龙城区一中2018-2019学年上学期高二数学12月月考试题含解析

合集下载

龙城区高中2018-2019学年上学期高二数学12月月考试题含解析

龙城区高中2018-2019学年上学期高二数学12月月考试题含解析

龙城区高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =2. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 3. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a4. 已知,则f{f[f (﹣2)]}的值为( ) A .0B .2C .4D .85. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣6. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④7. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞ 8. 在△ABC 中,AB 边上的中线CO=2,若动点P满足=(sin 2θ)+(cos 2θ)(θ∈R),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .09. 设0<a <b 且a+b=1,则下列四数中最大的是( ) A .a 2+b 2 B .2ab C .aD.10.若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()32y f x x =-+的零点个数为( )A .1B .2C .3D .4 11.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)12.如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )二、填空题13.如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是.14.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是.15.用描述法表示图中阴影部分的点(含边界)的坐标的集合为.16.如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成.17.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .18.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________. 三、解答题19.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]20.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面积.21.已知直线l 1:(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系,圆C 1:ρ2﹣2ρcos θ﹣4ρsin θ+6=0.(1)求圆C 1的直角坐标方程,直线l 1的极坐标方程; (2)设l 1与C 1的交点为M ,N ,求△C 1MN 的面积.22.(本小题满分12分)已知过抛物线2:2(0)C y px p =>的焦点,斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且92AB =. (I )求该抛物线C 的方程;(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.23.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.24.已知f(x)是定义在[﹣1,1]上的奇函数,f(1)=1,且若∀a、b∈[﹣1,1],a+b≠0,恒有>0,(1)证明:函数f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x∈[﹣1,1]及∀a∈[﹣1,1],不等式f(x)≤m2﹣2am+1恒成立,求实数m的取值范围.龙城区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。

龙城区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

龙城区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

龙城区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A.i≥7?B.i>15?C.i≥15?D.i>31?2.如图,空间四边形OABC中,,,,点M在OA上,且,点N为BC中点,则等于()A.B.C.D.3.抛物线y=x2的焦点坐标为()A.(0,)B.(,0)C.(0,4)D.(0,2)4.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()A.﹣16B.14C.28D.305.已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,]C.(0,)D.[,1)6. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .67. 已知全集,,,则(){}1,2,3,4,5,6,7U ={}2,4,6A ={}1,3,5,7B =()U A B = ðA .B .C .D .{}2,4,6{}1,3,5{}2,4,5{}2,58. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( )A .一定相离B .一定相切C .相交且一定不过圆心D .相交且可能过圆心9. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .13 10.已知,则f{f[f (﹣2)]}的值为( )A .0B .2C .4D .811.过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=012.在中,,那么一定是( )ABC ∆22tan sin tan sin A B B A =AA ABC ∆A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形二、填空题13.多面体的三视图如图所示,则该多面体体积为(单位cm ) .14.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .15.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)16.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是 .17.直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为 .18.i是虚数单位,化简:= .三、解答题19.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]20.如图,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起至△ACP 位置,并使平面PAC ⊥平面ABC .(Ⅰ)求证:AC ⊥PB ;(Ⅱ)在菱形ABCD 中,若∠ABC=60°,求直线AB 与平面PBC 所成角的正弦值;(Ⅲ)求四面体PABC 体积的最大值. 21.【淮安市淮海中学2018届高三上第一次调研】已知函数.()133x x af x b+-+=+(1)当时,求满足的的取值;1a b ==()3xf x =x (2)若函数是定义在上的奇函数()f x R ①存在,不等式有解,求的取值范围;t R ∈()()2222f t t f t k -<-k ②若函数满足,若对任意,不等式恒成立,()g x ()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦x R ∈()()211g x m g x ≥⋅-求实数的最大值.m22.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.23.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.24.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<a n<1.龙城区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.2.【答案】B【解析】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.3.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.4.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 5.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.6.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.7.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.8.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C9.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题. 10.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f (0)=2即f (f (﹣2))=f (0)=2∵2>0∴f (2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4故选C . 11.【答案】A【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x ﹣2y+7=0故选A .【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣2y+c=0. 12.【答案】D 【解析】试题分析:在中,,化简得,解得ABC ∆22tan sin tan sin A B B A =A A 22sin sin sin sin cos cos A BB A A B=A ,即,所以或,即sin sin sin cos sin cos cos cos B AA AB B A B=⇒=sin 2sin 2A B =22A B =22A B π=-A B =或,所以三角形为等腰三角形或直角三角形,故选D .2A B π+=考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试sin 2sin 2A B =A B =2A B π+=题的一个难点,属于中档试题.二、填空题13.【答案】 cm 3 .【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.14.【答案】:.【解析】解:∵•=cosα﹣sinα=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.15.【答案】 3.3 【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.设BC=x,则根据题意=,AB=x,在AE=AB﹣BE=x﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题. 16.【答案】 [4,16] .【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.17.【答案】 .【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.18.【答案】 ﹣1+2i .【解析】解:=故答案为:﹣1+2i.三、解答题19.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。

龙城区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

龙城区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

龙城区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A.i≥7?B.i>15?C.i≥15?D.i>31?2.如图,空间四边形OABC中,,,,点M在OA上,且,点N为BC中点,则等于()A.B. C.D.3.抛物线y=x2的焦点坐标为()A.(0,)B.(,0)C.(0,4) D.(0,2)4.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()A.﹣16 B.14 C.28 D.305.已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,] C.(0,)D.[,1)6. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .67. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U AB =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,5 8. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( )A .一定相离B .一定相切C .相交且一定不过圆心D .相交且可能过圆心9. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .1310.已知,则f{f[f (﹣2)]}的值为( ) A .0B .2C .4D .811.过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=012.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形二、填空题13.多面体的三视图如图所示,则该多面体体积为(单位cm ) .14.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .15.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米.(太阳光线可看作为平行光线)16.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是.17.直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为.18.i是虚数单位,化简:=.三、解答题19.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]20.如图,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起至△ACP 位置,并使平面PAC ⊥平面ABC .(Ⅰ)求证:AC ⊥PB ;(Ⅱ)在菱形ABCD 中,若∠ABC=60°,求直线AB 与平面PBC 所成角的正弦值; (Ⅲ)求四面体PABC 体积的最大值.21.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.22.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.23.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.24.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<a n<1.龙城区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.2.【答案】B【解析】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.3.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.4.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.5.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.6.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.7.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.8.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C9.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.10.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4 故选C .11.【答案】A 【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则c=7∴x ﹣2y+7=0 故选A . 【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣2y+c=0.12.【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题.二、填空题13.【答案】cm 3 .【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.14.【答案】:.【解析】解:∵•=cosα﹣sinα=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.15.【答案】 3.3【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.设BC=x,则根据题意=,AB=x,在AE=AB﹣BE=x﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.16.【答案】[4,16].【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.17.【答案】.【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.18.【答案】﹣1+2i.【解析】解:=故答案为:﹣1+2i.三、解答题19.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。

