高二数学12月月考试题 文(无答案)

合集下载

上海市高二上学期12月月考数学试题(解析版)

上海市高二上学期12月月考数学试题(解析版)

一、填空题1.抛掷两枚硬币,恰好出现一次正面向上的概率是__________. 【答案】##0.512【分析】列举出所有的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】同时抛掷两枚硬币,可能出现的所有结果有:(正,正)、(正,反)、(反,正)、(反,反).恰好出现一次正面向上的概率:.21=42P =故答案为:.122.用斜二测画法画出的水平放置的的直观图如图,其中,若原的面积ABC 1B O C O ''''==ABC 为2,则______. A O ''=【答案】1【分析】根据斜二测画法原则可还原,利用面积公式计算即可求解.ABC 【详解】由直观图可还原,如下图所示, ABC其中,又因 1,2OB O B OC O C BC B C ¢¢¢¢¢¢======,2OA BC AO A O ¢¢^=所以 11222222ABC S BC A O A O ¢¢¢¢=´=´´=即得1A O ¢¢=故答案为: .13.已知圆锥的侧面积为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径是_________.2π【答案】1【分析】设出圆锥底面半径和母线长,利用侧面展开后,扇形弧长公式和面积公式进行求解.【详解】设圆锥的底面半径为r ,圆锥的母线长为l ,则,解得:,又21π2π2l =2l =2ππ2πr l ==,解得:.1r =故答案为:14.已知事件A 与事件B 相互独立,若,,则______.()0.3P A =()0.6P B =()P A B ⋂=【答案】0.42## 2150【分析】根据相互独立事件概率乘法公式以及对立事件的概率公式求得正确答案.【详解】.()()()()10.30.60.42P A B P A P B ⋂=⨯=-⨯=故答案为:0.425.在四棱台中的12条棱所在直线中,与直线是异面直线的共有______条1111ABCD A B C D -1AB 【答案】6【分析】根据异面直线的定义来确定正确答案.【详解】根据异面直线的定义可知,与直线是异面直线的有:1AB ,共条,111111,,,,,A D BC CD DD D C C C 6故答案为:66.为了了解某水库里大概有多少条鱼,先打捞出了1000条鱼,在鱼身上标记一个不会掉落的印记后放回水库,过一段时间后再次捕捞了200条鱼,发现其中5条鱼有印记.则这个水库里大概有______条鱼【答案】40000【分析】利用“捉放捉”原则即可求得这个水库里大概有40000条鱼【详解】设水库里大概有x 条鱼,则,解之得 10005200x =40000x =故答案为:400007.正四面体ABCD 的各棱长均为2,则点A 到平面BCD 的距离为______.【分析】设是底面的中心,则的长是点A 到平面BCD 的距离,由勾股定理计算可O BCD △AO 得.【详解】如图,是底面的中心,则平面,平面,,O BCD △AO ⊥BCD BO ⊂BCD AO BO ⊥正四面体ABCD 的棱长均为2,则, 223BO ==. AO ===8.下列说法中正确的是______.①一组数据中比中位数大的数和比中位数小的数一样多;②极差、方差、标准差都是描述一组数据的离散程度的统计量;③平均数、众数和中位数都是描述一组数据的集中趋势的统计量.【答案】②③【分析】根据中位数,平均数、众数、极差、方差和标准差的定义即可判断.【详解】对于①,中位数是一组数据按照从小到大的顺序排列,位于中间的那个数据(或中间两个数据的平均数),但是也有一些特殊的,比如:这组数据,中位数是,而比小1,2,3,4,4,5,6,7,844的数据是个,比大的数据却是个,所以一组数据中比中位数大的数和比中位数小的数不一定344一样多,故①说法错误;对于②,极差反映的是一组数据最大值与最小值的差,方差和标准差反映了数据分散程度的大小,所以说极差、方差、标准差都是描述一组数据的离散程度的统计量,故②说法正确;对于③,平均数、众数和中位数都是描述一组数据的集中趋势的量,所以说平均数、众数和中位数都是描述一组数据的集中趋势的统计量,故③说法正确,故答案为:②③.9.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时,测得水深为3cm .若不计容器的厚度,则球的体积为______3cm【答案】## 1256π1256π【分析】过球心作与正方体的前后面平行的截面,如图,截球得大圆,截正方体得正方形,ABCD 水面是过点的虚数,它与圆相切,然后根据圆(球)的性质计算出球半径,从而得体积.E 【详解】过球心作与正方体的前后面平行的截面,如图,截球得大圆,截正方体得正方形,ABCD ,线段是正方体上底面截球所得截面圆直径,虚线表示水面,,设球半径4AB =AB 431EF =-=为,则,, R 1OE R =-122AF AB ==由勾股定理得,即,解得, 222OA AF OF =+2222(1)R R =+-52R =所以球体积为. 