高二数学12月月考试题 文1
2022-2023学年山西省晋城市校高二年级上册学期12月月考数学试题【含答案】

2022-2023学年山西省晋城市第二中学校高二上学期12月月考数学试题一、单选题1.抛物线28y x =的焦点到其准线的距离为( ) A .132B .116 C .18D .4【答案】B【分析】将抛物线方程转化为标准方程求解.【详解】解:抛物线的标准方程为218x y =, 所以焦点坐标为10,32F ⎛⎫⎪⎝⎭,其准线方程为132y =-,所以抛物线28y x =的焦点到其准线的距离为111323216d ⎛⎫=--= ⎪⎝⎭, 故选:B2.若直线1:20l x y -+=与直线2:230l x ay +-=平行,则实数a 的值为( ) A .2- B .1- C .2 D .1【答案】A【分析】解方程1(1)20a ⨯--⨯=即得解. 【详解】解:由题得1(1)20, 2.a a ⨯--⨯=∴=- 经检验,当2a =-时,满足题意. 故选:A3.已知直线3260x y --=经过焦点在坐标轴上的椭圆的两个顶点,则该椭圆的方程为( ) A .22194x y +=B .22419x y +=C .22194y x +=D .22419y x +=【答案】C【分析】求出直线3260x y --=与两坐标轴的焦点为()0,3-,()2,0.根据32->,可设椭圆的方程为22221y x a b+=,求出,a b 即可. 【详解】令0x =,可得=3y -;令0y =,可得2x =. 则由已知可得,椭圆的两个顶点坐标为()0,3-,()2,0.因为32->,所以椭圆的焦点在y 轴上. 设椭圆的方程为22221y x a b +=,则3a =,2b =,所以椭圆的方程为22194y x +=.故选:C.4.若方程222141x y m m-=-+表示焦点在y 轴上的双曲线,则实数m 的取值范围为( )A .()2-∞-,B .()21--,C .()22-,D .()11-,【答案】A【分析】原方程可变形为222141y x m m ---=-,根据已知有21040m m -->⎧⎨-+>⎩,解出即可. 【详解】因为方程222141x y m m -=-+表示焦点在y 轴上的双曲线, 222141x y m m -=-+可变形为222141y x m m ---=-. 所以有21040m m -->⎧⎨-+>⎩,即21040m m +<⎧⎨->⎩,解得2m <-. 故选:A. 5.数列262,4,,203--,…的一个通项公式可以是( ) A .()12nn a n =-⋅ B .()311n nn a n-=-⋅C .()1221n nn a n+-=-⋅D .()31n nn na n⋅-=-【答案】B【分析】利用检验法,由通项公式验证是否符合数列的各项结合排除法即可. 【详解】选项A :()331236a =-⨯⨯=-,不符合题意; 选项C :()212222132a +-=-⨯=不符合题意; 选项D :()222327122a -=-⨯=,不符合题意; 而选项B 满足数列262,4,,203--,故选:B6.在棱长为2的正方体1111ABCD A B C D -中,E 是1CC 的中点,则1AE BD ⋅=( )A .0B .1C .32D .2【答案】D【分析】建立空间直角坐标系,利用坐标法求解即可. 【详解】解:如图,建立空间直角坐标系, 则()()()()12,0,0,0,2,1,2,2,0,0,0,2A E B D , 所以,()()12,2,1,2,2,2AE BD =-=--, 所以,14422AE BD ⋅=-+=. 故选:D7.在数列{}n a 中,122,a a a ==,且132(2,N )n n a a n n n *+=-++≥∈,若数列{}n a 单调递增,则实数a 的取值范围为( ) A .(2,52)B .(2,3)C .(52,4)D .(2,4)【答案】C【分析】由递推关系,结合条件122,a a a ==,求出数列的通项公式,再结合数列的单调性,列不等式可求实数a 的取值范围.【详解】因为132(2,N )n n a a n n n *+=-++≥∈,所以()21312(N )n n a a n n *++=-+++∈,328a a =-+,所以23(2,N )n n a a n n *+=+≥∈,又2a a =, 328a a =-+,所以数列{}n a 的偶数项按项数从小到大排列可得一公差为3的等差数列,所以当n 为偶数时,332n a n a =+-, 当n 为大于等于3的奇数时,3722n a n a =+-, 因为数列{an }单调递增,所以1n n a a -≥(2,N )n n *≥∈,所以当n 为大于等于3的奇数时,()37313222n a n a +->-+-,化简可得4a <,当n 为大于等于4偶数时,()33731222n a n a +->-+-,解得52a >,由21a a >可得,2a >, 所以542a <<, 故选:C.8.已知椭圆()2222:10x y C a b a b +=>>的左,右顶点分别为A ,B ,且椭圆C,点P是椭圆C 上的一点,且1tan 4PAB ∠=,则tan APB ∠( )A .109-B .1110-C .1110D .109【答案】B【分析】设()00,P x y 是椭圆上的点,设11tan 4k PAB =∠=,2tan k PBA =-∠求出12k k ⋅为定值,从而能求出tan PBA ∠的值,然后根据()tan tan APB PAB PBA ∠=-∠+∠求解. 【详解】设()00,P x y 代入椭圆方程,则()22002210x y a b a b+=>>整理得:()2222002,b y a x a=-设11tan 4k PAB =∠=,2tan k PBA =-∠ 又010y k x a =+,020y k x a=-,所以 ()22222000122222000116y y y b a c k k e x a x a x a a a -⋅=⋅==-=-=--=-+-- 而11tan 4k PAB =∠=,所以22tan 3k PBA =-∠=-,所以2tan 3PBA ∠=()12tan tan 1143tan tan 121tan tan 10143PAB PBA APB PAB PBA PAB PBA +∠+∠∠=-∠+∠=-=-=--∠⋅∠-⨯ 故选:B二、多选题9.在等比数列{n a }中,262,32a a ==,则{n a }的公比可能为( ) A .1- B .2-C .2D .4【答案】BC【分析】根据等比数列的通项即可求解.【详解】因为在等比数列{n a }中,262,32a a ==,设等比数列的公比为q ,则54611216a a q q a q a ===,所以2q =±, 故选:BC .10.已知圆226430C x y x y +-+-=:,则下列说法正确的是( ) A .圆C 的半径为16B .圆C 截x 轴所得的弦长为C .圆C 与圆E :()()22621x y -+-=相外切D .若圆C 上有且仅有两点到直线340x y m ++=的距离为1,则实数m 的取值范围是()()19,2426,21⋃--【答案】BC【分析】先运用配方法将一般式方程化为标准方程,可确定其圆心个半径;根据点到弦的距离可求出弦长;圆心距和半径的关系可确定圆与圆的位置关系;圆心到直线的距离与半径之间的数量关系可确定圆C 上有且仅有两点到直线的距离为1【详解】A:将一般式配方可得:()()223216,4x y r -++=∴=,A 错;B :圆心到x 轴的距离为2,弦长为B 对;C:5,C E CE r r ===+外切,C 对;D: 圆C 上有且仅有两点到直线340x y m ++=的距离为111,35r d r ∴-<<+∴<<,解之: ()()14,2426,16m ∈⋃--,D 错;故选:BC11.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且151416S S S <<,则下列说法正确的是( ) A .0d > B .0d <C .300S >D .当15n =时,n S 取得最小值【答案】ACD【分析】根据题干条件利用()12n n n a S S n -=-≥可得到150a <,15160a a +>,160a >,然后即可根据三个结论依次判断四个选项的正误.【详解】因为151416S S S <<,所以1515140a S S =-<,1616150a S S =->,151616140a a S S +=->. 对于A 、B 选项,因为150a <,160a >,所以16150d a a =->,故选项A 正确,选项B 错误; 对于C ,因为15160a a +>,所以()()130301516301502a a S a a +==+>,故选项C 正确; 对于D ,因为150a <,160a >,可知10a <,0d >,等差数列{}n a 为递增数列,当15n ≤时,0n a <,当16n ≥时,0n a >,所以当15n =时,n S 取得最小值,故D 选项正确. 故选:ACD.12.已知抛物线C :212y x =,点F 是抛物线C 的焦点,点P 是抛物线C 上的一点,点(4,3)M ,则下列说法正确的是( ) A .抛物线C 的准线方程为3x =-B .若7PF =,则△PMF 的面积为32C .|PF PM -|D .△PMF 的周长的最小值为7【答案】ACD【分析】根据抛物线的标准方程可得准线方程为3x =-,即可判断A ,根据抛物线定义得到4P x =,故P 点可能在第一象限也可能在第三象限,分情况计算三角形面积即可判断B ,利用三角形任意两边之差小于第三边结合三点一线的特殊情况即可得到()max ||||PF PM F M -∴=,计算即可判断C ,三角形PMF 的周长PM MF PF PM PF =++=+||||PM PF +的最小值,即得到周长最小值.【详解】212y x =,6p ∴=,()3,0F ∴,准线方程为3x =-,故A 正确; 根据抛物线定义得372P P pPF x x =+=+=,4P x =,()4,3M ,//PM y ∴轴,当4x =时,y =±若P 点在第一象限时,此时(4,P ,故433PM =-,PMF △的高为1,故()1343312322PMFS=⨯-⨯=-, 若点P 在第四象限,此时()4,43P -,故433PM =+,PMF △的高为1,故()1343312322PMFS=⨯+⨯=+,故B 错误; ||||PF PM MF -≤,()()()22max 433010||||M P F PF M ∴+--==-=,故C 正确;(连接FM ,并延长交于抛物线于点P ,此时即为||||PF PM -最大值的情况, 图对应如下)过点P 作PD ⊥准线,垂足为点D ,PMF △的周长1010PM MF PF PM PF PM PD =++=++若周长最小,则PM PD +长度和最小,显然当点,,P M D 位于同一条直线上时,PM MF +的和最小,此时7PM MF PD +==,故周长最小值为710D 正确. 故选:ACD.三、填空题13.在各项均为正数的等比数列{}n a 中,121916a a =,则28223log log a a +=___________. 【答案】4【分析】由条件,结合等比数列性质可得82316a a =,再对数运算性质求28223log log a a +即可.【详解】因为数列{}n a 为等比数列,所以3122198a a a a =, 又121916a a =,所以82316a a =, 所以2822328234log log log a a a a ==+, 故答案为:4.14.已知向量(2,4,)m a =,(1,,3)n b =-,若n m λ=,则 ||n m -=___________.【答案】【分析】根据n m λ=,列出1243b a λλλ-=⎧⎪=⎨⎪=⎩,分别求出,,a b λ,然后得到,m n ,进而计算,可求出||n m -的值.【详解】n m λ=,故1243b a λλλ-=⎧⎪=⎨⎪=⎩,解得1226b a λ⎧=-⎪⎪=-⎨⎪=-⎪⎩,故(2,4,6)m =-,(1,2,3)n =--,(3,6,9)n m -=--,则||(3)n m -=-=故答案为:15.在数列{}n a ,{}n b 中,112a =,3110a =,且11112(2)n n n n a a a -++=≥,记数列{bn }的前n 项和为Sn ,且122n n S +=-,则数列{}n n a b ⋅的最小值为___________.【答案】23【分析】可由题意构建1n a ⎧⎫⎨⎬⎩⎭为等差,求出n a 通项公式,{}n b 可由1n n S S --得出n b 的通项公式,再利用作差法求出新数列n n a b ⋅单调性即可求出最小值.【详解】由11112(2)n n nn a a a -++=≥可得111111n n n n a a a a +--=-,即数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设公差为d , 首项112a =,311121028d a a =-=-=,可得4d =,则12(1)442n n n a =+-⨯=-,即142n a n =-, 由122n n S +=-,可得当2n ≥时,11222n n nn n n b S S +-=-=-=,112b S ==,代入后符合2n n b =,即{}n b 的通项公式为2n n b =,设新数列{}n c ,242nn n n c a b n ==-,11122(23)24(1)242(21)(21)n n n n n n c c n n n n +-+--=-=+--+-,当10n n c c +->时,得 1.5n >,即2n ≥时,{}n c 是递增数列; 当10n n c c +-<时,得 1.5n <,即21c c <,综上所述223c =是最小值,即数列{}n n a b ⋅的最小值为23,故答案为:2316.