吸收为单相传质过程,吸收剂吸收了气体中的溶质而流量在下降过程中不断增加,气体的流量相应的减少,因此气液相流量在塔内都不能视为恒定。 4.在精馏塔中设中间换热器为什么会提高 热力学效率 在中间再沸器所加入的热量其温度低于塔 底加入热量的温度,在中间冷凝器所引出的 热量其温度高于塔顶引出热量的温度,相对 于无中间换热器的精馏塔传热温差小,热力 学效率高。 5.反应精馏的主要优点有那些 (1)产物一旦生成立即移出反应区;(2)反应区反应物浓度高,生产能力大;(3)反应热可由精馏过程利用;(4)节省设备投资费用;(5)对于难分离物系通过反应分离成较纯产品。 四、计算(1、2题10分,3题15分,共35分) 1. 将含苯(mol分数)的苯(1)—甲苯(2)混合物在下绝热闪蒸,若闪蒸温度为94℃,用计算结果说明该温度能否满足闪蒸要求 已知:94℃时P 1 0= P 2 0= 2. 已知甲醇(1)和醋酸甲酯(2)在常压、54℃ 下形成共沸物,共沸组成X 2 =(mol分率), 在此条件下:kPa P kPa p98 . 65 , 24 . 9002 1 = =求 该系统的活度系数。 3. 气体混合物含乙烷、丙烷、丁烷(均为摩尔分数),用不挥发的烃类进行吸收,已知吸收后丙烷的吸收率为81%,取丙烷在全塔的平均吸收因子A=,求所需理论板数;若其它条件不变,提高平均液汽比到原来的2倍,此时丙烷的吸 收率可达到多少。

化工原理课程设计乙醇水精馏塔设计

化工原理课程设计 题目:乙醇水精馏筛板塔设计 设计时间:2010、12、20-2011、1、6

化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。 3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2 图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4)

1概述 (5) 1.1 设计目的 (5) 1.2 塔设备简介 (6) 2设计说明书 (7) 2.1 流程简介 (7) 2.2 工艺参数选择 (8) 3 工艺计算 (9) 3.1物料衡算 (9) 3.2理论塔板数的计算 (10) 3.2.1 查找各体系的汽液相平衡数据 (10) 如表3-1 (10) 3.2.2 q线方程 (9) 3.2.3 平衡线 (11) 3.2.4 回流比 (12) 3.2.5 操作线方程 (12) 3.2.6 理论板数的计算 (12) 3.3 实际塔板数的计算 (13) 3.3.1全塔效率ET (13) 3.3.2 实际板数NE (14) 4塔的结构计算 (15) 4.1混合组分的平均物性参数的计算 (15) 4.1.1平均分子量的计算 (15) 4.1.2 平均密度的计算 (16) 4.2塔高的计算 (17) 4.3塔径的计算 (17) 4.3.1 初步计算塔径 (17) 4.3.2 塔径的圆整 (18) 4.4塔板结构参数的确定 (19) 4.4.1溢流装置的设计 (19) 4.4.2塔盘布置(如图4-4) (20) 4.4.3 筛孔数及排列并计算开孔率 (21) 4.4.4 筛口气速和筛孔数的计算 (21) 5 精馏塔的流体力学性能验算 (22) 5.1 分别核算精馏段、提留段是否能通过流体力学验算 (22) 5.1.1液沫夹带校核 (22) 5.2.2塔板阻力校核 (23) 5.2.3溢流液泛条件的校核 (25) 5.2.4 液体在降液管内停留时间的校核 (26) 5.2.5 漏液限校核 (26) 5.2 分别作精馏段、提留段负荷性能图 (26) 5.3 塔结构数据汇总 (29) 6 塔的总体结构 (30) 7 辅助设备的选择 (31) 7.1塔顶冷凝器的选择 (31) 7.2塔底再沸器的选择 (32) 7.3管道设计与选择 (33)

化工原理课程设计报告(换热器)