33445125()3326V R πππ==⨯=故答案为:. 1256π10.甲、乙两人进行某项比赛,采用三局两胜模式,假定甲每一局比赛赢的概率都为0.6,则甲最终赢得比赛的概率为______.【答案】0.648【分析】分析试验过程,分别求出两局比赛后甲获胜和三局比赛后甲获胜的概率,即可求解.【详解】甲、乙两人进行某项比赛,每局比赛相互独立.两局比赛后甲获胜的概率为:;0.60.60.36⨯=三局比赛后甲获胜的概率为:;20.60.40.60.288⨯⨯⨯=所以甲最终赢得比赛的概率为:.0.360.2880.648+=故答案为:0.64811.从编号分别为1、2、3、4、5的5个大小与质地相同的小球中随机取出3个,则恰有2个小球编号相邻的概率为______. 【答案】##0.6 35【分析】利用列举法写出所有可能的基本事件,并列出所有满足恰好两个小球编号相邻的可能情况,然后利用古典概型求解.【详解】依题意得,取出的三个小球编号的所有可能为,123,124,125,134,135,145,234,235,245,345共种,其中恰好两个小球编号相邻的有,共种,根据古典概型的计算10124,125,134,145,235,2456公式,恰有2个小球编号相邻的概率为:. 63105=故答案为: 3512.已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 侧面BCC 1B 1的交线长为________..【分析】根据已知条件易得侧面,可得侧面与球面的交线上的点1D E 1D E ⊥11B C CB 11B C CB到与球面的交线是扇形的弧,再根据弧长公式可求得结E 11B C CB EFG FG果.【详解】如图:取的中点为,的中点为,的中点为,11B C E 1BB F 1CC G 因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以BAD ∠=1111ABCD A B C D -111D B C,1D E 111D E B C ⊥又四棱柱为直四棱柱,所以平面,所以,1111ABCD A B C D -1BB ⊥1111D C B A 111BB B C ⊥因为,所以侧面,1111BB B C B = 1D E ⊥11B C CB 设为侧面与球面的交线上的点,则,P 11B C CB 1D E EP ⊥,所以1D E =||EP ===所以侧面与球面的交线上的点到,11B C CB E因为与球面的交线是扇形的弧, ||||EF EG ==11B C CB EFG FG因为,所以, 114B EF C EG π∠=∠=2FEG π∠=所以根据弧长公式可得. 2FGπ==. 【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.二、单选题13.平面与平面相交于直线l ,点A 、B 在平面上,点C 在平面上但不在直线l 上,直线αβαβAB 与直线l 相交于点D .设A 、B 、C 三点确定的平面为,则与的交线是( )γβγA .直线ACB .直线ABC .直线CD D .直线BC【答案】C【分析】根据已知得既在平面上又在平面可得答案.D C 、βγ【详解】因为直线AB 与直线l 相交于点D ,,所以平面,D ∈l D ∈β又点C 在平面上,所以平面,βCD ⊂β因为平面,点在直线AB 上,所以平面,AB ⊂γD D ∈γ又平面,所以平面,C ∈γCD ⊂γ所以与的交线是直线.βγCD 故选:C.14.掷一颗骰子,设事件:落地时向上的点数是奇数,事件:落地时向上的点数是偶数,事件A B :落地时向上的点数是的倍数,事件:落地时向上的点数是.则下列每对事件中,不是互C 3D 4斥事件的为( )A .与B .与C .与D .与A B B C A D C D 【答案】B【分析】判断选项中的两个事件是否可以同时发生即可.【详解】对于A ,“落地时向上的点数是奇数”与“落地时向上的点数是偶数”不可能同时发生, ∴,事件与事件互斥,故选项A 不正确;A B ⋂=∅A B 对于B ,“落地时向上的点数是偶数”与“落地时向上的点数是的倍数”同时发生即“落地时向上的点3数是”,6∴“落地时向上的点数是”,事件与事件不是互斥事件,故选项B 正确;B C ⋂=6B C 对于C ,“落地时向上的点数是奇数”与“落地时向上的点数是” 不可能同时发生,4∴,事件与事件互斥,故选项C 不正确;A D ⋂=∅A D 对于D ,“落地时向上的点数是的倍数”与“落地时向上的点数是” 不可能同时发生, 34∴,事件与事件互斥,故选项D 不正确.C D ⋂=∅C D 故选:B.15.