2018-2019学年上学期高二数学12月月考试题含解析(576)

2018-2019学年上学期高二数学12月月考试题含解析(576)

左云县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知等比数列{a n }的公比为正数,且a 4•a 8=2a 52,a 2=1,则a 1=( ) A.B .2C.D.2. 已知数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .1213. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)4. 定义运算:,,a a ba b b a b ≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A.22⎡-⎢⎣⎦B .[]1,1- C.2⎤⎥⎣⎦ D.1,2⎡-⎢⎣⎦5. 已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点6. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .7. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前10项和为( ) A .89B .76C .77D .358.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为()A.24B.80C.64D.2409.下列计算正确的是()A、2133x x x÷=B、4554()x x=C、4554x x x=D、44550x x-=10.已知数列{a n}是等比数列前n项和是S n,若a2=2,a3=﹣4,则S5等于()A.8 B.﹣8 C.11 D.﹣1111.阅读下面的程序框图,则输出的S=()A.14 B.20 C.30 D.5512.下列说法中正确的是()A.三点确定一个平面B.两条直线确定一个平面C.两两相交的三条直线一定在同一平面内D.过同一点的三条直线不一定在同一平面内二、填空题13.若函数y=ln(﹣2x)为奇函数,则a=.14.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为.16.等比数列{a n}的公比q=﹣,a6=1,则S6=.17.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.18.17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.三、解答题19.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.(1)证明:平面AED⊥平面BCDE;(2)求二面角E﹣AC﹣B的余弦值.20.(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.(1)求0x =,1y =,2z =的概率;(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.21.已知=(sinx ,cosx ),=(sinx ,sinx ),设函数f (x )=﹣.(1)写出函数f (x )的周期,并求函数f (x )的单调递增区间;(2)求f (x )在区间[π,]上的最大值和最小值.22.设定义在(0,+∞)上的函数f (x )=ax++b (a >0)(Ⅰ)求f (x )的最小值;(Ⅱ)若曲线y=f (x )在点(1,f (1))处的切线方程为y=,求a ,b 的值.23.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n na a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)24.已知定义域为R 的函数f (x )=是奇函数.(Ⅰ)求b 的值;(Ⅱ)判断函数f (x )的单调性;(Ⅲ)若对任意的t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围.左云县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:设等比数列{a n }的公比为q ,则q >0,∵a 4•a 8=2a 52,∴a 62=2a 52, ∴q 2=2,∴q=, ∵a 2=1,∴a 1==.故选:D2. 【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =.1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为11111)(11)52222n ++++==,∴120n =,选C .3. 【答案】B【解析】解:∵M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢, 则k ≥﹣1. ∴k 的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.4. 【答案】D 【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.5.【答案】D【解析】试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.考点:平面的基本性质及推论.6.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。