已知双曲线2322100x y C a b a b -=>>:(,)的右焦点为F ,离心率为102,点A 是双曲线C 右支上的一点,O 为坐标原点,延长AO 交双曲线C 于另一点B ,且AF BF ⊥,延长AF 交双曲线C 于另一点Q ,则||||QF BQ =___________. 【答案】22【分析】在1Rt F AF △中,由勾股定理可求得||AF 、1||AF 用含有a 的代数式表示,在1Rt F AQ △中,由勾股定理可求得||QF 用含有a 的代数式表示,在Rt BFQ △中,由勾股定理可求得||BQ 可用含有a 的代数式表示,进而求得结果. 【详解】如图所示,∵22101c b e a a ==+ ,则2252c a = ,2232b a =,由双曲线的对称性知:OA OB =,1OF OF = , 又∵AF BF ⊥,∴四边形1AFBF 为矩形,设||0AF m => ,则由双曲线的定义知:1||2AF a m =+,在1Rt F AF △中,22211||||||F F AF AF =+,即:2224(2)c a m m =++ ,整理得:22230m am a +-=,即:()(3)0m a m a -+= , ∵0m >,∴m a = , ∴1||3AF a =设||0QF n => ,则由双曲线的定义知:1||2QF a n =+,在1Rt F AQ △中,22211||||||F Q AQ AF =+,即:222(2)(3)()a n a a n +=++,解得:3n a = ,即:||3QF a =, 又∵1||||3BF AF a ==,∴在Rt BFQ △中,||BQ ==∴||||2QF BQ =四、解答题17.已知等差数列{}n a 的前n 项和为258,224,100n S a a S +==. (1)求{an }的通项公式; (2)若+11n n n b a a =,求数列{n b }的前n 项和Tn . 【答案】(1)31n a n =- (2)2(32)n nT n =+【分析】(1)由等差数列的通项公式以及等差数列的前n 项和公式展开可求得结果; (2)由裂项相消求和可得结果.【详解】(1)设等差数列{}n a 的公差为d ,由题意知,1112()4248(81)81002a d a d a d +++=⎧⎪⎨⨯-+=⎪⎩解得:123a d =⎧⎨=⎩ ∴1(1)23(1)31n a a n d n n =+-=+-=-. 故{}n a 的通项公式为31n a n =-. (2)∵1111()(31)(32)33132n b n n n n ==--+-+111111111111()()()()325358381133132111111111 ()325588113132111 =()3232=2(32)n T n n n n n nn =⨯-+⨯-+⨯-++--+=⨯-+-+-++--+⨯-++即:{}n b 的前n 项和2(32)n nT n =+.18.已知圆22:10C x y mx ny ++++=,直线1:10l x y --=,2:20l x y -=,且直线1l 和2l 均平分圆C . (1)求圆C 的标准方程(2)0y a ++-=与圆C 相交于M ,N 两点,且120MCN ∠=,求实数a 的值. 【答案】(1)()()22214x y -+-= (2)1a =或3a =-【分析】(1)根据直线1l 和2l 均平分圆C ,可知两条直线都过圆心,通过联立求出两条直线的交点坐标,由此得到圆心坐标即可得到圆的标准方程.(2)根据120MCN ∠=,及MCN △为等腰三角形可得到30CMN ∠=,可得圆心到直线的距离sin d r CMN =∠,再根据点到直线的距离公式即可求出实数a 的值.【详解】(1)因为直线1l 和2l 均平分圆C ,所以直线1l 和2l 均过圆心C ,因为1020x y x y --=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以直线1l 和2l 的交点坐标为()2,1,所以圆心C 的坐标为()2,1,因为圆22:10C x y mx ny ++++=,所以圆心坐标为,22m n ⎛⎫-- ⎪⎝⎭,所以2212m n ⎧-=⎪⎪⎨⎪-=⎪⎩,解得42m n =-⎧⎨=-⎩,所以圆C 的方程为224210x y x y +--+=,即()()22214x y -+-=, 所以圆C 的标准方程为()()22214x y -+-=.(2)由(1)得圆C 的标准方程为()()22214x y -+-=,圆心()2,1C ,半径2r =,因为120MCN ∠=,且MCN △为等腰三角形,所以30CMN ∠=, 因为CM CN r ==,所以圆心C 到直线3230x y a ++-=的距离sin 2sin301d r CMN =∠==, 根据点到直线的距离公式()222312311231a a d ++-+===+, 即12a +=,解得1a =或3a =-, 所以实数a 的值为1a =或3a =-.19.如图,在四棱锥P —ABCD 中,四边形ABCD 是菱形.1202DAB PA AD ∠===,,22PC PD ==,点E 是棱PC 的中点.(1)证明:PC ⊥BD .(2)求平面P AB 与平面BDE 所成角的余弦值. 【答案】(1)证明见解析 3【分析】(1)首先根据线面垂直的判定定理证明PA ⊥平面ABCD ,然后建立空间直角坐标系,通过空间向量垂直的判定条件证明PC BD ⊥即可;(2)通过第(1)问的空间直角坐标系,根据二面角夹角公式进行求解即可. 【详解】(1)120DAB ∠=,四边形ABCD 为菱形, 60CAD ∴∠=,又60ADC ∠=,ACD ∴为等边三角形,2AD =,2AC CD ∴==,2PA =,22=PC222PA AC PC +=,PA AC ∴⊥, 222PA AD PD +=,PA AD ∴⊥,ACAD A =,AC ⊂平面ABCD ,AD ⊂平面ABCD ,PA ∴⊥平面ABCD .过点A 作AF BC ⊥,则PA AF ⊥,AF AD ⊥,PA AD ⊥,∴分别以AF ,AD ,AP 所在直线为x ,y ,z 轴如图建立空间直角坐标系.2AB =,cos603AF AB ∴=⋅=,1BF =,2BC =,1FC ∴=.)3,0,0F∴,()002P ,,,)3,1,0C,()3,1,0B-,()0,2,0D ,()3,1,2PC ∴=-,()3,3,0BD =-,(33130PC BD ⋅=-⨯=,PC BD ∴⊥.(2)()0,0,2P ,)3,1,0C,E 为PC 中点,31,12E ⎫∴⎪⎪⎝⎭,设平面PAB 的法向量为()1111,,n x y z =,()0,0,2PA =-,()3,1,0AB =-,1112030z x y -=⎧⎪∴⎨-=⎪⎩,()11,3,0n ∴=.设平面BDE 的法向量为()2222,,n x y z =,()3,3,0BD =-,33,122DE ⎛⎫=- ⎪ ⎪⎝⎭,222223303302x y y z ⎧-+=⎪∴⎨-+=⎪,()23,1,0n ∴=, 设平面PAB 与平面BDE 夹角为θ, 则121213313cos n n n n θ⋅⨯+⨯==⋅∴平面PAB 与平面BDE 320.已知抛物线C :22y px =(0p >)的焦点F 关于抛物线C 的准线的对称点为()9,0P -. (1)求抛物线C 的方程;(2)过点F 作倾斜角为θ的直线l ,交抛物线C 于A ,B 两点,O 为坐标原点,记OAB 的面积为S ,求证:18sin S θ=. 【答案】(1)212y x = (2)证明见解析【分析】(1)根据抛物线的简单几何性质得到抛物线的焦点坐标和准线方程,结合条件得到()19222p p ⎡⎤⨯+-=-⎢⎥⎣⎦,即可求解. (2)设直线:3l x my =+,且cos sin m θθ=(()0,πθ∈),()11,A x y ,()22,B x y ,联立抛物线的方程结合韦达定理计算得到12y y -,结合图形得到1212OFA OFB S S S OF y y =+=⨯⨯-△△,即可求证.【详解】(1)由题意得:抛物线C 的焦点,02p F ⎛⎫⎪⎝⎭,准线方程0l :2p x =-,因为焦点,02p F ⎛⎫⎪⎝⎭关于准线0:2p l x =-的对称点为()9,0P -,则()19222p p ⎡⎤⨯+-=-⎢⎥⎣⎦,解得:6p , 所以抛物线C 的方程为:212y x =. (2)由(1)知,焦点()3,0F ,如图:过点F 作倾斜角为θ的直线l ,交抛物线C 于A ,B 两点, ∴直线l 的倾斜角θ不为0,则()0,πθ∈,即sin 0θ>,则设直线:3l x my =+,且cos sin m θθ=(()0,πθ∈),()11,A x y ,()22,B x y , 联立2312x my y x=+⎧⎨=⎩,得:212360y my --=,由()2124360m ∆=+⨯>,得:12121236y y m y y +=⎧⎨=-⎩,则12y y -==又222cos 111sin sin m θθθ⎛⎫+=+= ⎪⎝⎭,所以121212sin y y θ-=(()0,πθ∈), 又1212111222OFA OFB S S S OF y OF y OF y y =+=⨯⨯+⨯⨯=⨯⨯-△△,即1121832sin sin S θθ=⨯⨯=. 综上:OAB 的面积18sin S θ=,得证. 【点睛】方法点睛:(1)解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21.已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为yx =,且过点(3,.(1)求双曲线C 的标准方程;(2)若双曲线C 的右焦点为F ,点()0,4P -,过点F 的直线l 交双曲线C 于,A B 两点,且PA PB =,求直线l 的方程.【答案】(1)2213x y -=(2)0y =,或1233y x =-或2y x =-+.【分析】(1)根据题意得22921b a a b ⎧=⎪⎪⎨⎪-=⎪⎩,进而解方程即可得答案;(2)由题知()2,0F ,进而先讨论直线l 的斜率不存在不满足条件,再讨论l 的斜率存在,设方程为()2y k x =-,设()()1122,,,A x y B x y ,进而与双曲线方程联立得线段AB 中点为22262,1313k k E k k ⎛⎫-- ⎪--⎝⎭,再结合题意得PE AB ⊥,进而再分0k =和0k ≠两种情况讨论求解即可.【详解】(1)解:因为双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=,且过点(3,, 所以,22921b a a b ⎧=⎪⎪⎨⎪-=⎪⎩,解得221,3b a ==所以,双曲线C 的标准方程为2213x y -=(2)解:由(1)知双曲线C 的右焦点为()2,0F ,当直线l 的斜率不存在时,方程为:2l x =,此时,2,A A ⎛⎛ ⎝⎭⎝⎭,PA PB =≠= 所以,直线l 的斜率存在,设方程为()2y k x =-,所以,联立方程()22213y k x x y ⎧=-⎪⎨-=⎪⎩得()222213121230k x k x k -+--= 所以()()422214441331212120k k k k ∆=----=+>,且2130k -≠,所以,k ≠设()()1122,,,A x y B x y ,则2212122212123,1313k k x x x x k k --+=-=-- 所以()3121222124441313k ky y k x x k k k k+=+-=--=---, 所以,线段AB 中点为22262,1313k k E k k ⎛⎫-- ⎪--⎝⎭, 因为PA PB =,所以,点()0,4P -在线段AB 的中垂线上, 所以PE AB ⊥,所以,当0k =时,线段AB 中点为()0,0E ,此时直线l 的方程为0y =,满足题意;当0k ≠时,22222222424122613,66313PEAB kk k k k k k k k k k k k -+-+--+--====----, 所以,222613PE AB k k k k k k -+-⋅=⋅=--,整理得23210k k +-=,解得13k =或1k =-,满足k ≠综上,直线l 的方程为0y =,或1233y x =-或2y x =-+.22.已知椭圆2222:1(0x y C a b a b +=>>0x y -=相切.(1)求椭圆C 的标准方程;(2)若直线l :1y kx =+与椭圆C 交于,A B 两点,点P 是y 轴上的一点,过点A 作直线PB 的垂线,垂足为M ,是否存在定点P ,使得PB PM ⋅为定值?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)22164x y += (2)存在,1(0,)4P【分析】(1)根据题意得,a b ==,由C与直线0x y --=相切,联立方程得22c =,即可解决;(2)1122(0,),(,),(,)P t A x y B x y ,结合韦达定理得PB PM PB PA ⋅=⋅222292(1)(312)23t t k k -+-+-=+,即可解决.【详解】(1)由题知,,c a b a ==, 所以椭圆C 为2222132x y c c+=,即2222360x y c +-=,因为C与直线0x y --=相切,所以22223600x y c x y ⎧+-=⎪⎨-=⎪⎩,消去y得22223(60x x c +-=,所以2253060x c -+-=,所以236045(306)0c ∆=-⨯⨯-=,得22c =,所以椭圆C 的标准方程为22164x y +=; (2)设1122(0,),(,),(,)P t A x y B x y ,由221641x y y kx ⎧+=⎪⎨⎪=+⎩,得22222(23)690,3636(23)144720,k x kx k k k ++-=∆=++=+> 所以12122269,2323k x x x x k k +=-=-++, 所以()PB PM PB PA AM PB PA PB AM PB PA ⋅=⋅+=⋅+⋅=⋅1122(,)(,)x y t x y t =-⋅-1212(1)(1)x x kx t kx t =++-+- 221212(1)(1)()(1)k x x k t x x t =++-++-222296(1)()(1)()(1)2323kk k t t k k=+-+-⋅-+-++ 222292(1)(312)23t t k k -+-+-=+,所以2231292(1)32t t --+-=,解得14t =, 所以存在点1(0,)4P ,使得PB PM ⋅为定值.。