某地教育行政部门为了解“双减”政策的落实情况,在某校随机抽取了100名学生,调查他们课后完成作业的时间,根据调查结果绘制如下频率直方图.根据此频率直方图,下列结论中错误的是( )A .估计该校学生的平均完成作业的时间超过2.7小时B .所抽取的学生中有25人在2小时至2.5小时之间完成作业C .该校学生完成作业的时间超过3.5小时的概率估计为20%D .估计该校有一半以上的学生完成作业的时间在2小时至3小时之间【答案】D【分析】对A ,根据直方图中平均数的公式计算,可判断A;对B ,利用直方图中2小时至小时2.5之间的频率判断B;对C ,计算超过3.5小时的频率可判断C;对D ,计算做作业的时间在2小时至3小时之间的频率,可判断D.【详解】对A ,直方图可计算学生做作业的时间的平均数为:1.250.05 1.750.152.250.25 2.750.203.250.15⨯+⨯+⨯+⨯+⨯ 3.750.104.250.05 4.750.05+⨯+⨯+⨯,所以A 正确;2.75 2.7=>对B ,直方图中2小时至小时之间的频率为,故所抽取的学生中有2.5()2.520.50.25-⨯=25人在2小时至小时之间完成作业,故B 正确;1000.25⨯= 2.5对C ,由直方图得超过3.5小时的频率为,所以C 正确;0.5(0.20.10.1)0.2⨯++=对D ,做作业的时间在2小时至3小时之间的频率为,所以D 错误. 0.5(0.50.4)0.450.5⨯+=<故选:D16.在棱长为2的正方体中,E 为棱BC 的中点,F 是侧面内的动点,若1111ABCD A B C D -11B BCC 平面,则点F 轨迹的长度为( )1//A F 1AD EA B C D .【答案】B【分析】取中点,中点,连接,则易证平面平面,进而得当F 的轨1BB M 11B C N MN 1//A MN 1AD E 迹为线段时,则有平面,再根据勾股定理及三角形的中位线计算即可.MN 1//A F 1AD E 【详解】如图所示:取中点,中点,连接,1BB M 11B C N MN 因为,,//MN 1BC 1//BC 1AD 所以,//MN 1AD 平面,平面,MN ⊄1AD E 1AD ⊂1AD E 所以平面,//MN 1AD E 同理可证明平面,1//A N 1AD E 又因为,平面,1MN A N N = 1,MN A N ⊂1A MN 所以平面平面,1//A MN 1AD E 当F 的轨迹为线段时,此时平面,则有平面,MN 1A F ⊂1A MN 1//A F 1AD E此时. 11122MN BC ==⨯=故选:B.三、解答题17.某校共有在校学生200人,为了了解该校学生的体能情况,对该校所有学生进行体能测试,然后采用分层抽样的方法随机抽取了20名学生的成绩,整理得到如下茎叶图:(1)求该校女学生人数、样本中女生成绩的极差、25百分数;(2)已知全体女生的平均成绩为70,全体男生的平均成绩为72,求该校全体学生的平均成绩.【答案】(1)80,32,62(2)71.2【分析】(1)利用样本与总体的关系即可求得该校女学生人数;依据极差定义即可求得样本中女生成绩的极差;依据百分位数定义即可求得样本中女生成绩的25百分数;(2)利用平均数定义即可求得该校全体学生的平均成绩.【详解】(1)样本中女生有8人,则该校女学生人数为 20880200÷=样本中女生成绩由小到大排列为 5659656873747788,,,,,,,则样本中女生成绩的极差为885632-=由,可得样本中女生成绩的25百分数为 80.252⨯=5965622+=(2)由(1)可得该校女学生人数为,则该校男生人数为120 80又全体女生的平均成绩为70,全体男生的平均成绩为72,则该校全体学生的平均成绩为 80701207271.2200⨯+⨯=18.如图,在圆柱中,底面直径AB 等于母线.1AA(1)若AB =2,求圆柱的侧面积;(2)设AB 与CD 是底面互相垂直的两条直径,求异面直线AC 与所成角的大小.1A B 【答案】(1);4π(2). π3【分析】(1)由已知得到底面半径以及母线的值,代入公式即可求出; r l (2)用向量、、来表示出、,进而求出它们的夹角,即可求出结果.AB DC 1AA AC 1A B u u u r 【详解】(1)由已知可得,底面半径,母线,1r =12l AA ==所以圆柱的侧面积.2π4πS rl ==(2)由已知可得,两两垂直,且相等,1,,AB CD AA设,则,. 2AB =1OA OC ==AC =1A B ==又, , 1122AC OC OA DC AB =-=+u u u r u u u r u u r u u u r u u u r 11A B AB AA =-u u u r u u u r u u u r 则. ()111122AC A B DC AB AB AA ⎛⎫⋅=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r 21111112222DC AB DC AA AB AB AA =⋅-⋅+-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2122AB ==u u u r所以,11cos ,2AC A B =u u u r u u u r 又,所以, 10,πAC A B ≤≤u u u r u u u r 1π,3AC A B =u u u r u u u r 所以异面直线AC 与所成角的大小为. 