龙城区第二中学校2018-2019学年上学期高二数学12月月考试题含解析

龙城区第二中学校2018-2019学年上学期高二数学12月月考试题含解析

优选高中模拟试卷龙城区第二中学校 2018-2019 学年上学期高二数学 12 月月考试题含分析班级 __________姓名 __________ 分数 __________一、选择题1. 设 △ABC 的三边长分别为a 、b 、c ,△ ABC 的面积为 S ,内切圆半径为 r ,则 ,类比这个结论可知:四周体 S ﹣ ABC 的四个面的面积分别为 S 1、 S 2、 S 3、 S 4,内切球半径为 r ,四周体 S ﹣ABC 的体积为 V ,则 r=()A .B .C .D .2 ,PQMN 是正方形, 则在以下结论中,以下说法错误的选项是( ). 四周体 ABCD 中 截面A . ACBDB . AC BDC. ACPQMND .异面直线 PM 与 BD 所成的角为 453. 在等比数列中, ,前 项和为,若数列 也是等比数列,则等于()A .B .C .D .4U={1 3 5 7 9} ,会合 A={1 |a 5| 9} , ? U A={5 , 7} ,则实数 a 的值是(). 设全集 , , , , , ﹣ , A .2 B . 8 C .﹣2或8 D .2或8 . 设 a , b 为正实数,1 12 2 ,(a b) 24(ab) 3 ,则log a b = ()5a bA. 0B. 1C.1D.1或 0【命题企图】此题考察基本不等式与对数的运算性质等基础知识,意在考察代数变形能与运算求解能力 .6. 以下结论正确的选项是()A .若直线B .若直线C .若直线D .若直线l ∥ 平面 α,直线 l ∥ 平面 β,则 α∥β.l ⊥ 平面 α,直线 l ⊥ 平面 β,则 α∥β.l 1 l 2与平面 α l 1∥ l 2 , 所成的角相等,则 l 上两个不一样的点 A , B 到平面 α的距离相等,则 l ∥ α7. 向高为 H 的水瓶中灌水,注满为止.假如灌水量 V 与水深 h 的函数关系式以下图,那么水瓶的形状是()A.B.C.D.8.某程序框图以下图,该程序运转输出的k 值是()A .4B.5C.6D.79.已知点 P 是抛物线y2 =2x 上的一个动点,则点P 到点 M ( 0, 2)的距离与点P 到该抛物线准线的距离之和的最小值为()A.3B.C.D.10.已知命题p:“?∈[1, e], a> lnx ”,命题 q:“?x∈R,x2﹣ 4x+a=0””若“p∧q”是真命题,则实数 a 的取值范围是()A .( 1, 4] B.( 0,1] C. [﹣1, 1]D.( 4, +∞)11.在长方体 ABCD ﹣ A 1B 1C1D1中,底面是边长为 2 的正方形,高为 4,则点 A 1到截面 AB 1D 1的距离是()A.B.C.D.12.以下图象中,不可以作为函数y=f (x)的图象的是()A.B.C.D.二、填空题13.以抛物线 y2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为.14.已知圆C:x2y22x 4 y m 0 ,则其圆心坐标是_________,m的取值范围是________.【命题企图】此题考察圆的方程等基础知识,意在考察运算求解能力.15.函数 f( x) =2a x+1﹣ 3( a> 0,且 a≠1)的图象经过的定点坐标是.1 x2ln x的单一递减区间为__________. 16.【常熟中学2018 届高三 10 月阶段性抽测(一)】函数 f x217.如图是某赛季甲乙两名篮球运动员每场竞赛得分的茎叶图,则甲乙两人竞赛得分的中位数之和是.18.若正数m、 n 知足 mn﹣ m﹣ n=3 ,则点( m, 0)到直线x﹣ y+n=0 的距离最小值是.三、解答题19 .现有 5 名男生和 3 名女生.(1 )若 3 名女生一定相邻排在一同,则这8 人站成一排,共有多少种不一样的排法?(2 )若从中选 5 人,且要求女生只有 2 名,站成一排,共有多少种不一样的排法?2,20.如图, M 、N 是焦点为 F 的抛物线 y =2px( p> 0)上两个不一样的点,且线段 MN 中点 A 的横坐标为(1)求 |MF|+|NF| 的值;(2)若 p=2 ,直线 MN 与 x 轴交于点 B 点,求点 B 横坐标的取值范围.21.设函数 f( x)是定义在 R 上的奇函数,且对随意实数 x,恒有 f (x+2) =﹣ f( x),当 x∈[0, 2]时, f( x) =2x ﹣ x2.(1)求证: f( x)是周期函数;(2)当 x∈[2, 4]时,求 f ( x)的分析式;(3)求 f (0) +f ( 1)+f ( 2) + +f ( 2015)的值.22.已知函数f( x)=log a( 1+x)﹣ log a(1﹣ x)( a> 0, a≠1).(Ⅰ)判断 f( x)奇偶性,并证明;(Ⅱ)当 0< a< 1 时,解不等式f( x)> 0.23.已知椭圆E:+=1( a>b> 0)的左、右焦点分别为F1, F2,离心率为,点(,)在椭圆E上.(1)求椭圆 E 的方程;(2)设过点 P( 2, 1)的直线 l 与椭圆订交于 A 、 B 两点,若 AB 的中点恰巧为点 P,求直线 l 的方程.24 .甲、乙两袋中各装有大小同样的小球9 个,此中甲袋中红色、黑色、白色小球的个数分别为 2 个、3 个、4 个,乙袋中红色、黑色、白色小球的个数均为 3 个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不一样的概率是多少?(2)若左右手挨次各取两球,称同一手中两球颜色同样的取法为成功取法,记两次取球的成功取法次数为X ,求X 的散布列和数学希望.龙城区第二中学校 2018-2019 学年上学期高二数学 12 月月考试题含分析(参照答案)一、选择题1.【答案】 C【分析】解:设四周体的内切球的球心为O,则球心 O 到四个面的距离都是R,因此四周体的体积等于以O 为极点,分别以四个面为底面的 4 个三棱锥体积的和.则四周体的体积为∴ R=应选 C.【评论】类比推理是指依照两类数学对象的相像性,将已知的一类数学对象的性质类比迁徙到另一类数学对象上去.一般步骤:① 找出两类事物之间的相像性或许一致性.② 用一类事物的性质去推断另一类事物的性质,得出一个明确的命题(或猜想).2.【答案】 B【分析】试题剖析:因为截面 PQMN 是正方形,因此 PQ // MN , QM // PN ,则 PQ // 平面 ACD , QM // 平面 BDA ,因此PQ // AC, QM // BD,由 PQ QM 可得 AC BD ,因此A正确;因为 PQ // AC 可得 AC // 截面 PQMN ,因此C正确;因为 PN PQ ,因此 AC BD ,由 BD // PN ,因此 MPN 是异面直线 PM 与 BDPN AN , MN DN ,而所成的角,且为45 0,因此 D 正确;由上边可知BD // PN, PQ // AC ,因此BD AD AC AD AN DN , PN MN ,因此 BD AC ,因此B是错误的,应选 B. 1考点:空间直线与平面的地点关系的判断与证明.【方法点晴】此题主要考察了空间中直线与平面的地点关系的判断与证明,此中解答中波及到直线与平面平行的判断定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考察,侧重考察了学生剖析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的地点关系的判断定理和性质定理是解答的重点 .3. 【答案】 D【分析】设的公比为 ,则 , ,因为也是等比数列,因此,即,因此因为,因此 ,即 ,因此 ,应选 D答案: D4. 【答案】 D【分析】 解:由题意可得 3∈ A , |a ﹣ 5|=3,∴a=2,或 a=8,应选 D .5. 【答案】 B.【分析】23231 12 2a b2 2(a b) 4(ab)( a b) 4ab 4(ab) ,故 a b ab(a b)284ab 4(ab)34( ab 1 ) 8 ab 1 2 ,而事实上 ab 1 2 ab 1 2 , ( ab)2(ab) 2ab ab ab ab∴ab 1 ,∴log a b,应选B.16. 【答案】 B【分析】 解: A 选项中,两个平面能够订交, l 与交线平行即可,故不正确;B 选项中,垂直于同一平面的两个平面平行,正确;C 选项中,直线与直线订交、平行、异面都有可能,故不正确;D 中选项也可能订交.应选: B .【评论】此题考察平面与平面,直线与直线,直线与平面的地点关系,考察学生剖析解决问题的能力,比较基础.7. 【答案】 A【分析】 解:考虑当向高为 H 的水瓶中灌水为高为H 一半时,灌水量 V 与水深 h 的函数关系.以下图,此时灌水量V 与容器容积关系是: V <水瓶的容积的一半.比较选项知,只有 A 切合此要求.应选 A.【评论】本小题主要考察函数、函数的图象、几何体的体积的观点等基础知识,考察运算求解能力,考察数形联合思想、化归与转变思想.属于基础题.8.【答案】 C【分析】解:程序在运转过程中各变量的值以下表示:S k 能否持续循环循环前100 0/第一圈100﹣ 20 1 是第二圈100﹣ 20﹣ 21 2 是第六圈100﹣ 20﹣ 21﹣ 22﹣23﹣ 24﹣ 25< 0 6 是则输出的结果为7.