【高中教育】最新高二数学12月月考试题文1

——教学资料参考参考范本——【高中教育】最新高二数学12月月考试题文1______年______月______日____________________部门一、单项选择(每题5分,共12题)1、若命题“”为假,且“”为假,则( )p q ∧p ⌝A .或为假B .假C .真D .不能判断的真假p q qq q2、命题“”的否定为( )0200(0,),2x x x ∃∈+∞<A .B .2(0,),2x x x ∀∈+∞<2(0,),2x x x ∀∈+∞>C .D .2(0,),2x x x ∀∈+∞≥2(0,),2x x x ∃∈+∞≥3、命题“三角形ABC 中,若cosA<0,则三角形ABC 为钝角三角形”的逆否命题是( )A .三角形ABC 中,若三角形ABC 为钝角三角形,则cosA<0B .三角形ABC 中,若三角形ABC 为锐角三角形,则cosA≥0 C .三角形ABC 中,若三角形ABC 为锐角三角形,则cosA <OD .三角形ABC 中,若三角形ABC 为锐角或直角三角形,则cosA≥O 4、设集合,,则“x ∈A ”是“x ∈B ”的( ){}|20A x x =->{}2|20B x x x =->A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 5、 抛物线的焦点坐标是241x y =A .(,0)B .(0,)C .(0,1)D .(1,0)1611616、以双曲线的一个焦点为圆心,离心率为半径的圆的方程是1322=-x yA .B .4)2(22=+-y x 2)2(22=-+y xC .D .2)2(22=+-y x 4)2(22=-+y x7、短轴长为,离心率的椭圆两焦点为F1,F2,过F1作直线交椭圆于A 、B 两点,则△ABF2的周长为532=e A .3 B .6C .12D .248、已知双曲线的渐近线方程为,焦点坐标为,则双曲线方程为( )x y 2±=)(0,6),0,6(- A . B .18222=-y x 12822=-y xC .D .14222=-y x 12422=-y x9、已知P 为抛物线y2=4x 上一个动点,Q 为圆x2+(y ﹣4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .B .C .D .10、已知椭圆C :+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l 交C 于A ,B 两点.若△AF1B 的周长为4,则C 的方程为( )A.+=1B.+y2=1C.+=1D.+=111、已知椭圆的左焦点为与过原点的直线相交于两点,连接,若,则椭圆的离心率( )2222:1(0)x y C a b a b+=>>,F C ,A B ,AF BF 410,6,cos ABF 5AB AF ==∠=C e = A . B . C .D .5754746512、已知方程和(其中且),则它们所表示的曲线可能是 ( )221x y a b+=1x y a b +=0ab ≠a b ≠二、填空题(每题5分,共4题)13、若命题“”是假命题,则实数的取值范围是________.2,20x R x x m ∃∈++≤m14、已知椭圆E 的中心为坐标原点,离心率为,E 的右焦点与抛物线的焦点重合,是C 的准线与E 的两个交点,则 .15、 在平面直角坐标系中,已知△顶点,顶点在椭圆上,则= 。
高二12月数学月考试题

高二数学十二月份月考试卷时间:120分钟 满分:150分第I 卷(选择题共50分)一.选择题(每小题5分,共50分)1. 在△ABC 中,下列等式总能成立的是……………………………………………………( )A. acosC=ccosAB.bsinC=csinAC.absinC=bcsinBD.asinC=csinA2.在△ABC 中,a 2+b 2-c 2+2ab=0,则C 等于…………………………………………( )A .︒30B .45°C .︒120D .︒135 3. 12+与12-两数的等比中项是…………………………………………………………( )A. 1B. 1-C. 1±D. 21 4. ,已知{}n a 是一个等差数列,{}n a 的前n 项和为s n .若s 2=4,s 4=20,则该数列的公差d=( )A.7B.6C.3D.25.不等式x(1-x) >0的解集是……………………………………………………………………( )A .(-∞,-1)⋃ (0,+∞) B. (-1,0) C. (0,1) D. (-∞,0)⋃ (1,+∞)6.有下列四个命题:①“若x+y=0,则x,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题; ③“若q ≤1,则2x +2x+q=0有实数根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题其中是真命题的是………………………………………………………………………………( )A .①② B. ②③ C.①③ D.③④7.当0a ≠时,“1a >”是“11a<”………………………………………………………………( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件8.若抛物线y=a 2x 的焦点是F(0,2),则a 的值为 ………………………………………………( ) A. 81 B.-81 C. 8 D. -89. 与椭圆1422=+y x 有相同两焦点且过点(2,1)Q 的双曲线方程是…………………………( ) A. 1422=-y x B. 1222=-y x C. 13322=-y x D. 1222=-y x10. ①(文)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是………………………………………………………………( )A C .21 ②(理)已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为…………………………………………………………………………………………( )A .BC .56D . 65第Ⅱ卷(非选择题共100分)二.填空题(每小题5分,共20分)11.在等差数列{}n a 中,已知1254=+a a ,那么它的前8项和S 8等于 ___ ;12.设R y x ∈,,且4=+y x ,则 y x 55+的最小值为13.抛物线2x y -=的焦点坐标为 ___ ; 14.若焦点在x 轴上的椭圆2212x y m+=的离心率为12,则m= ___ ; 三.解答题(共80分,要有必要文字说明和解题过程)15(12分).在△ABC 中,已知b=2, c=1, B=45°,求边长a,角A,C.16(12分). 在等差数列{}n a中,a2=-20,a1+a9=-28(1)求{}n a的通项公式;(2)求{}n a的前n项和s n并求其最小值。
2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题(含解析)

2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题一、单选题1.设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】C【分析】先求出共轭复数再判断结果.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .本题考点为共轭复数,为基础题目.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E 为A 1C 1的中点,若BE =1xAA +y AB +z AD,则().A .x =1,12y =,12z =-B .x =1,12y =-,12z =C .12x =,y =1,12z =-D .12x =-,y =1,12z =【正确答案】B【分析】利用空间向量的加减及数乘运算法则进行计算,解决空间向量基本定理问题.【详解】由题意得:()11111111112BE BB B A A E AA AB A B A D =++=-++1111112222AA AB AB AD AA AB AD =-++=-+ ,所以111,,22x y z ==-=故选:B3.设非零向量a ,b满足a b a b +=- ,则A .a ⊥bB .=a bC .a ∥bD .a b> 【正确答案】A【详解】由a b a b +=- 平方得222222a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅= ,则a b ⊥ ,故选A.本题主要考查了向量垂直的数量积表示,属于基础题.4.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为.A .1415B .115C .29D.【正确答案】A【分析】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,可以求(P A ,运用公式()1()P A P A =-,求出()P A .【详解】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,所以232101(15C P A C =,因此114()1()=11515P A P A =--=,故本题选A.本题考查了求对立事件的概率问题,考查了运算能力.5.已知向量()0,1,0a = ,()3,0,2b = ,()2,1,3c =-,则有().A .23a c b=- B .a b c+= C .()b a c⊥- D .a b b c c a⋅=⋅=⋅ 【正确答案】C【分析】对于A ,利用向量的线性运算的坐标表示即可求解;对于B ,利用向量的摸的坐标表示即可求解;对于C ,利用向量的线性运算的坐标表示及向量垂直的坐标表示即可求解;对于D ,利用向量的数量积的坐标运算即可求解.【详解】对于A ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =- ,所以242,0,33b ⎛⎫= ⎪⎝⎭ ,2140,1,33c b ⎛⎫-=- ⎪⎝⎭ ,所以23a c b ≠- ,故A 不正确;对于B ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =-,所以1,a ==b == ,c == ,所以a b c +≠ ,故B 不正确;对于C ,因为()0,1,0a = ,()2,1,3c =- ,所以()2,0,3a c -=-,又()3,0,2b = ,所以()()3200320b a c ⋅-=⨯-+⨯+⨯= ,即()b ac ⊥-,故C 正确.对于D ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =- ,所以0310020a b ⋅=⨯+⨯+⨯=,()3201230b c ⋅=⨯+⨯+⨯-= ,()2011301c a ⋅=⨯+⨯+-⨯= ,所以a b b c c a ⋅=⋅≠⋅,故D 不正确.故选:C.6.已知sin cos αα-=α∈(0,π),则tan α=A .-1B .2C .2D .1【正确答案】A 【详解】sin cos αα-=()0,απ∈,12sin cos 2αα∴-=,即sin 21α=-,故34πα=1tan α∴=-故选A 7.曲线2122y x =+在点51,2⎛⎫- ⎪⎝⎭处的切线的倾斜角为()A .34πB .4πC .23πD .3π【正确答案】A【分析】根据导数的几何意义得到点51,2⎛⎫- ⎪⎝⎭处切线的斜率,再根据斜率求倾斜角即可.【详解】=y x ',所以在点51,2⎛⎫- ⎪⎝⎭处的切线的斜率为-1,倾斜角为34π.故选:A.8.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=【正确答案】A【详解】与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A9.四面体OABC 中,OA a = ,OB b = ,OC c =,点M 在线段OC 上,且2OM MC =,N 为BA 中点,则MN为()A .121232a b c-+ B .211322a b c-++C .112223a b c+-r r r D .221332a b c++ 【正确答案】C【分析】利用空间向量的线性运算及空间向量基本定理,结合图像即可得解.【详解】解:根据题意可得,()2111232223MN MO ON OC OA OB a b c =+=-++=+-.故选:C.10.椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其左焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为()A.,12⎤⎢⎥⎣⎦B.⎣⎦C.⎫⎪⎪⎣⎭D.⎣⎦【正确答案】B【分析】确定四边形1AFBF为矩形,得到1π4e α=⎛⎫+ ⎪⎝⎭,根据三角函数的性质得到离心率范围.