1A B π319.如图,已知三棱柱的高为2,底面ABC 是边长为2的正三角形.111ABC A B C -(1)求四棱锥的体积;111A BBCC -(2)若,求证:侧面为矩形.11A B A C =11B BCC 【答案】(2)证明见解析【分析】(1)三棱柱可分割成三棱锥和四棱锥两部分,因此用三111ABC A B C -1A ABC -111A B BCC -棱柱的体积减三棱锥的体积就能得到四棱锥的体积; 111ABC A B C -1A ABC -111A B BCC -(2)由棱柱定义知,四边形为平行四边形,因此只需借助空间中直线、平面的垂直关系,11B BCC 证明其中一个角为直角即可.【详解】(1)三棱柱可分割成三棱锥和四棱锥两部分,111ABC A B C -1A ABC-111A B BCC -三棱柱的体积, 111ABC A B C -1111=22sin 6022ABC A B CABC V S h -=⨯⨯⨯︒⨯= 三棱锥的体积 1A ABC -11=3A ABC ABC VS h -= ∴四棱锥的体积. 111A B BCC -1111111A B BCC ABC A B C A ABC V V V ---=-==(2)取中点,连接,, BC M AM 1A M ∵是等边三角形,是边上的中线,ABC AM BC ∴也是边上的高,即,AM BC AM BC ⊥又∵,∴是等腰三角形,11A B A C =1A BC ∴是边上的中线,也是边上的高,即,1A M BC BC 1A M BC ⊥又∵,平面,平面,1AM A M M ⋂=AM ⊂1AMA 1A M ⊂1AMA ∴平面,BC ⊥1AMA ∵平面,1AA ⊂1AMA ∴,1BC AA ⊥由棱柱定义知,,,111AA BB CC ∥∥111AA BB CC ==∴,四边形为平行四边形,1BC BB ⊥11B BCC ∴侧面四边形为矩形.11B BCC 20.掷黑、白两枚骰子.(1)设事件A 为:两枚骰子的点数和为7,事件B 为:白色骰子的点数是1.判断事件A 和事件B 是否独立,并说明理由;(2)设事件C 为:两枚骰子中至少有一枚的点数是1且两枚骰子点数之和不是7.求事件C 的概率.【答案】(1)是,理由见解析 (2)14【分析】(1)写出所有的基本事件,再求出A ,B 发生的概率,根据概率公式 ()()()·P AB P A P B =来判断A ,B 事件是否独立;(2)根据事件C 包含的基本事件数,按照古典概型概率计算公式可求出事件C 的概率.【详解】(1)投掷黑、白两枚骰子一次的点数记作,所有基本事件如下: (),x y ,()2:1,1 ,()()3:1,2,2,1 ,()()()4:2,2,1,3,3,1 ,()()()()5:1,4,4,1,2,3,3,2 ,()()()()()6:3,3,1,5,5,1,2,4,4,2 ,()()()()()()7:1,6,6,1,2,5,5,2,3,4,4,3 ,()()()()()8:4,4,2,6,6,2,3,5,5,3 ,()()()()9:3,6,6,3,4,5,5,4 ,()()()10:5,5,4,6,6,4 ,()()11:5,6,6,5 ,()12:6,6共36个,事件包含6个基本事件,即,A ()()()()()()1,6,6,1,2,5,5,2,3,4,4,3事件包含6个基本事件,即,B ()()()()()()1,1,2,1,3,1,4,1,5,1,6,1事件只包含,C ()6,1所以, ,所以A ,B 是独立事件; ()()()()()61611,,36636636P A P B P AB P A P B ======(2)根据(1)所列出的基本事件,事件包含9个基本事件,即C ,所以,. ()()()()()()()()()1,1,1,2,2,1,1,3,3,1,1,4,4,1,1,5,5,1()91364P C ==综上,A ,B 是独立事件, . ()14P C =21.如图,在四棱锥中,底面为直角梯形,,,P ABCD -ABCD AD BC ∥AB BC ⊥分别为棱中点.2AB AD BC AB E F ==,,、BC BP 、(1)求证:平面平面;AEF ∥DCP (2)若平面平面,直线与平面所成的角为,且,求二面角PBC ⊥ABCD AP PBC 45 CP PB ⊥的大小.P AB D --【答案】(1)证明见解析 (2)3π【分析】(1)证明平面,平面,即可证明结论;//EF PCD //AE PCD (2)根据面面垂直性质定理得,进而得,再根据题意证明平面可45APB ∠= AB PB =PC ⊥ABP 得为直角三角形,再根据几何关系得,进而根据是二面角的平PBC 60PBC ∠= PBC ∠P AB D --面角求解即可.