应选 C.【评论】依据流程图(或伪代码)写程序的运转结果,是算法这一模块最重要的题型,其办理方法是::①剖析流程图(或伪代码),从流程图(或伪代码)中既要剖析出计算的种类,又要剖析出参加计算的数据(如果参加运算的数据比许多,也可使用表格对数据进行剖析管理)? ②成立数学模型,依据第一步剖析的结果,选择适合的数学模型③ 解模.9.【答案】 B【分析】解:依题设 P 在抛物线准线的投影为P′,抛物线的焦点为 F,则 F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP |=|PF|′,则点 P 到点 M ( 0, 2)的距离与 P 到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|= =.即有当 M , P, F 三点共线时,获得最小值,为.应选: B.【评论】此题主要考察抛物线的定义解题,考察了抛物线的应用,考察了学生转变和化归,数形联合等数学思想.10.【答案】 A【分析】解:若命题p:“? ∈[1, e], a> lnx ,为真命题,则 a> lne=1 ,若命题 q:“?x∈R, x2﹣ 4x+a=0”为真命题,则△ =16﹣ 4a≥0,解得 a≤4,若命题“p∧q”为真命题,则 p,q 都是真命题,则,解得:1< a≤4.故实数 a 的取值范围为(1,4].应选: A.【评论】此题主要考察复合命题与简单命题之间的关系,利用条件先求出命题p, q 的等价条件是解决此题的重点.11.【答案】 C【分析】解:如图,设A1C1∩ B1D1=O1,∵ B1D1⊥A 1O1, B1D 1⊥AA 1,∴ B1 D1⊥平面 AA 1O1,故平面 AA 1O1⊥面 AB 1D1,交线为 AO 1,在面 AA 1O1内过 B 1作 B 1H⊥ AO 1于 H ,则易知 A 1H 的长即是点 A 1到截面 AB 1D 1的距离,在 Rt△ A 1O1A 中, A 1O1= ,AO 1=3,由A 1O1?A 1A=h AO 1,可得A 1H=,?应选: C.【评论】此题主要考察了点到平面的距离,同时考察空间想象能力、推理与论证的能力,属于基础题.12 .【答案】 B【分析】解:依据函数的定义可知,对应定义域内的随意变量x 只好有独一的y 与 x 对应,选项 B 中,当 x>0 时,有两个不一样的y 和 x 对应,因此不知足y 值的独一性.因此 B 不可以作为函数图象.应选 B.【评论】此题主要考察函数图象的辨别,利用函数的定义是解决此题的重点,注意函数的三个条件:非空数集,定义域内 x 的随意性, x 对应 y 值的独一性.二、填空题13.【答案】(x﹣5)2+y2=9.【分析】解:抛物线y2=20x 的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意, r =3,则所求方程为(x﹣ 5)2+y 2=9故答案为:( x﹣52 2) +y =9.【评论】此题考察圆的方程,考察直线与圆的地点关系,考察学生的计算能力,属于基础题.14.【答案】(1, 2),( ,5) .【分析】将圆的一般方程化为标准方程,( x 1)2 ( y 2)2 5 m ,∴圆心坐标(1, 2) ,而5 m 0 m 5 ,∴m的范围是 ( ,5) ,故填: (1, 2) ,( ,5) .15 .【答案】(﹣ 1,﹣ 1 ).【分析】解:由指数幂的性质可知,令x+1=0 得 x= ﹣ 1,此时 f(﹣ 1) =2 ﹣3=﹣ 1,即函数 f (x)的图象经过的定点坐标是(﹣1,﹣ 1),故答案为:(﹣1,﹣ 1).16.【答案】0,1【分析】17.【答案】64.【分析】解:由图可知甲的得分共有 9 个,中位数为 28 ∴甲的中位数为 28乙的得分共有9 个,中位数为36∴乙的中位数为36则甲乙两人竞赛得分的中位数之和是64故答案为: 64.【评论】求中位数的重点是依据定义认真剖析.此外茎叶图的茎是高位,叶是低位,这一点必定要注意.18.【答案】.【分析】解:点( m, 0)到直线 x﹣ y+n=0 的距离为d=,∵mn﹣ m﹣ n=3,∴( m﹣ 1)( n﹣ 1)=4 ,( m﹣1> 0, n﹣ 1> 0),∴( m﹣ 1)+( n﹣ 1)≥2,∴m+n≥6,则 d= ≥3 .故答案为:.【评论】此题考察了的到直线的距离公式,考察了利用基本不等式求最值,是基础题.三、解答题19.【答案】【分析】解:( 1)先排 3 个女生作为一个整体,与其他的 5 个元素做全摆列有A33A6 6=4320 种.( 2)从中选 5 人,且要求女生只有 2 名,则男生有 3 人,先选再排,故有 C3 2 3 5C5 A 5 =3600 种【评论】此题主要考察摆列与组合及两个基来源理,摆列数公式、组合数公式的应用,注意特别元素和特别位置要优先排.20.【答案】【分析】解:( 1)设 M ( x1, y1), N(x2, y2),则 x1+x2 =8﹣ p, |MF|=x 1+,|NF|=x2+,∴|MF|+|NF|=x 1+x2+p=8 ;( 2) p=2 时,y2=4x,若直线 MN 斜率不存在,则 B( 3, 0);若直线 MN 斜率存在,设 A (3, t)( t≠0), M ( x1, y1), N ( x2, y2),则代入利用点差法,可得 y12﹣ y22=4 ( x1﹣ x2)∴k MN = ,∴直线 MN 的方程为 y﹣ t= (x﹣ 3),∴ B 的横坐标为x=3 ﹣,直线 MN 代入 y2=4x ,可得 y2﹣ 2ty+2t 2﹣ 12=0△> 0 可得 0< t2< 12,∴ x=3 ﹣∈(﹣3,3),∴点 B 横坐标的取值范围是(﹣3, 3).【评论】此题考察抛物线的定义,考察点差法,考察学生剖析解决问题的能力,属于中档题.21.【答案】【分析】( 1)证明:∵ f( x+2) =﹣ f ( x),∴f( x+4 )=f[ (x+2 ) +2]= ﹣ f ( x+2) =f ( x),∴ y=f ( x)是周期函数,且T=4 是其一个周期.( 2)令 x∈[﹣ 2, 0],则﹣ x∈[0, 2],∴f(﹣ x)=﹣ 2x﹣ x2,又 f (﹣ x)=﹣ f ( x),∴在 x∈[ ﹣2, 0], f( x)=2x+x 2,2 2∴x∈[2, 4],那么 x﹣4∈[﹣ 2, 0],那么 f( x﹣ 4)=2( x﹣ 4)+( x﹣ 4) =x ﹣ 6x+8 ,因为 f ( x)的周期是 4,因此 f (x) =f ( x﹣ 4) =x 2﹣ 6x+8 ,∴当 x∈[2 ,4]时, f( x)=x 2﹣ 6x+8 .(3)当 x∈[0, 2]时, f(x) =2x ﹣ x2.∴f( 0) =0, f( 1) =1,当 x∈[2, 4]时, f( x) =x 2﹣6x+8 ,∴ f( 2) =0, f( 3) =﹣ 1, f ( 4) =0∴f( 1) +f (2) +f ( 3) +f (4) =1+0﹣ 1+0=0 ,∵ y=f ( x)是周期函数,且T=4 是其一个周期.∴2016=4×504∴f( 0) +f (1) +f ( 2) + +f ( 2015)=504×[f ( 0) +f ( 1) +f ( 2) +f ( 3)]=504 ×0=0,即求 f ( 0)+f ( 1) +f ( 2) ++f ( 2015)=0 .【评论】此题主要考察函数周期性的判断,函数奇偶性的应用,综合考察函数性质的应用.22.【答案】【分析】解:(Ⅰ )由,得,即﹣ 1<x< 1,即定义域为(﹣1,1),则 f (﹣ x)=log a( 1﹣x)﹣ log a(1+x ) =﹣[log a( 1+x )﹣ log a( 1﹣ x) ]= ﹣ f( x),则 f ( x)为奇函数.(Ⅱ)当 0< a< 1 时,由 f( x)> 0,即 log a(1+x )﹣ log a( 1﹣ x)>0,即 log a(1+x )> log a( 1﹣x),则 1+x <1﹣ x,解得﹣ 1< x< 0,则不等式解集为:(﹣ 1,0).【评论】此题主要考察函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单一性是解决此题的重点.23.【答案】【分析】解:( 1)由题得=,=1,又 a2=b 2+c2,解得 a2=8 ,b2 =4.∴ 椭圆方程为:.( 2)设直线的斜率为k,A (x1,y1), B (x2, y2),∴,=1,两式相减得=0,∵ P 是 AB 中点,∴ x1+x 2=4 , y1 +y2=2,=k ,代入上式得: 4+4k=0 ,解得 k= ﹣ 1,∴直线 l : x+y ﹣ 3=0 .【评论】此题考察了椭圆的标准方程及其性质、“”点差法、斜率计算公式、中点坐标坐标公式,考察了推理能力与计算能力,属于中档题.24.【答案】【分析】解:( 1)设事件 A 为“两手所取的球不一样色”,则 P(A )=1﹣.( 2)依题意, X 的可能取值为0, 1, 2,左手所取的两球颜色同样的概率为=,右手所取的两球颜色同样的概率为= .P( X=0 )=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴ X 的散布列为:X01 2 PEX=0 ×+1×+2×=.【评论】此题考察概率的求法和求失散型随机变量的散布列和数学希望,是历年高考的必考题型.解题时要认真审题,认真解答,注意概率知识的灵巧运用.。