《化工原理课程设计任务书》(1) 一、设计题目: 设计一台换热器 二、操作条件: 1.苯:入口温度80℃,出口温度40℃。 2.冷却介质:循环水,入口温度35℃。 3.允许压强降:不大于50kPa。 4.每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 1. 99000吨/年苯 五、设计要求: 1.选定管壳式换热器的种类和工艺流程。 2.管壳式换热器的工艺计算和主要工艺尺寸的设计。 3.设计结果概要或设计结果一览表。 4.设备简图。(要求按比例画出主要结构及尺寸) 5.对本设计的评述及有关问题的讨论。 一、选定管壳式换热器的种类和工艺流程 1.选定管壳式换热器的种类 管壳式换热器是目前化工生产中应用最广泛的传热设备。与其他种类的换热器相比,其主要优点是:单位体积具有的传热面积较大以及传热效果较好;此外,结构简单,制造的材料范围较广,操作弹性也较大等。因此在高压高温和大型装置上多采用管壳式换热器。 管壳式换热器中,由于两流体的温度不同,管束和壳体的温度也不相同,因此他们的热膨胀程度也有差别。若两流体的温度差较大(50℃以上)时,就可能由于热应力而引起设备变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。根据热补偿方法的不同,管壳式换热器有下面几种形式。

(1)固定管板式换热器 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一些列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或是管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60-70℃和壳程流体压强不高的情况下。一般壳程压强超过0.6MPa时,补偿圈过厚,难以伸缩,失去温差补偿作用,就要考虑其他结构。其结果如下图所示: (2)浮头式换热器 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器称为浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不受壳体约束,因此当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点是结构复杂,造价高。其结构如下: (3) U型管换热器 这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。其结构如下图所示: (4)填料函式换热器 这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低廉。但壳程内介质有外漏的可能,壳程中不应处理一易挥发、易燃易爆和有毒的介质。其结构如下: 由设计书的要求进行分析: 一般来说,设计时冷却水两端温度差可取为5℃~10℃。缺水地区选用较大的温度差,水资源丰富地区选用较小的温度差。青海是“中华水塔”,水资源 相对丰富,故选择冷却水较小的温度差6℃,即冷却水的出口温度为31℃。T m -t m =80+4025+31 -=32 22 ℃<50℃,且允许压强降不大于50kPa,可选择固定管板式换 热器。 2.工艺流程图 主要说明:由于循环冷却水较易结垢,为便于水垢清洗,所以选定循环水走管程,苯走壳程。如图所示,苯经泵抽上来,经加水器加热后,再经管道从接管C进入换热器壳程;冷却水则由泵抽上来经管道从接管A进入换热器管程。两物质在换热器中进行换热,苯从80℃被冷却至40℃之后,由接管D流出;循环冷却水则从25℃变为31℃,由接管B流出。 二、管壳式换热器的工艺计算和主要工艺尺寸的设计 1.估算传热面积,初选换热器型号 (1)基本物理性质数据的查取

化工原理乙醇水课程设计汇总定稿版

化工原理乙醇水课程设 计汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

化工原理课程设计 分离乙醇-水混合物精馏塔设计 学院:化学工程学院 专业: 学号: 姓名: 指导教师: 时间: 2012年6月13日星期三 化工原理课程设计任务书 一、设计题目:分离乙醇-水混合物精馏塔设计 二、原始数据: a)原料液组成:乙醇 20 % 产品中:乙醇含量≥94% 残液中≤4% b)生产能力:6万吨/年 c)操作条件 进料状态:自定操作压力:自定

加热蒸汽压力:自定冷却水温度:自定 三、设计说明书内容: a)概述 b)流程的确定与说明 c)塔板数的计算(板式塔);或填料层高度计算(填料塔) d) 塔径的计算 e)1)塔板结构计算; a 塔板结构尺寸的确定; b塔板的流体力学验算;c塔板的负荷性能图。 2)填料塔流体力学计算; a 压力降; b 喷淋密度计算 f)其它 (1)热量衡算—冷却水与加热蒸汽消耗量的计算 (2)冷凝器与再沸器传热面的计算与选型(板式塔) (3)除沫器设计 g)料液泵的选型 h)计算结果一览表