【详解】设椭圆右焦点为1F ,连接1AF ,1BF ,AF BF ⊥,则四边形1AFBF 为矩形,则12sin 2cos 2AF AF AF BF c c a αα+=+=+=,故11πsin cos 4e ααα=+⎛⎫+ ⎪⎝⎭,ππ124α⎡⎤∈⎢⎥⎣⎦,,则ππ32π,4α⎡⎤+∈⎢⎥⎣⎦,πsin ,142α⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,23e ∈⎣⎦.故选:B.11.已知a<0,若直线1:210l ax y +-=与直线()2:140l x a y +++=平行,则它们之间的距离为()A.4B.2CD4【正确答案】A【分析】根据平行关系确定参数,结合平行线之间的距离公式即可得出.【详解】解:直线1:210l ax y +-=与直线()2:140l x a y +++=平行,()120a a ∴+-=,解得2a =-或1a =,又a<0,所以2a =-,当2a =-时,直线1:2210l x y -+=与直线2:2280l x y -+=距离为4=.故选:A12.若圆221x y +=上总存在两个点到点(,1)a 的距离为2,则实数a 的取值范围是()A .(-⋃B .(-C .(1,0)(0,1)-D .(1,1)-【正确答案】A【分析】将问题转化为圆22()(1)4x a y -+-=与221x y +=相交,从而可得2121-<+,进而可求出实数a 的取值范围.【详解】到点(,1)a 的距离为2的点在圆22()(1)4x a y -+-=上,所以问题等价于圆22()(1)4x a y -+-=上总存在两个点也在圆221x y +=上,即两圆相交,故2121-<+,解得0a -<<或0a <<所以实数a 的取值范围为(-⋃,故选:A .二、填空题13.已知椭圆2214x y +=,过11,2P ⎛⎫ ⎪⎝⎭点作直线l 交椭圆C 于A ,B 两点,且点P 是AB 的中点,则直线l 的方程是__________.【正确答案】220x y +-=【分析】设1(A x ,1)y ,2(B x ,2)y ,利用“点差法”、线段中点坐标公式、斜率计算公式即可得出.【详解】解:设1(A x ,1)y ,2(B x ,2)y ,则221144x y +=,222244x y +=,12121212((4)0)))((x x x x y y y y ∴+-++-=.1(1,)2P 恰为线段AB 的中点,即有122x x +=,121y y +=,1212()2()0x x y y ∴-+-=,∴直线AB 的斜率为121212y y k x x -==--,∴直线AB 的方程为11(1)22y x -=--,即220x y +-=.由于P 在椭圆内,故成立.故220x y +-=.14.过点()1,2且与圆221x y +=相切的直线的方程是______.【正确答案】1x =或3450x y -+=【分析】当直线斜率不存在时,可得直线:1l x =,分析可得直线与圆相切,满足题意,当直线斜率存在时,设斜率为k ,可得直线l的方程,由题意可得圆心到直线的距离1d r ==,即可求得k 值,综合即可得答案.【详解】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故1x =或3450x y -+=15.已知椭圆2211612x y +=的左、右焦点分别为12,,F F AB 是椭圆过焦点1F 的弦,则2ABF △的周长是___.【正确答案】16根据椭圆的定义求解.【详解】由椭圆的定义知12122,2,BF BF a AF AF a ⎧+=⎪⎨+=⎪⎩所以22||416AB AF BF a ++==.故16.16.已知P 为圆22(1)1x y ++=上任意一点,A ,B 为直线3470x y +-=上的两个动点,且||2AB =,则PAB 面积的最大值是___________.【正确答案】3【分析】直接利用直线和圆的位置关系,利用点到直线的距离公式和三角形的面积公式的应用求出结果.【详解】解:根据圆的方程,圆心(1,0)-到直线3470x y +-=的距离2d =,所以圆上的点P 到直线的最大距离213max d =+=,此时最大面积13232PAB S =⨯⨯=△.故3.三、解答题17.已知直线12:310,:(2)0l ax y l x a y a ++=+-+=.(1)若12l l ⊥,求实数a 的值;(2)当12l l //时,求直线1l 与2l 之间的距离.【正确答案】(1)32a =;(2【分析】(1)由垂直可得两直线系数关系,即可得关于实数a 的方程.(2)由平行可得两直线系数关系,即可得关于实数a 的方程,进而可求出两直线的方程,结合直线的距离公式即可求出直线1l 与2l 之间的距离.【详解】(1)由12l l ⊥知3(2)0a a +-=,解得32a =.(2)当12l l //时,有(2)303(2)0a a a a --=⎧⎨--≠⎩,解得3a =.此时12:3310,:30l x y l x y ++=++=,即233:90x y l ++=,则直线1l 与2l 之间的距离d =本题考查了由两直线平行求参数,考查了由两直线垂直求参数的值,属于基础题.18.在△ABC 中,内角A,B ,C 的对边分别为a ,b ,c ,且.(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值【正确答案】(1)B =60°(2)a c ==【详解】(1)由正弦定理得【考点定位】本题主要考察三角形中的三角函数,由正余弦定理化简求值是真理19.如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别为1AD 、1CD 中点.(1)求证:EF BD ⊥;(2)求两异面直线BD 与1CD 所成角的大小.【正确答案】(1)见解析(2)3π【分析】(1)利用向量乘积为0证明即可;(2)利用向量法求异面直线所成的角.【详解】(1)如图,建立空间直角坐标系D xyz -则(0,0,0),(2,2,0),(1,0,1),(0,1,1)D BEF (1,1,0),(2,2,0)EF BD =-=--因为2200EF BD ⋅=-+=所以EF BD ⊥,即EF BD⊥(2)11(0,2,0),(0,0,2),(0,2,2)C D CD =-1111cos ,2||BD CD BD CD BD CD ⋅==设异面直线BD 与1CD 所成角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦所以3πθ=,即异面直线BD 与1CD 所成角的大小为3π20.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2BC =2CC 1=2,点E 是DC的中点.(1)求点D 到平面AD 1E 的距离;(2)求证:平面AD 1E ⊥平面EBB 1.【正确答案】(2)证明过程见解析.【分析】(1)建立空间直角坐标系,求出平面1D AE 的法向量,利用点到平面距离公式求出答案;(2)利用空间向量的数量积为0证明出1,EA EB EA BB ⊥⊥,从而证明出线面垂直,进而证明出面面垂直.【详解】(1)以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,则()()()()()()110,0,0,1,0,0,0,1,0,0,0,1,1,2,0,1,2,1D A E D B B ,设平面1D AE 的法向量为(),,m x y z = ,则()()()()1,,1,0,10,,1,1,00m D A x y z x z m EA x y z x y ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩,令1x =得:1,1y z ==,所以()1,1,1m = ,则点D 到平面AD 1E 的距离为DA m d m⋅= ;(2)()()11,1,0,0,0,1EB BB == ,所以()()1,1,01,1,0110EA EB ⋅=-⋅=-= ,()()11,1,00,0,10EA BB ⋅=-⋅= ,所以1,EA EB EA BB ⊥⊥,因为1EB BB B =,1,EB BB ⊂平面1EBB ,所以EA ⊥平面1EBB ,因为EA ⊂平面1D AE ,所以平面1D AE ⊥平面1EBB .21.某企业为了了解职工对某部门的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示):(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分的中位数与平均值;(3)从评分在[)40,60的受访职工中,随机抽取2人,求此2人评分都在[)40,50的概率.【正确答案】(1)0.006a =;(2)中位数为5357,均值为76.2;(3)110【分析】(1)根据频率和为1可求频率分布直方图中a 的值;(2)根据组中值可求平均值,根据前3组、前4组的频率和可求中位数.(3)利用古典概型的概率计算公式可求概率.【详解】(1)由直方图可得(0.0040.0180.02220.028)101a +++⨯+⨯=,故0.006a =.(2)由直方图可得平均数为(0.004450.006550.018950.022650.022850.02875)1076.2⨯+⨯+⨯+⨯+⨯+⨯⨯=.前3组的频率和为0.0040.0060.022)100.32++⨯=,前3组的频率和为0.0040.0060.0220.028)100.6+++⨯=,故中位数在[)70,80,设中位数为x ,则700.320.280.510x -+⨯=,故5357x =.故中位数为5357.(3)评分在[)40,60的受访职工的人数为()0.0040.00610505+⨯⨯=,其中评分在[)40,50的受访职工的人数为2,记为,a b在[)50,60的受访职工人数为3,记为,,A B C ,从5人任取2人,所有的基本事件如下:{}{}{}{}{}{}{}{}{}{},,,,,,,,,,,,,,,,,,,a b a A a B a C b A b B b C A B A C B C ,基本事件的总数为10,而2人评分都在[)40,50的基本事件为{},a b ,故2人评分都在[)40,50的概率为110.22.如图,已知椭圆2222:1(0)x y C a b a b +=>>的左、右顶点分别是,A B ,且经过点1,2⎛⎫- ⎪ ⎪⎝⎭,直线:1l x ty =-恒过定点F 且交椭圆于,D E 两点,F 为OA 的中点.(1)求椭圆C 的标准方程;(2)记BDE △的面积为S ,求S 的最大值.【正确答案】(1)2214x y +=(2)2【分析】(1)由直线过定点坐标求得a ,再由椭圆所过点的坐标求得b 得椭圆方程;(2)设()()1122,,,E x y D x y ,直线l 方程与椭圆方程联立消元后应用韦达定理得12122223,44t y y y y t t +==-++,计算弦长DE ,再求得B 到直线l 的距离,从而求得三角形面积,由函数的性质求得最大值.【详解】(1)由题意可得,直线:1l x ty =-恒过定点(1,0)F -,因为F 为OA 的中点,所以||2OA =,即2a =.因为椭圆C经过点1,⎛ ⎝⎭,所以2222112b ⎛ ⎝⎭+=,解得1b =,所以椭圆C 的方程为2214x y +=.(2)设()()1122,,,E x y D x y .由22441x y x ty ⎧+=⎨=-⎩得()224230,0t y ty +--=∆>恒成立,则12122223,44t y y y y t t +==-++,则||ED ===又因为点B 到直线l 的距离d =所以11||22S ED d =⨯⨯==令m =26611m m m m==++,因为1y m m=+,m 时,2110y m'=->,1y m m =+在)m ∈+∞上单调递增,所以当m时,min 13m m ⎛⎫+= ⎪⎝⎭时,故max 2S =.即S的最大值为方法点睛:本题求椭圆的标准方程,直线与椭圆相交中三角形面积问题,计算量较大,属于难题.解题方法一般是设出交点坐标,由(设出)直线方程与椭圆方程联立方程组消元后应用韦达定理,然后由弦长公式求得弦长,再求得三角形的另一顶点到此直线的距离,从而求得三角形的面积,最后利用函数的性质,基本不等式等求得最值.。
高二12月月考(数学)试题含答案