龙城区三中2018-2019学年上学期高二数学12月月考试题含解析

龙城区三中2018-2019学年上学期高二数学12月月考试题含解析

龙城区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( ) A .等腰直角 B .等腰或直角 C .等腰D .直角2. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数4. 函数y=sin (2x+)图象的一条对称轴方程为( ) A .x=﹣ B .x=﹣C .x=D .x=5. 如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A. B.C.D.6. 已知i是虚数单位,则复数等于( ) A.﹣+i B.﹣+i C.﹣i D.﹣i7. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个8. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A ) 13 ( B ) 49 (C ) 23 (D ) 899. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位10.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 11.集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N ==12.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.二、填空题13.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足A B =∅,{}|52A B x x =-<≤,求实数a =__________.14.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .15.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .16.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________.17.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .18.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.三、解答题19.已知函数f (x )=cosx (sinx+cosx )﹣.(1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.20.已知函数f (x )=|2x+1|,g (x )=|x|+a (Ⅰ)当a=0时,解不等式f (x )≥g (x );(Ⅱ)若存在x ∈R ,使得f (x )≤g (x )成立,求实数a 的取值范围.21.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.22.已知函数f(x0=.(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;(2)解不等式f(x﹣1)≤﹣.23.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角 的正弦值; (2)证明:B 1F ∥平面A 1BE .24.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体σ. (1)求几何体σ的表面积;(2)点M 时几何体σ的表面上的动点,当四面体MABD 的体积为,试判断M 点的轨迹是否为2个菱形.A 1B 1C 1DD 1 C B AE F龙城区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B2.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B3.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4.【答案】A【解析】解:对于函数y=sin(2x+),令2x+=kπ+,k∈z,求得x=π,可得它的图象的对称轴方程为x=π,k∈z,故选:A.【点评】本题主要考查正弦函数的图象的对称性,属于基础题.5. 【答案】D【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),联立,得(2k 2+1)x 2+8k 2x+8k 2﹣2=0,∵过点M (﹣2,0)的直线l与椭圆有公共点,∴△=64k 4﹣4(2k 2+1)(8k 2﹣2)≥0,整理,得k 2,解得﹣≤k ≤.∴直线l 的斜率k 的取值范围是[﹣,].故选:D .【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.6. 【答案】A 【解析】解:复数===,故选:A .【点评】本题考查了复数的运算法则,属于基础题.7. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

龙城区高中2018-2019学年高二上学期第二次月考试卷数学

龙城区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -= C .(1)2n n n a += D .21n a n =+ 2. 在△ABC中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形3. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 4. 若实数x ,y满足,则(x ﹣3)2+y 2的最小值是( )A.B .8C .20D .25. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5} C .{1,2,3,4,5} D .∅ 6. 把“二进制”数101101(2)化为“八进制”数是( )A .40(8)B .45(8)C .50(8)D .55(8)7. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( ) A .(2,+∞) B .(0,2) C .(0,4) D .(4,+∞)8. 使得(3x 2+)n (n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .109.以的焦点为顶点,顶点为焦点的椭圆方程为( )A.B.C .D .10.直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心11.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,912.已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}二、填空题13.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .14.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .15.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,则四边形P 0P 1P 2P 3的面积为定值4k 2.其中,所有正确结论的序号是 .16.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.17.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.三、解答题19.已知定义域为R的函数是奇函数.(1)求f (x );(2)判断函数f (x )的单调性(不必证明); (3)解不等式f (|x|+1)+f (x )<0.20.已知奇函数f (x )=(c ∈R ).(Ⅰ)求c 的值;(Ⅱ)当x ∈[2,+∞)时,求f (x )的最小值.21.本小题满分10分选修41-:几何证明选讲如图,ABC ∆是⊙O 的内接三角形,PA 是⊙O 的切线,切点为A ,PB 交AC 于点E ,交⊙O 于点D ,PE PA =,︒=∠45ABC ,1=PD ,8=DB .Ⅰ求ABP ∆的面积; Ⅱ求弦AC 的长.22.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x 元(7≤x ≤9)时,一年的销售量为(x ﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L (万元)与每件纪念品的售价x 的函数关系式L (x );(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值.23.已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.24.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.(1)求数列{a n}的通项公式;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.龙城区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C 【解析】试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)2n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 2. 【答案】A 【解析】解:∵,又∵cosC=,∴=,整理可得:b 2=c 2,∴解得:b=c .即三角形一定为等腰三角形. 故选:A .3. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值. 4. 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离d min=,∴(x﹣3)2+y2的最小值是:.故选:A.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.5.【答案】B【解析】解:∵C U A={1,5}∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.故选B.6.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D.7.【答案】B【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.∵f(2)=4,则2f(2)=8,f(x)﹣>0化简得,当x<2时,⇒成立.故得x<2,∵定义在(0,+∞)上.∴不等式f(x)﹣>0的解集为(0,2).故选B.【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.8.【答案】B【解析】解:(3x2+)n(n∈N+)的展开式的通项公式为T r+1=•(3x2)n﹣r•2r•x﹣3r=•x2n ﹣5r,令2n﹣5r=0,则有n=,故展开式中含有常数项的最小的n为5,故选:B.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.9.【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D.【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.10.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。

龙城区实验中学2018-2019学年高二上学期第二次月考试卷数学

龙城区实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是()A.B.C.D.3.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥3},图中阴影部分所表示的集合为()A.{1} B.{1,2} C.{1,2,3} D.{0,1,2}4.某几何体的三视图如图所示,则该几何体的体积为()A.16163π-B.32163π-C.1683π-D.3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.5. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12- D .2-6. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=7. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前10项和为( )A .89B .76C .77D .358. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③9. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣810.已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.11.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos2﹣sin cos﹣的值为()A.B.C.﹣D.﹣12.“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的()A.充要条件B.充分不必要条件C.必要不充分条件D.不充分不必要条件二、填空题13.函数y=lgx的定义域为.14.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m,n∈N*,则m+n=.15.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是.16.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为.17.直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_________ 。