第一章 课程设计报告内容 一、精馏流程的确定 乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品经冷却器冷却后送至贮槽。塔釜采用间接蒸汽向沸热器供热,塔底产品经冷却后送入贮槽。 二、塔的物料衡算 (一) 料液及塔顶、塔底产品含乙醇摩尔分数 (二) 平均摩尔质量 (三) 物料衡算 总物料衡算 F W D =+ 易挥发组分物料衡算 F x W x D x F w D =+ 联立以上三式得 三、塔板数的确定 (一) 理论塔板数T N 的求取 根据乙醇、水的气液平衡数据作y-x 图 乙醇—水气液平衡数据

化工分离工程考试答案

2013化工分离过程期中考试试题答案 一、填空题(每空1分,共20分) 1. 传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 2. 分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 3. 汽液相平衡是处理(传质分离)过程的基础,相平衡的条件是(各相温度压力相等,各组分在每一相中的化学位相等)。 4. 当混合物在一定的温度、压力下,进料组成z i 和相平衡常数K i 满足 ( 1,1>>∑∑i i i i K z z K )条件即处于两相区,可通过(物料平衡和相平衡)计算求出其平衡汽液相组成。 5. 精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 6. 多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 7. 最低恒沸物,压力降低使恒沸组成中汽化潜热(小)的组分增加。 8. 萃取精馏中塔顶产品不合格时,经常采取(增加萃取剂用量)或(减小进料量)的措施使产品达到分离要求。 9. 吸收有(1个)关键组分,这是因为(单向传质)的缘故。 10.吸收剂的再生常采用的是(用蒸汽或惰性气体的蒸出塔)、(用再沸器的蒸出塔)和(用蒸馏塔)。 二、单项选择题(每小题1分,共10分) 1. 吸收属于(A ) A.平衡分离;B.速率分离;C.机械分离;D.膜分离。 2. 计算溶液泡点时,若∑=>-C i i i X K 101,则说明(C ) A. 温度偏低; B. 正好泡点; C. 温度偏高。 3. 如果体系的汽相为理想气体,液相为非理想溶液;则相平衡常数可以简化表示为 ( D ) A. L i i V i K φφ= B. s i i P K P = C. $$L i i V i K φ φ= D. s i i i P K P γ= 4. 汽液相平衡K 值越大,说明该组分越( A ) A.易挥发; B.难挥发; C.沸点高; D.蒸汽压小。 5. 如果塔顶采用全凝器,计算塔顶第一级的温度可以利用方程( B ) A.泡点方程; B.露点方程; C. 闪蒸方程; D.相平衡方程。 6. 计算在一定温度下与已知液相组成成平衡的汽相组成和压力的问题是计算( B ) A.泡点温度; B.泡点压力; C.等温闪蒸; D.露点压力。 7. 精馏中用HNK 表示( C ) A. 轻关键组分; B. 重关键组分; C. 重非关键组分; D. 轻非关键组分。 8. 以下描述中,不属于萃取精馏中溶剂的作用的是( D )

天津大学化工原理课程设计

《化工原理》课程设计报告 真空蒸发制盐系统卤水分效预热器设计 学院天津大学化工学院 专业化学工程与工艺 班级 学号 姓名 指导教师

化工流体传热课程设计任务书 专业化学工程与工艺班级姓名学号(编号) (一)设计题目:真空蒸发制盐系统卤水分效预热器设计 (二)设计任务及条件 1、蒸发系统流程及有关条件见附图。 2、系统生产能力:40 万吨/年。 3、有效生产时间:300天/年。 4、设计内容:Ⅱ效预热器(组)第 3 台预热器的设计。 5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。 6、卤水为易结垢工质,卤水流速不得低于0.5m/s。 7、换热管直径选为Φ38×3mm。 (三)设计项目 1、由物料衡算确定卤水流量。 2、假设K计算传热面积。 3、确定预热器的台数及工艺结构尺寸。 4、核算总传热系数。 5、核算压降。 6、确定预热器附件。 7、设计评述。 (四)设计要求 1、根据设计任务要求编制详细设计说明书。 2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。