高二12月月考(数学)(考试总分:150 分)一、单选题(本题共计8小题,总分40分)1.(5分)1.直线x﹣y+1=0的斜率为()A.B.﹣C.D.﹣2.(5分)2.已知向量=(2,3,1),=(1,2,0),则|+|等于()A.B.3C.D.93.(5分)3.如图,在三棱柱ABC﹣A1B1C1中,M为A1C1的中点,若=,=,=,则下列向量与相等的是()A.﹣﹣+B.+﹣C.﹣++D.++4.(5分)4.《周髀算经》是中国最古老的天文学和数学著作,书中提到冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为()A.6.5尺B.13.5尺C.14.5尺D.15.5尺5.(5分)5.在正方体ABCD﹣A1B1C1D1中,M、N分别为棱A1B1和BB1的中点,那么异面直线AM和CN所成角的余弦值是()A.B.C.D.﹣6.(5分)6.历时23天嫦娥五号成功携带月球样品返回地球,标志着中国航天向前迈出一大步.其中2020年11月28日晚,嫦娥五号成功进行首次近月制动,进入一个大椭圆轨道.该椭圆形轨道以月球球心为一个焦点F1,若其近月点A(离月球表面最近的点)与月球表面距离为r1公里,远月点B(离月球表面最远的点)与月球表面距离为r2公里,并且F1,A,B在同一直线上已知月球的半径为R公里,则该椭圆形轨道的离心率为()A.B.C.D.7.(5分)7.已知动点P在直线l1:3x﹣4y+1=0上运动,动点Q在直线l2:6x+my+4=0上运动,且l1∥l2,则|PQ|的最小值为()A.B.C.D.8.(5分)8.若等差数列{a n}的前n项和为S n,首项a1>0,a2020+a2021>0,a2020•a2021<0,则满足S n>0成立的最大正整数n是()A.4039B.4040C.4041D.4042二、多选题(本题共计4小题,总分20分)9.(5分)9.关于双曲线C1:=1与双曲线C2:=1,下列说法正确的是()A.它们的实轴长相等B.它们的渐近线相同C.它们的离心率相等D.它们的焦距相等10.(5分)10.已知圆C1:x2+y2=1和圆C2:x2+y2﹣4x=0的公共点为A,B,则()A.|C1C2|=2B.直线AB的方程是x=C.AC1⊥AC2D.|AB|=11.(5分)11.若数列{a n}满足a1=1,a2=1,a n=a n﹣1+a n﹣2(n≥3,n∈N+),则称数列{a n}为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用则下列结论成立的是()A.a7=13B.a1+a3+a5+……+a2019=a2020C.S7=54D.a2+a4+a6+……+a2020=a202112.(5分)12.已知正方体ABCD﹣A1B1C1D1的棱长为2,点E,F在平面A1B1C1D1内,若|AE|=,AC⊥DF,则()A.点E的轨迹是一个圆B.点F的轨迹是一个圆C.|EF|的最小值为﹣1D.AE与平面A1BD所成角的正弦值的最大值为三、填空题(本题共计3小题,总分15分)13.(5分)13.若直线x﹣y+1=0与直线mx+3y﹣1=0互相垂直,则实数m的值为.14.(5分)14.若双曲线的渐近线为,则双曲线C的离心率为.15.(5分)16.在平面直角坐标系中,O为坐标原点,过点(,0)的直线l与圆C:x2+y2﹣4x+8=0交于A,B两点,则四边形OACB面积的最大值为.四、解答题(本题共计7小题,总分75分)16.(5分)15.已知四面体ABCD的顶点分别为A(2,3,1),B(1,0,2),C(4,3,﹣1),D(0,3,﹣3),则点D到平面ABC的距离.17.(10分)17.在:①圆C与y轴相切,且与x轴正半轴相交所得弦长为2;②圆C经过点A(4,1)和B(2,3);③圆C与直线x﹣2y﹣1=0相切,且与圆Q:x2+(y﹣2)2=1相外切。
山西省太原五中2013-2014学年高二数学12月月考试题 文

太 原 五 中2013—2014学年度第一学期月考(12月)高 二数 学(文)一.选择题(本题共10小题,每小题4分,共40分;在每小题给出的四个选项中,有且只有一项是正确的)1.椭圆191622=+y x 的焦距为( ) A. 10 B.5 C.7 D.722.已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是( ) A .1<k B .2>k C .1<k 或2>k D .21<<k3.已知21,F F 是椭圆)0(12222>>=+b a by a x 的两个焦点,AB 是过1F 的弦,则2ABF ∆的周长是 ( )A.a 2B.a 4C.a 8D.b a 22+ 4. 抛物线)0(42>=p px y 上一点M 到焦点的距离为a ,则M 到y 轴距离为 ( ) A.p a - B. p a + C. 2pa -D. p a 2+ 5. 一动圆与圆221x y +=外切,同时与圆226910x y x +--=内切,则动圆的圆心在( )A. 一个椭圆上B.一条抛物线上C.双曲线的一支上D. 一个圆上6. 设椭圆12622=+y x 和双曲线1322=-y x 的公共焦点为21,F F ,P 是两曲线的一个公共点,则cos 21PF F ∠的值等于( )A.41 B.31 C.91 D.537. 已知双曲线的一个焦点与抛物线y x 202=的焦点重合,且其渐近线的方程为043=±y x ,则该双曲线的标准方程为( )A.116922=-y x 192=-y C. 116922=-x y D. 191622=-x y 8.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与22:650C x y x +-+=相切,则该双曲线离心率等于( )A B C .32D 9.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是 ( )A .25B .2.2210. 抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( )A .23B .2C .25D .3二.填空题(本题5个小题,共4⨯5=20分)11.设21,F F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上满足 9021=∠PF F ,那么21PF F ∆的面积是12.已知圆16)1(22=++y x ,圆心为)0,1(-C ,点)0,1(A , Q 为圆上任意一点,AQ 的垂直平分线交CQ 于点M ,则点M 的轨迹方程为 .13.已知F 是双曲线112422=-y x 的左焦点,定点)4,1(A ,点P 是双曲线右支上的动点, 则||||PA PF +的最小值为14. 已知椭圆22:12x c y +=的两焦点为12,F F , 点00(,)P x y 满足2200012x y <+<,则 |1PF |+ 2PF |的取值范围为____ ___15.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为)0,(),0,21c F c F -(,若椭圆上存在点P 使1221sin sin F PF cF PF a ∠=∠,则该椭圆的离心率的取值范围为___三.解答题(本题4个小题,共4⨯10=40分)16. (本小题10分)在直角坐标系中,O 为坐标原点,设过点)2,3(P 的直线l ,与x 轴交于点)0,2(F ,如果一个椭圆经过点P ,且以点F 为它的一个焦点. (1)求此椭圆的标准方程;(2)在(1)中求过点)0,2(F 的弦AB 的中点M 的轨迹方程.17.(本小题10分)已知抛物线x y -=2与直线)1(+=x k y 交于B A ,两点. (1) 求证:OB OA ⊥;(2)当AOB ∆的面积等于10时,求k 的值.18.(本小题10分)设椭圆C: ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的长度 。
广东省珠海市第二中学2024_2025学年高二数学12月月考试题

广东省珠海市其次中学2024-2025学年高二数学12月月考试题一、单项选择题(本题共8小题,每小题5分,共40分) 1.抛物线24x y =-的焦点到准线的距离为 ( ) A.4 B.2 C.1 D .122.已知R x ∈,设p :1-<x ,q ⌝:022>--x x ,则下列命题为真的是 ( ) A .若p 则q B .若q ⌝则p C .若q 则p ⌝ D .若p ⌝则q3.已知100件产品中有5件次品,从这100件产品中随意取出3件,设E 表示事务“3件产品 全不是次品”,F 表示事务“3件产品全是次品”,G 表示事务“3件产品中至少有1件是 次品”,则下列结论正确的是 ( )A .F 与G 互斥B .E 与G 互斥但不对立 C.,,E F G 随意两个事务均互斥 D .E 与G 对立4.已知(2,1,4),(1,1,2),(7,5,)a b c m =-=--=,若,,a b c 共面,则实数m 的值为( ) A.607 B.627C.12D.14 5.某创业公司共有36名职工,为了了解该公司职工的年龄构成状况,随机采访了9位代表, 得到的数据分别为36,36,37,37,40,43,43,44,44,若用样本估计总体,则年龄在 (),x s x s -+内的人数占公司人数的百分比是 ( ) (其中x 是平均数,s 为标准差,结果精确到1%) A .14% B .25% C .56% D .67% 6.如图所示,已知1111ABCD A B C D -是平行六面体.设ACBD M =, N 是1BC 上靠近 点1C 的四等分点,若1MN xAB yAD zAA =++,则,,x y z 的值为( )A.113,,244x y z === B.113,,424x y z ===C.131,,244x y z === D.311,,424x y z === 7.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,实轴的两个端点分 别为1A 、2A ,虚轴的两个端点分别为1B 、2B .以坐标原点O 为圆心,12||B B 为直径的 圆()O b a >与双曲线交于点M (位于其次象限),若过点M 作圆的切线恰过左焦点1F ,则双曲线的离心率是( )A.3B.2C.62 D.728.抛物线28y x =的焦点为F ,设1122(,),(,)A x y B x y 是抛物线上的两个动点,若122343x x AB ++=, 则AFB ∠的最大值为( ) A.3π B.23π C.34π D.56π 二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分) 9.给出下列命题,正确的是 ( )A.命题“R x ∈∃,使得1<x ”的否定是“∀x R ∈,都有1-≤x 或1≥x ”;B.对于命题p 和命题q ,“q p ∧为真命题”的必要不充分条件是“q p ∨为真命题”;C.若{}n a 为等差数列,,,,p q m n N *∈,则“m n p q +=+”是“m n p q a a a a +=+” 的充要条件;D.若0,0a b >>且21a b +=,则115.8a b+>; 10.统计某校n 名学生的某次数学同步练习成果(满分150分),依据成果依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110,则以下说法正确的是( )A.0.031m =B.800n =C.100分以下的人数为60D.分数在区间[)120,140的人数占大半.11.在三棱锥P ABC -中,(0,1,0),(3,1,0),(0,3,0),(0,1,2)A B C P ,则( ) A.(3,0,0)AB =- B.2tan ,3BP AB <>=-C.两异面直线AC 与PB 所成角为060 D.2P ABC V -=12.已知双曲线22:14x y C m m+=+,给出下列四个结论, 正确的是 ( ) A.m 的取值范围是()4,0- B.C 的焦距与m 的取值无关C.当C 的离心率不小于2时, m 的最小值为3-D.存在实数m ,使得点()2,m m 在C 上三、填空题(本题共6个小题,每小题5分,共30分)13.某公司生产,,A B C 三种不同型号的轿车,产量之比依次为2:3:4,为检验公司的产品质量, 用 分层抽样的方法抽取一个容量为n 的样本,若样本中A 种型号的轿车比B 种型号的轿车少8辆, 则n = .14.已知双曲线222:1(0)5x y C a a -=>的焦距为10, 则双曲线C 的渐近线方程为 . 15.已知[]0:0,1p x ∃∈,使得00x a e-≥成立;:q 对x R ∀∈,240x x a ++>恒成立. 若p q ∧⌝是真命题,则实数a 的取值范围是 .16.阳马,中国古代算数中的一种几何形体,是底面为长方形,一侧棱垂直于底面的四棱锥.在 阳马P ABCD -中,PC 为阳马P ABCD -中最长的棱,1,2,3AB AD PC ===,若在阳马P ABCD -的外接球内部随机取一点,则该点位于阳马内的概率为 .17.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC ∆的中心,则1AB 与底面ABC 所成角的正弦值等于 .18.已知椭圆22:197x y C +=,F 为其左焦点,过原点O 的直线l 交椭圆于,A B 两点,点A 在其次象限,且FAB BFO ∠=∠,则直线l 的斜率为 .四、解答题(本题共5个小题,共60分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题12分)有3名男同学,,A B C 和3名女同学,,X Y Z 参与某夏令营,其年级状况如下表:现从这6 (1)用表中字母列举出全部可能的结果;(2)设M 为事务“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事务M 发生的概率.20.(本小题12分)已知动圆M 过点(2,0),被y 轴截得的弦长为4. (1)求圆心M 的轨迹C 的方程;(2) 若P 为x 轴的负半轴上随意一点,点F 的坐标为()1,0,Q 为轨迹C 上随意一点,且QF PF =,求证:直线PQ 与抛物线C 有且只有一个公共点.21.(本小题12分)某公司为确定下一年度投入某种产品的宣扬费,需了解年宣扬费对年销售量(单位:t )的影响.该公司对近5年的年宣扬费和年销售量数据进行了探讨,发觉年宣扬费x (万元)和年销售量y (单位:t )具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.x (万元)2 4 53 6 y (单位:t ) 2.544.536(1)依据表中数据建立年销售量y 关于年宣扬费x 的回来方程;(2)已知这种产品的年利润z 与x ,y 的关系为20.05 1.85z y x =--,依据(1)中的结果回答下列问题:① 当年宣扬费为10万元时,年销售量及年利润的预报值是多少?② 估算该公司应当投入多少宣扬费,才能使得年利润与年宣扬费的比值最大.附:回来方程ˆˆˆy bx a =+中的斜率和截距的最小二乘估计公式分别为()()()1111112221111ˆnni i n ni i x ynx yx x yybx nxx x====---==--∑∑∑∑,ˆˆay bx =-. 参考数据:11188.5S i x y==∑,21190Si x ==∑.22.(本小题12分)如图,在三棱柱111ABC A B C -中,AB ⊥平面11BB C C ,E 是1CC 的中点1,BC =12BB =,0160BCC ∠=.(1)证明:1B E AE ⊥; (2)若2AB =,求二面角11A B E A --的余弦值.23.(本小题12分)已知椭圆2222:1(0)x y C a b a b+=>>经过点3(1,)2P ,且离心率12e =.