龙城区民族中学2018-2019学年上学期高二数学12月月考试题含解析



AM

D

大小为
时,求
的值.
3
【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.
22.某同学用“五点法”画函数 f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )在某一个周期内的图象时,
列表并填入的部分数据如表:
x
x1
x2
x3
ωx+φ
,即 10x<10﹣lg2,
由指数函数的单调性可知:x<﹣lg2 故选:D 9. 【答案】D 【解析】解:由奇函数的性质可知,若奇函数 f(x)在区间上是减函数,且最小值 3, 则那么 f(x)在区间上为减函数,且有最大值为﹣3, 故选:D 【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础. 10.【答案】 D
第 3 页,共 20 页
精选高中模拟试卷
21.(本题满分 15 分)
如图,已知长方形 ABCD 中, AB 2 , AD 1 , M 为 DC 的中点,将 ADM 沿 AM 折起,使得平面
ADM 平面 ABCM .
(1)求证: AD BM ;
(2)若 DE

DB(0



1) ,当二面角 E
率是( )
A. B. C. D. 5. 设函数 f(x)=
,则 f(1)=( )
A.0 B.1 C.2 D.3
6. 若函数 y=x2+(2a﹣1)x+1 在区间(﹣∞,2]上是减函数,则实数 a 的取值范围是(

A.[﹣ ,+∞) B.(﹣∞,﹣ ] C.[ ,+∞) D.(﹣∞, ]

2018-2019学年上学期高二数学12月月考试题含解析(328)