设计说明书的编制 按下列条目编制并装订:(统一采用A4纸,左装订) (1)标题页,参阅文献1附录一。 (2)设计任务书。 (3)目录。 (4)说明书正文 设计简介:设计背景,目的,意义。 由物料衡算确定卤水流量。 假设K计算传热面积。 确定预热器的台数及工艺结构尺寸。 核算总传热系数。 核算压降。 确定预热器附件。 设计结果概要或设计一览表。 设计评述。 (5)主要符号说明。 (6)参考文献。 (7)预热器设计条件图。 主要参考文献 1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 2002 2. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 2007 3. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 2001 4. 机械制图 自学内容: 参考文献1,第一章、第三章及附录一、三; 参考文献2,第五~七章; 参考文献3,第1、3、4、5、11部分。

化工原理课程设计乙醇和水

(一)设计题目: 试设计一座乙醇-水连续精馏塔提纯乙醇。进精馏塔的料液含乙醇 25% (质 量分数,下同),其余为水;产品的乙醇含量不得低于 94% ;残液中乙醇含量不 得高于0.1% ;要求年产量为17000吨/年。 (二)操作条件 塔顶压力4kPa (表压) 进料热状态自选 回流比自选 塔底加热蒸气压力 0.5Mpa (表压) 单板压降W 0.7kPa 1) 2) 3) 4) 5) (三)塔板类型 自选 (四)工作日 每年工作日为300天,每天24小时连续运行。 (五)设计内容 设计说明书的内容 精馏塔的物料衡算; 塔板数的确定; 精馏塔的工艺条件及有关物性数据的计算; 精馏塔的塔体工艺尺寸计算; 塔板主要工艺尺寸的计算; 塔板的流体力学验算; 塔板负荷性能图; 精馏塔接管尺寸计算; 对设计过程的评述和有关问题的讨论。 1、 1) 2) 3) 4) 5) 6) 7) 8) 9) 2、 1) 2) 设计图纸要求: 绘制生产工艺流程图(A2号图纸); 绘制 精馏塔设计条件图(A2号图纸)。

目录 1. 设计方案简介??… 1.1设计方案的确定…… 1.2操作条件和基础数据.......... 2. ................................ 精馏塔的物料衡算 2.1原料液及塔顶、塔底产品的摩尔分率.......... 2.2 原料液及塔顶、塔底产品的平均摩尔质量 2.3物料衡算....... 3. .......................... 塔板数的确定 3.1 理论板层数Nr的求取…… 3.1.1 求最小回流比及操作回流比 (2) 3.1.2 求精馏塔的气、液相负荷 (3) 3.1.3 求操作线方程 (3) 3.1.4 图解法求理论板层数 (3) 3.2 塔板效率的求取……… 4 3.3 实际板层数的求取……… 4. 精馏塔的工艺条件及有关物性数据的计算……… 4.1 操作压力计算……… 4.2 操作温度计算……… 4.3 平均摩尔质量的计算……… 4.4 平均密度的计算……… 4.4.1 气相平均密度计算……… 4.4.2 液相平均密度计算……… 4.5 液体平均表面张力计算 4.6 液体平均黏度计算…… 5. 精馏塔的塔体工艺尺寸计算