(1)求椭圆C 的方程;(2)若,M N 是椭圆C 上异于P 的两点,直线,PM PN 的斜率分别为12,k k 且121,,k k PD MN +=-⊥D 为垂足.是否存在定点Q ,使得DQ 为定值? 若存在,恳求出Q 点坐标及定值;若不存在,请说明理由.珠海二中高二月考数学试题参考答案BCDD CAAB 9. ABD 10. AC 11. BD 12. ABD 13. 72 14.12y x =±15.[]1,4 16.827π 17.23 18.73- 19.(1)从这6名同学中随机选出2人参与学问竞赛的全部可能结果为(A ,B ),(A ,C ),(A ,X ),(A ,Y ),(A ,Z ),(B ,C ),(B ,X ),(B ,Y ),(B ,Z ),(C ,X ),(C ,Y ),(C ,Z ),(X ,Y ),(X ,Z ),(Y ,Z ),共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的全部可能结果为 (A ,Y ),(A ,Z ),(B ,X ),(B ,Z ),(C ,X ),(C ,Y ),共6种. 因此,事务M 发生的概率P (M )==.20.(1)设动圆圆心(,)M x y ,由题意可得:22222(2)+=-+x x y 24y x =, 所以,动圆圆心M 的轨迹C 的方程:24=y x .(2)设点Q 的坐标为(),m n ,有24n m =,设点P 的坐标为()(),00t t <.又||1QF m =+,||1PF t =-,||||QF PF =, 所以11,m t +=-得(0)t m m =-> 直线PQ 的斜率22()224n nn k n m m mn ====--⨯, 所以直线PQ 的方程为2()y x m n =+,即直线PQ 的方程为22n y x n =+. 解2422y x n y x n ⎧=⎪⎨=+⎪⎩得24n x y n =⎧⎪⎨⎪⎩=即方程组仅有一组解, 所以直线PQ 与抛物线C 有且只有一个公共点. 21.解:(1)由题意2453645x ++++==, 2.5 4.543645y ++++==,21222188.554ˆ0.859054ni ii nii x y nx ybxnx ==--⨯∴===-⨯-∑∑, ˆˆ40.8540.6ay bx =-=-⨯=, 0.80.ˆ56yx ∴=+. (2)①由(1)得220.05 1.850.050.85 1.25z y x x x =+--=--,当10x =时,0.85100.ˆ69.1y∴=⨯+=,20.05100.8510 1.25 2.25z =-⨯⨯-=+. 即当年宣扬费为10万元时,年销售量为9.1,年利润的预报值为 2.25. ②令年利润与年宣扬费的比值为w ,则()1.250.050.850w x x x=--+>,1.25 1.250.050.850.050.85w x x x x ⎛⎫=--+=-++≤- ⎪⎝⎭1.2520.050.850.35x x ⋅+=. 当且仅当 1.250.05x x=即5x =时取最大值.故该公司应当投入5万元宣扬费,才能使得年利润与年宣扬费的比值最大.22.解:(1)证明:连接BC 1,BE ,因为在△BCC 1中,BC=1,CC 1=BB 1=2,∠BCC 1=60°,所以BC ⊥BC 1,所以BE=CC 1=1. 因为在△EC 1B 1中,B 1E==,所以BE 2+B 1E 2=B,即B 1E ⊥BE ,又AB ⊥平面BB 1C 1C ,且B 1E ⊂平面BB 1C 1C , 所以B 1E ⊥AB ,AB ∩BE=B ,所以B 1E ⊥平面ABE , 因为AE ⊂平面ABE ,所以B 1E ⊥AE.(2)以B 为原点建立如图所示的空间直角坐标系,则A (0,0,),B 1(-1,,0),E ,,0,A 1(-1,,),所以=,-,0,=(-1,,-),=,-,-,设平面AB 1E 的法向量为n=(x ,y ,z ),平面A 1B 1E 的法向量为m=(a ,b ,c ),由得取x=1,则n=(1,,),由得取a=1,则m=(1,,0).所以cos m ,n ===,由图可知二面角A-B 1E-A 1为锐角,所以二面角A-B 1E-A 1的余弦值为. 23.(1)由12c e a ==,得2222222,4,3a c a c b a c c ===-=.2222223311221,143a b c c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=∴+= 解得2221,3, 4.c b a ===所以椭圆C 的方程为22143x y +=(2)设1122(,),(,)M x y N x y ,由题意得直线MN 的斜率肯定存在,直线MN 的方程为y kx m =+,联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y ,得()2224384120k x kmx m +++-= 2222644(43)(412)0k m k m ∆=-+->,得22430k m -+>21212228412,4343km m x x x x k k -+=-=++ 1212211212123333()(1)()(1)222211(1)(1)y y y x y x k k x x x x ----+--+=+=---- 12211233()(1)()(1)22(1)(1)kx m x kx m x x x +--++--=-- 121212121232()()()(23)2()1kx x m x x k x x m x x x x +-+-+--=-++22222224123882()()()()(23)43243434128()14343m km km k m k m k k k m kmk k -+------+++=---+++22224126129412843k km m k m km k -+-++=-+++ 由121k k +=-,得2281023120k km m m k ++--=, 即()()22340k m k m +-+=当2230k m +-=时,直线33()(1)22y kx k k x =+-=-+过定点3(1,)2P ,舍去. 当40k m +=,直线4(4)y kx k k x =-=-过定点(4,0)T 此时,222433120k m k -+=->,得1122k -<<,存在直线过定点(4,0)T . 当Q 为,P T 的中点,即53(,)24Q,此时124DQ PT ===.。
2023-2024学年湖南省长沙市宁乡市第一高二上学期12月月考数学质量检测模拟试题(含解析)

2023-2024学年湖南省长沙市宁乡市第一高二上册12月月考数学模拟试题一、单选题1.已知正三棱柱111A B C ABC -,M 为棱BC 上靠近点C 的三等分点,则1A M =()A .1111123AC CC C B -+ B .111111122A C AB B B++C .1111113A C CBC C++ D .1111233A C ABC C++【正确答案】C【分析】根据空间向量的线性运算直接求解即可.【详解】1111111111111111133A M AC C M AC C C CM AC C C CB AC C B C C =+=++=++=++.故选:C.2.空间,,,A B C D 四点共面,但任意三点不共线,若P 为该平面外一点且5133=--PA PB xPC PD ,则实数x 的值为()A .43-B .13-C .13D .43【正确答案】C【分析】先设AB mAC nAD =+,然后把向量AB ,AC ,AD 分别用向量PA ,PB ,PC ,PD 表示,再把向量PA 用向量PB ,PC ,PD 表示出,对照已知的系数相等即可求解.【详解】解:因为空间A ,B ,C ,D 四点共面,但任意三点不共线,则可设AB mAC nAD =+,又点P 在平面外,则()()PB PA m PC PA n PD PA -=-+- ,即(1)m n PA PB mPC nPD ++=-++,则1111m n PA PB PC PD m n m n m n -=+++-+-+- ,又5133=-- PA PB xPC PD ,所以15131113m n m x m n n m n -⎧=⎪+-⎪⎪=-⎨+-⎪⎪=-⎪+-⎩,解得15m n ==,13x =,故选:C .3.若直线1l :430x y --=与直线2l :310x my -+=(m ∈R )互相垂直,则m =()A .34B .34-C .12D .12-【正确答案】B【分析】根据两直线垂直可得斜率之积为-1,即可求解.【详解】由题意得,当0m =时,直线2:310l x +=,与直线1l 不垂直,故0m ≠,直线1l 的斜率为14,直线2l 的斜率为3m,所以1314m⨯=-,解得34m =-,故选:B .4.已知圆22:20C x y y +-=的最大值为()A .4B .13C1+D.11+【正确答案】C.【详解】解:d ==,上式表示圆C 上的点(,)x y 到点(1,2)-的距离,因为圆22:(1)1C x y +-=,圆心(0,1)C ,半径1r =.显然1max d r =+=+.故选:C .5.已知圆22:25C x y +=与直线():3400l x y m m -+=>相切,则圆C 关于直线l 对称的圆的方程为()A .22(3)(4)16x y ++-=B .22(3)(4)25x y ++-=C .22(6)(8)16x y ++-=D .22(6)(8)25x y ++-=【正确答案】D【分析】利用圆与直线相切,求出m ,然后求出过圆C 圆心垂直于直线l 的直线方程,联立求出交点,再利用中点公式求出关于直线对称后圆的圆心坐标,半径没有改变,即可解决问题.【详解】由圆22:25C x y +=的圆心为原点O ,半径为5,又圆C 与直线l 相切,则O 到直线l 的距离为5d =,则5d ==,解得25m =,设过O 且与l 垂直的直线为0l ,则0l :430x y +=,联立4303342504x y x x y y +==-⎧⎧⇒⎨⎨-+==⎩⎩,得直线l 与0l 的交点为()3,4-,设圆心(0,0)O 关于点()3,4-的对称点为(),p n ,由中点公式有03620842p p nn +⎧-=⎪=-⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩所以圆心(0,0)O 关于点()3,4-的对称点为()6,8-,因此圆C 关于直线l 对称的圆的方程为:22(6)(8)25x y ++-=,故选:D.6.命题甲:动点P 到两个定点,A B 的距离之和||||2(PA PB a +=常数0)a >;命题乙:P 点的轨迹是椭圆.则命题甲是命题乙的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件【正确答案】B【详解】由题意得,当动点P 到两个定点,A B 的距离之和2(PA PB a AB +=>常数0)a >时,点P 的轨迹为椭圆,所以甲是乙的必要不充分条件,故选B .7.已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为()A BC .2D .3【正确答案】A【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2by a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.8.已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,直线l 过1F ,且l 与一条渐近线平行,若2F 到l 的距离大于a ,则双曲线C 的离心率的取值范围为()A .)+∞B .C .2⎫+∞⎪⎪⎝⎭D .1,2⎛ ⎝⎭【正确答案】C设直线l :()b y x c a =+,由2F 到l 的距离大于a ,得出b a 的范围,再由e =计算即可.【详解】设过1F 与渐近线by x a =平行的直线l 为()b y x c a=+,由题知2F 到直线l 的距离d a >,即2b a d =>=,可得12b a >,所以离心率2e =>.故选:C.本题考查计算双曲线离心率的范围,熟知公式e 可使计算变得简便,属于中档题.二、多选题9.已知直线360x +-=,则该直线()A .过点(3,B .斜率为C .倾斜角为60︒D .在x 轴上的截距为6-【正确答案】AB【分析】验证法判断选项A ;求得直线的斜率判断选项B ;求得直线的倾斜角判断选项C ;求得直线在x 轴上的截距判断选项D.【详解】对于A ,当3x =时,3360⨯-=,∴y =∴直线过点(3,,故A 正确;对于B ,由题意得,y =+B 正确;对于C ,∵直线的斜率为,∴直线的倾斜角为120︒,故C 错误;对于D ,当0y =时,2x =,∴该直线在x 轴上的截距为2,故D 错误.故选:AB .10.已知圆221:(1)4O x y -+=,圆222:(5)4O x y m -+=,下列说法正确的是()A .若4m =,则圆1O 与圆2O 相交B .若4m =,则圆1O 与圆2O 外离C .若直线0x y -=与圆2O 相交,则258m >D .若直线0x y -=与圆1O 相交于M ,N 两点,则||MN =【正确答案】AC【分析】根据直线与圆相交、圆与圆位置关系逐项判断即可.【详解】解:圆221:(1)4O x y -+=的圆心()11,0O ,半径12r =若4m =,222:(5)16O x y -+=,则圆心()25,0O ,半径24r =,则1212124,6,2O O r r r r =+=-=,所以112221O O r r r r -<<+,则圆1O 与圆2O 相交,故A 正确,B 错误;若直线0x y -=与圆2O 相交,则圆心()25,0O 到直线0x y -=的距离d =,解得258m >,故C 正确;若直线0x y -=与圆1O 相交于M ,N 两点,则圆心()11,0O 到直线0x y -=的距离2d ==,所以相交弦长MN ===,故D 错误.