义县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2-B.1-C. 1D.2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.2. 设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( )A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=23. 椭圆=1的离心率为( ) A . B .C .D .4. 若复数z 满足=i ,其中i 为虚数单位,则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i5. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( ) A .1:2:3 B .2:3:4 C .3:2:4 D .3:1:26. 已知,则f{f[f (﹣2)]}的值为( ) A .0B .2C .4D .87. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.8. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.9. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3] C .(﹣3,0]D .(﹣3,+∞)10.如图框内的输出结果是( )A .2401B .2500C .2601D .2704 11.已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5C .7D .812.若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .2二、填空题13.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]14.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .15.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.16.已知函数f (x )=x m 过点(2,),则m= .17.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .18.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .三、解答题19.(本小题满分12分)设03πα⎛⎫∈ ⎪⎝⎭,αα=(1)求cos 6πα⎛⎫+ ⎪⎝⎭的值;(2)求cos 212πα⎛⎫+ ⎪⎝⎭的值.20.在数列{a n }中,a 1=1,a n+1=1﹣,b n =,其中n ∈N *.(1)求证:数列{b n }为等差数列;(2)设c n =b n+1•(),数列{c n }的前n 项和为T n ,求T n ;(3)证明:1+++…+≤2﹣1(n ∈N *)21.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、 、三线共点.22.已知函数f (x )=(ax 2+x ﹣1)e x ,其中e 是自然对数的底数,a ∈R .(Ⅰ)若a=0,求曲线f (x )在点(1,f (1))处的切线方程;(Ⅱ)若,求f (x )的单调区间;(Ⅲ)若a=﹣1,函数f (x )的图象与函数的图象仅有1个公共点,求实数m 的取值范围.23.如图,在底面是矩形的四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=2,BC=2,E 是PD 的中点.(1)求证:平面PDC ⊥平面PAD ;(2)求二面角E ﹣AC ﹣D 所成平面角的余弦值.24.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()12333xxf xg x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.义县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】由||||a b a b +=-知,a b ⊥,∴(2)110a b t t ⋅=++⨯=,解得1t =-,故选B.2. 【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos +cos2xsin)=2sin (2x+),∴T==π,A=2故选:B3. 【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D .【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.4. 【答案】A【解析】解: =i ,则=i (1﹣i )=1+i ,可得z=1﹣i . 故选:A .5. 【答案】D【解析】解:设球的半径为R ,则圆柱、圆锥的底面半径也为R ,高为2R ,则球的体积V 球=圆柱的体积V 圆柱=2πR 3圆锥的体积V 圆锥=故圆柱、圆锥、球的体积的比为2πR 3:: =3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.6. 【答案】C 【解析】解:∵﹣2<0 ∴f (﹣2)=0∴f (f (﹣2))=f (0) ∵0=0∴f (0)=2即f (f (﹣2))=f (0)=2 ∵2>0∴f (2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4 故选C .7. 【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-,显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A.8. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>px ,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p ,故03p <<,故2=p ,所以抛物线方程为24y x =.9. 【答案】 D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.10.【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,故选:B.【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.11.【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.12.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.二、填空题13.【答案】8cm 【解析】考点:平面图形的直观图.14.【答案】 ﹣3<a <﹣1或1<a <3 .【解析】解:根据题意知:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,两圆圆心距d=|a|, ∴2﹣1<|a|<2+1, ∴﹣3<a <﹣1或1<a <3. 故答案为:﹣3<a <﹣1或1<a <3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,属中档题.15.【答案】(,0)(4,)-∞+∞【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x )y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.16.【答案】﹣1.【解析】解:将(2,)代入函数f(x)得:=2m,解得:m=﹣1;故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.17.【答案】[0,2].【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).∵q是p的充分不必要条件,∴q⊊p,∴,解得0≤a≤2,则实数a的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题18.【答案】6.【解析】解:∵|z|=1,|z﹣3+4i|=|z﹣(3﹣4i)|≤|z|+|3﹣4i|=1+=1+5=6,∴|z﹣3+4i|的最大值为6,故答案为:6.【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.三、解答题19.【答案】(1;(2.【解析】试题分析:(1αα=⇒sin 6πα⎛⎫+= ⎪⎝⎭03πα⎛⎫∈ ⎪⎝⎭,⇒662πππα⎛⎫+∈ ⎪⎝⎭,⇒cos 6πα⎛⎫+=⎪⎝⎭2)由(1)可得21cos 22cos 1364ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭⇒sin 23πα⎛⎫+=⎪⎝⎭ ⇒cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=. 试题解析:(1αα∴sin 6πα⎛⎫+= ⎪⎝⎭………………………………3分∵03πα⎛⎫∈ ⎪⎝⎭,,∴662πππα⎛⎫+∈ ⎪⎝⎭,,∴cos 6πα⎛⎫+= ⎪⎝⎭ (6)分(2)由(1)可得221cos 22cos 121364ππαα⎛⎫⎛⎫+=+-=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝⎭.………………………………8分 ∵03πα⎛⎫∈ ⎪⎝⎭,,∴233ππαπ⎛⎫+∈ ⎪⎝⎭,,∴sin 23πα⎛⎫+= ⎪⎝⎭.……………………………………10分∴cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=.………………………………………………………………………………12分 考点:三角恒等变换. 20.【答案】【解析】(1)证明:b n+1﹣b n =﹣=﹣=1,又b 1=1.∴数列{b n }为等差数列,首项为1,公差为1. (2)解:由(1)可得:b n =n .c n =b n+1•()=(n+1).∴数列{c n }的前n 项和为T n =+3×++…+(n+1).=+3×+…+n+(n+1),∴T n=+++…+﹣(n+1)=+﹣(n+1),可得T n=﹣.(3)证明:1+++…+≤2﹣1(n∈N*)即为:1+++…+≤﹣1.∵=<=2(k=2,3,…).∴1+++…+≤1+2[(﹣1)+()+…+(﹣)]=1+2=2﹣1.∴1+++…+≤2﹣1(n∈N*).21.【答案】证明见解析.【解析】考点:平面的基本性质与推论.22.【答案】【解析】解:(Ⅰ)∵a=0,∴f(x)=(x﹣1)e x,f′(x)=e x+(x﹣1)e x=xe x,∴曲线f(x)在点(1,f(1))处的切线斜率为k=f(1)=e.又∵f(1)=0,∴所求切线方程为y=e(x﹣1),即.ex﹣y﹣4=0(Ⅱ)f′(x)=(2ax+1)e x+(ax2+x﹣1)e x=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x,①若a=﹣,f′(x)=﹣x2e x≤0,∴f(x)的单调递减区间为(﹣∞,+∞),②若a<﹣,当x<﹣或x>0时,f′(x)<0;当﹣<x<0时,f′(x)>0.∴f(x)的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0].(Ⅲ)当a=﹣1时,由(Ⅱ)③知,f(x)=(﹣x2+x﹣1)e x在(﹣∞,﹣1)上单调递减,在[﹣1,0]单调递增,在[0,+∞)上单调递减,∴f(x)在x=﹣1处取得极小值f(﹣1)=﹣,在x=0处取得极大值f(0)=﹣1,由,得g′(x)=2x2+2x.当x<﹣1或x>0时,g′(x)>0;当﹣1<x<0时,g′(x)<0.∴g(x)在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.故g(x)在x=﹣1处取得极大值,在x=0处取得极小值g(0)=m,∵数f(x)与函数g(x)的图象仅有1个公共点,∴g(﹣1)<f(﹣1)或g(0)>f(0),即..【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.23.【答案】【解析】解:(1)∵PA⊥平面ABCD,CD⊆平面ABCD,∴PA⊥CD∵AD⊥CD,PA、AD是平面PAD内的相交直线,∴CD⊥平面PAD∵CD⊆平面PDC,∴平面PDC⊥平面PAD;(2)取AD中点O,连接EO,∵△PAD中,EO是中位线,∴EO∥PA∵PA⊥平面ABCD,∴EO⊥平面ABCD,∵AC⊆平面ABCD,∴EO⊥AC过O 作OF ⊥AC 于F ,连接EF ,则 ∵EO 、OF 是平面OEF 内的相交直线, ∴AC ⊥平面OEF ,所以EF ⊥AC ∴∠EFO 就是二面角E ﹣AC ﹣D 的平面角 由PA=2,得EO=1,在Rt △ADC 中,设AC 边上的高为h ,则AD ×DC=AC ×h ,得h=∵O 是AD 的中点,∴OF=×=∵EO=1,∴Rt △EOF 中,EF==∴cos ∠EFO==【点评】本题给出特殊的四棱锥,叫我们证明面面垂直并求二面角的余弦值,着重考查了平面与平面所成角的求法和线面垂直的判定与性质等知识,属于中档题.24.【答案】(1)1x =-(2)①()1,-+∞,②6 【解析】试题解析:(1)由题意,131331x x x +-+=+,化简得()2332310x x ⋅+⋅-= 解得()13133x x =-=舍或,所以1x =-(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x x a b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且解得:11{{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1{ 3a b =-=-舍去所以1,3a b ==,所以()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有:()()()()211212121222333313133131x x x x xx f x f x ⎛⎫-⎛⎫⎪-=-=⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x->,所以()()12f x f x >, 因此()f x 在R 上递减.因为()()2222f t t f t k -<-,所以2222t t t k ->-, 即220t t k +-<在时有解所以440t ∆=+>,解得:1t >-, 所以的取值范围为()1,-+∞②因为()()()12333x xf xg x -⎡⎤⋅+=-⎣⎦,所以()()3323x x g x f x --=-即()33xxg x -=+所以()()222233332x x x xg x --=+=+-不等式()()211g x m g x ≥⋅-恒成立, 即()()23323311xxx x m --+-≥⋅+-,即:93333x x x xm --≤+++恒成立令33,2x xt t -=+≥,则9m t t≤+在2t ≥时恒成立令()9h t t t =+,()29'1h t t=-,()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙城区一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( )A .{2}B .{0,2}C .{﹣1,2}D .{﹣1,0,2}2. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )A .3B .6C .9D .123. 设是偶函数,且在上是增函数,又,则使的的取值范围是( )()f x (0,)+∞(5)0f =()0f x >A .或B .或C .D .或50x -<<5x >5x <-5x >55x -<<5x <-05x <<4. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种5.+(a ﹣4)0有意义,则a 的取值范围是()A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠46. 已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为( )PAB ∆A . B.C. D. 7. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)8. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A .4B .8C .12D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.9.已知随机变量X服从正态分布N(2,σ2),P(0<X<4)=0.8,则P(X>4)的值等于()A.0.1B.0.2C.0.4D.0.610.垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能11.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A.i≥7?B.i>15?C.i≥15?D.i>31?12.执行如图所示的程序框图,若输入的分别为0,1,则输出的()A .4B .16C .27D .36二、填空题13.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.14.已知函数的三个零点成等比数列,则 .5()sin (0)2f x x a x π=-≤≤2log a =15.如图是正方体的平面展开图,则在这个正方体中①与平行;②与是异面直线;BM ED CN BE ③与成角;④与是异面直线.CN BM 60︒DM BN 以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).16.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm . 17.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.18.设,记不超过的最大整数为,令.现有下列四个命题: x R ∈x []x {}[]x x x =-①对任意的,都有恒成立;x 1[]x x x -<≤②若,则方程的实数解为;(1,3)x ∈{}22sincos []1x x +=6π-③若(),则数列的前项之和为;3n n a ⎡⎤=⎢⎥⎣⎦n N *∈{}n a 3n 23122n n -④当时,函数的零点个数为,函数的0100x ≤≤{}22()sin []sin1f x x x =+-m {}()[]13xg x x x =⋅--零点个数为,则.n 100m n +=其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