化工原理课程设计乙醇和水

设计任务书 (一) 设计题目: 试设计一座乙醇-水连续精馏塔提纯乙醇。进精馏塔的料液含乙醇25% (质量分数,下同),其余为水;产品的乙醇含量不得低于94% ;残液中乙醇含量不得高于0.1% ;要求年产量为17000吨/年。 (二) 操作条件 1) 塔顶压力4kPa(表压) 2) 进料热状态自选 3) 回流比自选 4) 塔底加热蒸气压力0.5Mpa(表压) 5) 单板压降≤0.7kPa。 (三) 塔板类型 自选 (四) 工作日 每年工作日为300天,每天24小时连续运行。 (五) 设计内容 1、设计说明书的内容 1) 精馏塔的物料衡算; 2) 塔板数的确定; 3) 精馏塔的工艺条件及有关物性数据的计算; 4) 精馏塔的塔体工艺尺寸计算; 5) 塔板主要工艺尺寸的计算; 6) 塔板的流体力学验算; 7) 塔板负荷性能图; 8) 精馏塔接管尺寸计算; 9) 对设计过程的评述和有关问题的讨论。 2、设计图纸要求: 1) 绘制生产工艺流程图(A2号图纸); 2) 绘制精馏塔设计条件图(A2号图纸)。

目录 1. 设计方案简介 (1) 1.1设计方案的确定 (1) 1.2操作条件和基础数据 (1) 2.精馏塔的物料衡算 (1) 2.1 原料液及塔顶、塔底产品的摩尔分率 (1) 2.2原料液及塔顶、塔底产品的平均摩尔质量 (1) 2.3物料衡算 (2) 3.塔板数的确定 (2) 3.1理论板层数N T的求取 (2) 3.1.1 求最小回流比及操作回流比 (2) 3.1.2 求精馏塔的气、液相负荷 (3) 3.1.3 求操作线方程 (3) 3.1.4 图解法求理论板层数 (3) 3.2 塔板效率的求取 (4) 3.3 实际板层数的求取 (5) 4.精馏塔的工艺条件及有关物性数据的计算 (5) 4.1操作压力计算 (5) 4.2 操作温度计算 (5) 4.3 平均摩尔质量的计算 (5) 4.4 平均密度的计算 (6) 4.4.1 气相平均密度计算 (6) 4.4.2 液相平均密度计算 (6) 4.5液体平均表面张力计算 (7) 4.6液体平均黏度计算 (7) 5.精馏塔的塔体工艺尺寸计算 (8) 5.1塔径的计算 (8)

自考化工分离工程复习题

《分离工程》复习 一、填空题 1. 请在下列选项中选择: 超滤属于B 、D过程;沉降属于 C ;共沸精馏属于A、B过程。 A. 平衡分离 B. 传质分离 C. 机械分离 D. 速率分离 2. 膜分离的推动力可以是、或。压力差、浓度差或电位差 3. 宽沸程混合物闪蒸的热衡算更主要地取决于,因此将热衡算放在循环中。温度,外层5. 推导Underwood公式所用假设是:1);2)。塔内气相和液相均为恒摩尔流率 6. 根据右图中恒浓区(阴影部分)的位置, HNK为,LNK为。 非分配组分,分配组分 7. 汽相为理想气体,液相为非理想溶液时, (第6题) 活度系数法计算相平衡常数的简化形式是。 K i=γi P i s/P 8. 液液平衡的分离因子又称为。相对选择性 9. MESH方程分别指;;;。 M-物料平衡方程;E-相平衡方程;S-摩尔分率加和式;H-焓平衡方程(热量平衡) 11.分离过程是将分成的两种或几种产品的操作。混合物组成互不相同 12.平衡分离过程是借助,使均相混合物系统变成,再以混合物中各组分在处于 的两相中为依据而实现分离。分离媒介,两相系统,相平衡,不等同的分配 13.传质分离过程用于各种混合物的分离,其特点是有发生,依据的不同,传质分离过程又分为过程和过程。 均相,质量传递现象,物理化学原理,平衡分离,速率分离。 14.活度系数的基准态是指活度系数等于1的状态。 15.从动力学上讲,相平衡是指相间为零的状态。 相平衡指的是混合物或溶液形成若干相,这些相保持着物理平衡而共存的状态。从热力学上看,整个物系的自由焓处于最小的状态。从动力学来看,相间表观传递速率为零。

相关文档
最新文档