故选:AC.11.如图,在四棱锥P ABCD -中,已知PA ⊥底面ABCD ,底面ABCD 为等腰梯形,AD ∥,1BC AB AD CD ===,2BC PA ==,记四棱锥P ABCD -的外接球为球O ,平面PAD 与平面PBC 的交线为,l BC 的中点为E ,则()A .l ∥BCB .AB PC⊥C .平面PDE ⊥平面PAD D .l 被球O 截得的弦长为1【正确答案】ABD【分析】由AD BC ∕∕,可得BC ∕∕平面PAD ,再根据线面平行的性质即可证得l BC ∕∕,即可判断A ;对于B ,连接,AE AC ,证明AB AC ⊥,PA AB ⊥,即可得AB ⊥平面PAC ,再根据线面垂直的性质即可证得AB PC ⊥,即可判断B ;对于C ,如图以A 为原点建立空间直角坐标系,求出两个平面的法向量,判断法向量是否垂直,即可判断C ;对于D ,易得四棱锥P ABCD -的外接球的球心O 在过点E 且垂直于面ABCD 的直线上,求出半径,再利用向量法求出点O 到直线l 的距离,最后利用圆的弦长公式求出l 被球O 截得的弦长,即可判断D.【详解】解:对于A ,因为AD BC ∕∕,AD ⊂平面PAD ,BC ⊄平面PAD ,所以BC ∕∕平面PAD ,又因平面PAD 与平面PBC 的交线为l ,所以l BC ∕∕,故A 正确;对于B ,连接,AE AC ,在等腰梯形ABCD 中,因为1AB AD CD ===,2BC =,BC 的中点为E ,所以四边形,ABED AECD 都是菱形,所以,AC DE AB DE ⊥∕∕,所以AB AC ⊥,因为PA ⊥底面ABCD ,AB ⊂面ABCD ,所以PA AB ⊥,又PA AC A = ,所以AB ⊥平面PAC ,又因PC ⊂平面PAC ,所以AB PC ⊥,故B 正确;对于C ,如图以A 为原点建立空间直角坐标系,则()110,0,2,,,22P D E ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则()()110,0,2,,,0,,,2,1,0,02222AP AD PD DE ⎛⎫⎛⎫==-=--=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设平面PDE 的法向量()111,,m x y z = ,平面PAD 的法向量()222,,n x y z = ,则111112020m PD x z m DE x ⎧⋅=-+-=⎪⎨⎪⋅==⎩,可取(0,m = ,同理可取)n =,因为40m n ⋅=≠,所以m 与n 不垂直,所以平面PDE 与平面PAD 不垂直,故C 错误;对于D ,由B 选项可知,EA EB EC ED ===,则点E 即为四边形ABCD 外接圆的圆心,故四棱锥P ABCD -的外接球的球心O 在过点E 且垂直于面ABCD 的直线上,设外接球的半径为R ,则OA OP R ==,则OA =所以R =,设OP 与l 所成的角为θ,点O 到直线l 的距离为d ,()()11,0,0,0,,,,122B C O ⎛⎫⎪ ⎪⎝⎭,因为l BC ∕∕,直线l的方向向量可取()BC =-,1,22OP ⎛⎫=-- ⎪ ⎪⎝⎭,则cos ,4BC OP =-,所以sin 4θ=,所以sin 2d OP θ==,所以l 被球O 截得的弦长为1=,故D 正确.故选:ABD.12.如图所示,抛物线E :()220y px p =>的焦点为F ,过点(),0M p 的直线1l ,2l 与E 分别相交于()11,A x y ,()22,B x y 和C ,D 两点,直线AD 经过点F ,当直线AB 垂直于x 轴时,3AF =.下列结论正确的是()A .E 的方程为24y x =B .1212y y =-C .若AD ,BC 的斜率分别为1k ,2k ,则123k k =D .若AD ,BC 的倾斜角分别为α,β,则()tan αβ-2【正确答案】AD【分析】根据抛物线定义表示AF ,由条件列方程求p 可得抛物线方程,判断A ,设AB 的方程为2x ty =+,利用设而不求法求12y y ,判断B ,设()()3344,,,C x y B x y ,利用设而不求法求34y y ,根据直线AD 经过点F ,确定14,y y 的关系,利用1y 表示12,k k ,判断C ,讨论α,结合12,k k 关系利用基本不等式求()tan αβ-的最值即可判断D.【详解】当直线AB 垂直于x 轴时,直线AB 的方程为x p =,所以点A 的横坐标为p ,所以2pAF p =+,又3AF =,所以2p =,所以抛物线的方程为24y x =,A 正确;所以()2,0M ,若直线AB 的斜率为0,则直线AB 与抛物线只有一个交点,以已知矛盾,故可设直线AB 的方程为2x ty =+,联立242y x x ty ⎧=⎨=+⎩,化简可得2480y ty --=,方程2480y ty --=的判别式216320t ∆=+>,由已知12,y y 为方程2480y ty --=的两根,所以12124,8y y t y y +==-,211168,B y y ⎛⎫- ⎪⎝⎭,B 错误;同理可设CD 的方程为2x ny =+,联立242y x x ny ⎧=⎨=+⎩,化简可得2480y ny --=,方程2480y ny --=的判别式216320n ∆=+>,设()()3344,,,C D x y y x 所以34344,8y y n y y +==-,244168,C y y ⎛⎫- ⎪⎝⎭,若直线AD 的斜率存在,则11x ≠,41x ≠,2241y y ≠,因为直线AD 经过点F ,所以1411411y yk x x ==--,所以()()1441144y y y y y y -=-,因为14y y ≠,所以144y y =-,所以4114214224188116162y y y y k y y y y -+==-+-,所以11122114414y y k y y ==--,1221112244y k y y y ==--,所以122k k =,C 错误;因为AD ,BC 的倾斜角分别为α,β,当π,π2α⎛⎫∈ ⎪⎝⎭时,因为122k k =,所以tan 2tan αβ=,所以()2tan tan tan 01tan n tan 12tan ta ααββαβββ-==<++-,当π2α=时,()()1,2,1,2A D -,()4,4B -,()4,4C 所以π2β=,此时()tan 0αβ-=,当π0,2α⎛⎫∈ ⎪⎝⎭,因为122k k =,所以tan 2tan αβ=,所以()2tan tan tan 111tan tan 12tan 2ta t n n an ta αββαββββαβ-===+-++所以()t 2an 11tan tan αβββ≤-=+当且仅当tan 2β=,tan α时等号成立,即1k =所以()tan αβ-的最大值为4,D 正确;故选:AD.(1)解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.三、填空题13.一个圆经过椭圆2219y x +=的三个顶点,且圆心在y 轴的正半轴上,则该圆的标准方程为______.【正确答案】2242539x y ⎛⎫+-= ⎪⎝⎭【分析】设出圆心与半径,根据过椭圆的上顶点、左右顶点,由半径相等列方程求解.【详解】由2219y x +=及圆心位置知:圆经过椭圆的上顶点坐标为()0,3,左右顶点坐标为()1,0±,设圆的圆心()0,a ,半径为r ,则()22213r a a +==-,解得43a =,53r =,故圆的方程为2242539x y ⎛⎫+-= ⎪⎝⎭.故答案为.2242539x y ⎛⎫+-= ⎪⎝⎭14.若抛物线2y mx =的准线与直线1x =间的距离为3,则抛物线的方程为______.【正确答案】216y x =-或28y x=【分析】先求出抛物线的准线,再根据距离列方程求解即可.【详解】抛物线2y mx =的准线为4m x =-,则134m --=,解得16m =-或8m =,故抛物线的方程为216y x =-或28y x =.故216y x =-或28y x =.15.已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且AK =,则△AFK 的面积为.【正确答案】32【详解】由双曲线22179x y -=得右焦点为()40,即为抛物线22y px =的焦点,∴42p =,解得8p =.∴抛物线的方程为216y x =.其准线方程为()440x K =-∴-,,.过点A 作AM ⊥准线,垂足为点M .则AM AF =.∴AK AM =.∴45MAK ∠=︒.∴KF AF =.∴221183222AKF S KF ==⨯= .16.如图,在四棱锥P ABCD -中,四边形ABCD 是矩形,PA ⊥平面ABCD ,2PA AB ==,6AD =,点Q 是侧棱PD 的中点,点M ,N 分别在边AB ,BC 上,当空间四边形PMND 的周长最小时,点Q 到平面PMN 的距离为______.【分析】平面PAB 沿AB 展开到与平面ABCD 共面,当点P ,M ,N 和D ¢共线时周长最小,计算得到1AM =,4NC =,2BN =,建立空间直角坐标系,计算平面PMN的法向量为()2,1,1n =- ,根据距离公式计算得到答案.【详解】要使得空间四边形PMND 周长最小,只需将平面PAB 沿AB 展开到与平面ABCD 共面,延长DC 至D ¢,使得2DC CD '==,于是点N 在线段DD '的垂直平分线上,所以ND ND '=,因为PD 为定值,故当点P ,M ,N 和D ¢共线时,空间四边形PMND 的周长最小,易得PAM NCD PDD '' △△△,即得PA NC PD AM CD DD =='',即226222NC AM +==+,所以1AM =,4NC =,642BN =-=,以A 为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立如图所示的空间直角坐标系,则()0,0,0A ,()002P ,,,()0,6,0D ,由题意可得()1,0,0M ,()2,2,0N ,()0,3,1Q ,则()1,0,2PM =- ,()2,2,2PN =- ,设(),,n x y z =r 是平面PMN 的一个法向量,则00n PM n PN ⎧⋅=⎪⎨⋅=⎪⎩.即得202220x z x y z -=⎧⎨+-=⎩,令1z =,得2x =,1y =-,()2,1,1n =- ,()0,3,1PQ =- ,所以点Q 到平面PMN的距离3n PQ d n ⋅== .四、解答题17.已知Rt ABC 的顶点(8,5)A ,直角顶点为(3,8)B ,顶点C 在y 轴上;(1)求顶点C 的坐标;(2)求Rt ABC 外接圆的方程.【正确答案】(1)(0,3)(2)22(4)(4)17x y -+-=【分析】(1)设点C 坐标,然后根据AB BC ⊥列方程,解方程即可得到点C 坐标;(2)根据直角三角形外接圆的特点,得到圆心坐标和半径,然后写方程即可.【详解】(1)设点()0,C m ,由题意:1AB BC k k ⋅=-,853385AB k -==--,所以85033BC m k -==-,解得3m =,所以点()0,3C .(2)因为Rt ABC △的斜边AC 的中点为圆心,所以圆心的坐标为()4,4,r =所以圆心的方程为()()224417x y -+-=.18.已知:双曲线:C 221169x y -=.(1)求双曲线C 的焦点坐标、顶点坐标、离心率;(2)若一条双曲线与已知双曲线C 有相同的渐近线,且经过点3)A -,求该双曲线的方程.【正确答案】(1)焦点()5,0±,顶点()4,0±,离心率54e =;(2)224194y x -=【分析】(1)由双曲线:C 221169x y -=可得:4,3a b ==,从而求得:5c =,问题得解.(2)设所求双曲线的方程为:22169x y -=λ,将()3A -代入即可求得λ,问题得解.【详解】 双曲线:C 221169x y -=,所以4,3a b ==,∴5c ==,∴双曲线C 的焦点坐标()5,0-,()5,0,顶点坐标()4,0-,()4,0,离心率54c e a ==.(2)设所求双曲线的方程为:22169x y -=λ,将()3A -代入上式得:(()223169λ--=,解得:14λ=-∴所求双曲线的方程为:224194y x -=.(1)主要考查了双曲线的简单几何性质,属于基础题.(2)主要考查了共渐近线的双曲线方程的特征-若双曲线方程为:22221x y a b-=()0,0a b >>则与它共共渐近线的双曲线方程可设为:2222x y a bλ-=,属于基础题.19.已知正方体1111ABCD A B C D -中,,E F 分别为棱11,D D B B 的中点.(1)求证;1,,,A E C F 四点共面;(2)求二面角11A EB C --的余弦值.【正确答案】(1)证明见解析;(2).【分析】(1)建立空间直角坐标系,求出1 A E ,FC 坐标得1A E FC =uuu r uu u r ,从而得四边形1A ECF 为平行四边形即可证明;(2)分别求出平面11A EB 与平面1EB C 的法向量m 和n ,利用向量法求解二面角的公式cos ,m n m n m n⋅<>= 即可求解.【详解】解:如图建立空间直角坐标系D xyz -,设正方体的边长为2,(1)因为()10,2,2A ,()0,0,1E ,()2,0,0C ,()2,2,1F ,所以()10,2,1A E =-- ,()0,2,1FC =-- ,所以1A E FC =uuu r uu u r ,所以1//A E FC ,且1A E FC =,所以四边形1A ECF 为平行四边形,所以1,,,A E C F 四点共面;(2)()12,2,2B ,设平面11A EB 的法向量分别为(),,m x y z = ,则11100m A E m A B ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x --=⎧⎨=⎩,取1y =得()0,1,2m =- ,同理可得,平面1EB C 的法向量()1,2,2n =- ,所以cos ,5m n m n m n⋅<>==- ,由图可知,二面角为钝角,所以二面角11A EB C --的余弦值为.20.