三、解答题19.已知函数f (x )=a ﹣,(1)若a=1,求f (0)的值;(2)探究f (x )的单调性,并证明你的结论;(3)若函数f (x )为奇函数,判断|f (ax )|与f (2)的大小. 20.已知曲线C 1:ρ=1,曲线C 2:(t 为参数)(1)求C 1与C 2交点的坐标;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′与C 2′,写出C 1′与C 2′的参数方程,C 1与C 2公共点的个数和C 1′与C 2′公共点的个数是否相同,说明你的理由. 2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)21.(本小题满分12分)已知数列的各项均为正数,,.{}n a 12a =114n n n na a a a ++-=+(Ⅰ)求数列的通项公式;{}n a (Ⅱ)求数列的前项和.11n n a a +⎧⎫⎨⎬+⎩⎭n n S 22.已知数列{a n }满足a 1=3,a n+1=a n +p •3n (n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列.(1)求p 的值及数列{a n }的通项公式;(2)设数列{b n }满足b n =,证明b n ≤.23.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:周需求量n1819202122频数12331以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.24.已知函数f(x)=lnx﹣ax+(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数y=f(x)在定义域内存在两个极值点,求a的取值范围.龙城区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A 【解析】解:∵x 2<2∴﹣<x <∴P={x ∈Z|x 2<2}={x|﹣<x <,x ∈Z|}={﹣1,0,1},又∵全集U={﹣1,0,1,2},∴∁U P={2}故选:A . 2. 【答案】A 【解析】解:复数z===.由条件复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3.故选:A .【点评】本题考查复数的代数形式的混合运算,考查计算能力. 3. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于轴对称,单调性在轴两侧相反,即在时单调递增,当时,y y 0x >0x <函数单调递减.结合和对称性,可知,再结合函数的单调性,结合图象就可以求得最后的(5)0f =(5)0f ±=解集.14. 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题 5. 【答案】B 【解析】解:∵+(a ﹣4)0有意义,∴,解得2≤a <4或a >4.故选:B . 6. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB∆的面积为,选C .1||2AB d '⋅=7. 【答案】D【解析】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x=3x (ax ﹣2),f (0)=1;①当a=0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立;③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f (x )=ax 3﹣3x 2+1在(﹣∞,0)上没有零点;而当x=时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上取得最小值;故f ()=﹣3•+1>0;故a <﹣2;综上所述,实数a 的取值范围是(﹣∞,﹣2);故选:D . 8. 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,所以此四棱锥体积为62,故选C.1231231=⨯⨯9. 【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P(0<X<4)=0.8,∴P(X>4)=(1﹣0.8)=0.1,故选A.10.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.11.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.12.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。

故答案为:D二、填空题13.【答案】 0.9 【解析】解:由题意,=0.9,故答案为:0.914.【答案】12-考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.15.【答案】③④【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①与是异面直线,所以是错误BM ED 的;②与是平行直线,所以是错误的;③从图中连接,由于几何体是正方体,所以三角形DN BE ,AN AC ANC 为等边三角形,所以所成的角为,所以是正确的;④与是异面直线,所以是正确的.,AN AC 60︒DM BN考点:空间中直线与直线的位置关系.16.【答案】 【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=,三角形AB 1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则,则h=故点A 1到平面AB 1D 1的距离为.故答案为:. 17.【答案】 6 【解析】解:过A 作AO ⊥BD 于O ,AO 是棱锥的高,所以AO==,所以四棱锥A ﹣BB 1D 1D 的体积为V==6.故答案为:6.18.【答案】①③【解析】对于①,由高斯函数的定义,显然,①是真命题;对于②,由得,1[]x x x -<≤{}22sin cos []1x x +=,即.当 时,,,此时{}22sin 1cos []x x =-{}22sin sin []x x =12x <<011x <-<0sin(1)sin1x <-<化为,方程无解;当 时,,,{}22sin sin []x x =22sin (1)sin 1x -=23x ≤<021x ≤-<0sin(2)sin1x ≤-<此时化为,所以或,即或,所以原方{}22sin sin []x x =sin(2)sin 2x -=22x -=22x π-+=4x =x π=程无解.故②是假命题;对于③,∵(),∴,,,3n n a ⎡⎤=⎢⎥⎣⎦n N *∈1103a ⎡⎤==⎢⎥⎣⎦2203a ⎡⎤==⎢⎥⎣⎦3313a ⎡⎤==⎢⎥⎣⎦,…,,,所以数列的前项之和4413a ⎡⎤==⎢⎥⎣⎦31311[]133n n a n n --⎡⎤==-=-⎢⎥⎣⎦33[]3n n a n n ⎡⎤===⎢⎥⎣⎦{}n a 3n 为,故③是真命题;对于④,由3[12(1)]n n +++-+= 23122n n -三、解答题19.【答案】【解析】解:(1)a=1时:f(0)=1﹣=;(2)∵f(x)的定义域为R∴任取x1x2∈R且x1<x2则f(x1)﹣f(x2)=a﹣﹣a+=.∵y=2x在R是单调递增且x1<x2∴0<2x1<2x2,∴2x1﹣2x2<0,2x1+1>0,2x2+1>0,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),∴f(x)在R上单调递增.(3)∵f(x)是奇函数∴f(﹣x)=﹣f(x),即a﹣=﹣a+,解得:a=1.∴f(ax)=f(x)又∵f(x)在R上单调递增∴x>2或x<﹣2时:|f(x)|>f(2),x=±2时:|f(x)|=f(2),﹣2<x<2时:|f(x)|<f(2).【点评】本题考查的是函数单调性、奇偶性等知识的综合问题.在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力.值得同学们体会和反思.20.【答案】【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,∴C1是以原点为圆心,以1为半径的圆,∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,联立,解得x=﹣,y=.∴C2与C1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t 为参数),化为普通方程为::x 2+4y 2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C 1与C 2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.21.【答案】(本小题满分12分)解: (Ⅰ)由得,∴是等差数列,公差为4,首项为4, (3分)114n n n n a a a a ++-=+2214n n a a +-={}2n a ∴,由得. (6分)244(1)4n a n n =+-=0n a >n a =(Ⅱ)∵, (9分)1112n n a a +==+ ∴数列的前项和为11n n a a +⎧⎫⎨⎬+⎩⎭n . (12分)11111)1)2222+++=- 22.【答案】【解析】(1)解:∵数列{a n }满足a 1=3,a n+1=a n +p •3n (n ∈N *,p 为常数),∴a 2=3+3p ,a 3=3+12p ,∵a 1,a 2+6,a 3成等差数列.∴2a 2+12=a 1+a 3,即18+6p=6+12p 解得p=2.∵a n+1=a n +p •3n ,∴a 2﹣a 1=2•3,a 3﹣a 2=2•32,…,a n ﹣a n ﹣1=2•3n ﹣1,将这些式子全加起来 得a n ﹣a 1=3n ﹣3,∴a n =3n .(2)证明:∵{b n }满足b n =,∴b n =.设f (x )=,则f ′(x )=,x ∈N *,令f′(x)=0,得x=∈(1,2)当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,且f(1)=,f(2)=,∴f(x)max=f(2)=,x∈N*.∴b n≤.【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用. 23.【答案】【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,∴.(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X的分布列为X88009400100001020010400P0.10.20.30.30.1∴EX=8800×0.1+9400×0.2+10000×0.3+10200×0.3+10400×0.1=9860.24.【答案】【解析】解:(Ⅰ)当a=1时,f(x)=lnx﹣x+,∴f(1)=1,∴切点为(1,1)∵f′(x)=﹣1﹣=,∴f′(1)=﹣2,∴切线方程为y﹣1=﹣2(x﹣1),即2x+y﹣3=0;(Ⅱ)f(x)的定义域是(0,+∞),f′(x)=,若函数y=f(x)在定义域内存在两个极值点,则g(x)=ax2﹣x+2在(0,+∞)2个解,故,解得:0<a<.。

相关文档
最新文档