已知四棱锥P ABCD -中,PA ⊥平面ABCD ,AB DC ,2PA AD DC AB ===,点E 在棱PC上,BE 平面PAD .(1)证明:BE PD ⊥;(2)若90PDC ∠= ,求直线BE 与平面PBD 所成角的正弦值.【正确答案】(1)证明见解析(2)3【分析】(1)过E 作DC 的平行线交PD 于点F ,结合线面平行的性质得BE AF ∥,可得E ,F 分别为PC ,PA 的中点,结合AP AD =得AF PD ⊥,又BE AF ∥即可证得BE PD ⊥;(2)由已知条件证得AB ⊥面PAD ,得AB AD ⊥.建空间直角坐标系,求出面PBD 的法向量,然后利用向量夹角公式求得结果.【详解】(1)过E 作DC 的平行线交PD 于点F ,连接AF ,又AB DC ,则EF AB ∥,则,,,B E F A 四点共面,∵BE 面PAD ,BE ⊂面BEFA ,面BEFA ⋂面PAD AF =,∴BE AF ∥,故BEFA 为平行四边形,从而12EF AB DC ==,∴E ,F 分别为PC ,PA 的中点,又AP AD =,∴AF PD ⊥,又BE AF ∥,∴BE PD ⊥.(2)因为DC PD ⊥,AB DC ,所以AB PD ⊥,由PA ⊥平面ABCD ,AB ⊂平面ABCD ,得PA AB ⊥,又PA PD P = ,,PA PD ⊂面PAD ,所以AB ⊥面PAD ,又AD ⊂面PAD ,所以AB AD ⊥.所以,以A 为原点,,,AB AD AP 为,,x y z 轴建空间直角坐标系,设1AB =,则有()()()()()()0,0,0,1,0,0,2,2,0,0,2,0,0,0,2,1,1,1A B C D P E .所以()1,2,0BD =- ,()1,0,2BP =- ,设面PBD 的法向量为(),,n x y z =r ,则2020n BD x y n BP x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令2x =,所以()2,1,1n = .又有()0,1,1BE = ,记α为BE 与平面PBD 所成角,则sin cos ,BE n BE n BE nα⋅==== 所以BE 与平面PBD21.已知双曲线2222:1(0,0)x y C a b a b-=>>,且点(2,1)A 在双曲线C 上.(1)求双曲线C 的方程;(2)若点M ,N 在双曲线C 上,且AM AN ⊥,直线MN 不与y 轴平行,证明:直线MN 的斜率k 为定值.【正确答案】(1)22133y x -=(2)直线MN 的斜率k 为定值12-【分析】(1)根据离心率公式确定c =,再根据双曲线经过点(2,1)A 即可求解;(2)利用韦达定理用坐标表示出0AM AN ⋅= ,进而可求解.【详解】(1)由题可得离心率c a=c =,又因为222c a b =+,所以22a b =,所以双曲线方程为22221x y a a-=,又因为双曲线过点(2,1)A ,所以22411a a-=,解得23a =,所以双曲线方程为22133y x -=.(2)设直线MN 的方程为()()1122,,,,y kx m M x y N x y =+,联立22133y kx m x y =+⎧⎪⎨-=⎪⎩得()2221230k x kmx m ----=,则210k -≠得21k ≠,()()2222Δ44130k m k m =+-+>,得2233m k >-,212122223,11km m x x x x k k --+==--,()21212222222,11k m m y y k x x m m k k +=++=+=--()()()222212121212231m k y y kx m kx m k x x km x x m k -=++=+++=-,因为AM AN ⊥,所以0AM AN ⋅= ,所以1212(2)(2)(1)(1)0x x y y --+--=,即121212122()4()10x x x x y y y y -+++-++=,所以222222234324101111m km m k m k k k k -----++++=----,所以21240km k m ---=即()()12210k m k --+=,得120k m --=或210k +=,若120k m --=,则直线MN 的方程为12y kx k =+-,即1(2)y k x -=-过点(2,1)A ,不符合题意,若210k +=,则12k =-,满足AM AN ⊥,综上直线MN 的斜率k 为定值12-.22.已知抛物线C :()220y px p =>,点(2,A 在抛物线上.(1)求抛物线C 的焦点坐标和准线方程;(2)若直线1l :()20x my m =+≠交抛物线C 于M 、N 两点,交直线2l :2x =-于点P ,记直线AM ,AP ,AN 的斜率分别为1k ,2k ,3k ,求证:1k ,2k ,3k 成等差数列.【正确答案】(1)焦点坐标为()1,0,准线方程为=1x -(2)证明见解析【分析】(1)将点(2,A 的坐标代入抛物线方程中求出p ,从而可求出焦点坐标和准线方程;(2)两直线方程联立求出点P 的坐标,设()11,M x y ,()22,N x y ,再将直线1l 方程代入抛物线方程中,消去x ,利用根与系数的关系,再结合斜率公式化简证明【详解】(1)将(2,A 代入()220y px p =>,得2p =,所以焦点坐标为()1,0,准线方程为=1x -.(2)由22x my x =+⎧⎨=-⎩得.42,P m ⎛⎫-- ⎪⎝⎭设()11,M x y ,()22,N x y ,由242y x x my ⎧=⎨=+⎩得:2480y my --=,则121248y y m y y +=⎧⎨=-⎩,所以((12211213121222y y y y y y k k x x my y -+---+=--)12121222y y y y my y m-+==又241222m k m --==+--,所以222k m =+,所以1322k k k +=,即1k ,2k ,3k 成等差数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮南二中2016年高二第一学期第二次月考文科数学试卷
一、选择题(本题共12道小题,每题3分共36分) 1、条件:12p x +>,条件:2
q x ≥,则p 是q 的( )
A .充分非必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要的条件
2、下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是( ) A.游戏1和游戏3 B.游戏1 C.游戏2 D.游戏3
游戏1
游戏2
游戏3
3个黑球和1个白球
1个黑球和1个白球
2个黑球和2个白球
取1个球,再取1个球 取1个球
取1个球,再取1个球 取出的两个球同色→甲胜 取出的球是黑球→甲胜 取出的两个球同色→甲胜 取出的两个球不同色→乙胜
取出的球是白球→乙胜
取出的两个球不同色→乙胜
3、如图程序框图输出的结果为( ) (A )
511 (B )513 (C )49 (D )6
13
4、总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
A .11
B .02
C . 05
D .04
7816 6572 0802 6314 0702 4369 1128 0598 3204
9234
4935
8200
3623
4869
6938
7481
5、给出以下四个命题:①若0ab ≤,则0a ≤或0b ≥;②若b a >则22
am bm >;③在△ABC 中,若
B A sin sin =,则A=B;④在一元二次方程2
0ax bx c ++=中,若240b ac -<,则方程有实数根.其
中原命题.逆命题.否命题.逆否命题全都是真命题的有( )个
A.4
B.3
C.2
D.1
6、将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为004,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( ) A . 24,17,9 B .25,16,9 C . 25,17,8 D . 26,16,8 7 、给出以下三个命题:①将一枚硬币抛掷两次,记事件A:两次都出现正面,事件B:两次都出现反面,则事件A 与事件B 是对立事件;②在命题①中,事件A 与事件B 是互斥事件;③在10件产品中有3件是次品,从中任取3件,记事件A:所取3件中最多有2件是次品,事件B:所取3件中至少有2件是次品,则事件A 与事件B 是互斥事件.其中真命题的个数是( ) A .0 B.1 C. 2 D. 3
8、如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈递减的等差数列分布,则网民年龄在[35,40)的频率为( )
A .0.04
B .0.06
C .0.2
D .0.3 9、给出以下三幅统计图及四个命题:( )
①从折线统计图能看出世界人口的变化情况 ②2050年非洲人口大约将达到15亿 ③2050年亚洲人口比其他各洲人口的总和还要多 ④从1957年到2050年各洲中北美洲人口增长速度最慢
A .①②
B .①③
C .①④
D .②④ 10、某车间加工零件的数量x 与加工时间y 的统计如下表:
零件数x(个)102030加工时间y(分钟)213039
现已求得上表数据的回归方程
∧
∧
∧
+
=a
x
b
y中的值
∧
b为0.9,则据此回归模型可以预测,加工100个
零件所需要的加工时间约为().
A.84分钟
B.94分钟
C.102分钟
D.112分钟
11、某班有48名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是( ) A.70,25 B.70,50 C.70,1.04 D.65,25
12、甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.如果甲船的停泊时间为6小时,乙船的停泊时间为4小时,则它们中的任何一条船不需要等待码头空出的概率为()
A.183
288
B.
181
288
C.
185
288
D.
187
288
二、填空题(本题共4道小题,每题5分共20分)
13、某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.
14、已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3表示命中,4,5,6,7,8,9表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为________.
15、为了普及环保知识,增强环保意识,某高中随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m,众数为n,平均值为x,则这三个数的大小关系为
_______________.(用<连接)
16、已知命题
1
:13
2
x
p
-
-≤;22
:210,(0)
q x x m m
-+-≤>若p
⌝是q
⌝的充分不必要条件,
则实数m的取值范围是.
三、解答题(本题共4道题,满分44分)
17、(满分10分)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
甲273830373531
乙332938342836
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、方差,并判断选谁参加比赛更合适.
18、(满分10分)中日“钓鱼岛争端”问题越来越引起社会关注,我校对高一600名学生进行了一次“钓鱼岛”知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1) 填写答题卡...频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据; (2)请你估算该年级的平均数及中位数.
19、(满分12分)某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:
x 2 4 5 6 8 y
30
40
60
50
70
(1)画出散点图;(2)求回归直线方程;
(3)试预测广告费支出为10百万元时,销售额多大?
20、(满分12分)对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图.
(1)图中纵坐标0y 处刻度不清,根据图表所提供的数据还原0y ;
(2)根据图表的数据按分层抽样,抽取20个元件,寿命为100~300之间的应抽取几个;
(3)从(2)中抽出的寿命落在100~300之间的元件中任取2个元件,求事件“恰好有一个寿命为100~200,一个寿命为200~300”的概率.
淮南二中2016年高二第一学期第二次月考文科数学试卷
二、选择题(本题共12道小题,每题3分共36分)
1、B
2、D
3、A
4、A
5、D
6、B 7 、B 8、C 9、B 10、C 11、B 12、B 二、填空题(本题共5道小题,每题4分共20分)
13、 60 14、 0.4 15、n m x << 16、04m <≤ 四、解答题(本题共4道题,满分44分) 17、
18、(1)
19、
5.6^=b 5.17^
=a 所以5.175.6+=x y
(3)当10=x 时,5.825.1710*5.6=+=y 答:即这种产品的销售收入大约为82.5万元. 考点:两个变量的线性相关. 20、。