【详解】(1)证明:因为分别为棱中点,E F 、BC BP 、所以,在中,,PBC //EF PC 因为平面,平面,EF ⊄PCD PC ⊂PCD 所以,平面,//EF PCD 因为,为棱中点.AD BC ∥2BC AB E =,BC 所以,,//,AD CE AD CE =所以,四边形是平行四边形,ADCE 所以,//CD AE 因为平面,平面,AE ⊄PCD DC ⊂PCD 所以,平面,//AE PCD 因为平面,,,AE EF E AE EF ⋂=⊂AEF 所以,平面平面AEF ∥DCP (2)解:因为平面平面,平面平面,,平面PBC ⊥ABCD PBC ⋂ABCD BC =AB BC ⊥AB ⊂,ABCD 所以,平面AB ⊥PBC 所以,是直线与平面所成的角,APB ∠AP PBC 因为,直线与平面所成的角为,AP PBC 45所以,,45APB ∠= 所以,AB PB =因为平面,,PC PB ⊂PBC 所以,,AB PC ⊥AB PB ⊥因为,,平面, CP PB ⊥AB BP B = ,AB BP ⊂ABP 所以平面,PC ⊥ABP 因为平面,PB ⊂ABP 所以,即为直角三角形,PC PB ⊥PBC所以,在中,由可得, PBC 22BC AB PB ==PC所以,, tan PC PBC PB∠==60PBC ∠= 因为,,AB PB ⊥AB BC ⊥所以,是二面角的平面角, PBC ∠P AB D --所以,二面角的大小为.P AB D --60。

广西“贵百河”2023-2024学年高二上学期12月新高考月考测试数学试题

广西“贵百河”2023-2024学年高二上学期12月新高考月考测试数学试题

广西“贵百河”2023-2024学年高二上学期12月新高考月考测试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .()12b c a+-B .125.在棱长为a 的正方体ABCD A .60°C .90°6.已知命题p :方程25x m m +-不必要条件是()A .35m <<B .4<7.国家速滑馆又称“冰丝带”,是北京冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中二、多选题三、单选题11.为了考查某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为()A .9B .10C .11D .12四、多选题12.已知3log ,a e =2log 3b =,ln 3c =,则()A .a b c <<B .a c b <<C .a c b+>D .a c b+<五、填空题六、解答题17.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2,==PA AD E 为PB 的中点,F 为AC 与BD 的交点.(1)证明:EF //平面PCD ;(2)求三棱锥E ABF -的体积.18.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足22()b c a bc -=-.(1)求角A 的大小;(2)若2,sin 2sin a C B ==,求△ABC 的面积.19.已知直线:20,R l x ay a --=∈.(1)求证:直线l 与圆224x y +=恒有公共点;(2)若直线l 与圆心为C 的圆22()(1)4x a y -+-=相交于A B 、两点,且ABC 为直角三角形,求a 的值.20.甲、乙两人玩一个摸球猜猜的游戏,规则如下:一个袋子中有4个大小和质地完全相同的小球,其中2个红球,2个白球,甲采取不放回方式从中依次随机地取出2个球,然后让乙猜.若乙猜出的结果与摸出的2个球特征相符,则乙获胜,否则甲获胜,一轮游戏结束,然后进行下一轮(每轮游戏都由甲摸球).乙所要猜的方案从以下两种猜法中选择一种;猜法一:猜“第二次取出的球是红球”;猜法二:猜“两次取出球的颜色不同”.请回答:(1)如果你是乙,为了尽可能获胜,你将选择哪种猜法,并说明理由;(2)假定每轮游戏结果相互独立,规定有人首先获胜两次则为游戏获胜方,且整个游戏停止.若乙按照(1)中的选择猜法进行游戏,求乙获得游戏胜利的概率.21.如图,已知点()11,0F -,圆222:(1)16F x y -+=,点Q 在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程及1F MN △的面积.22.如图,在三棱锥-P ABC 中,PAC △是正三角形,AC BC ⊥,2AC BC ==,D 是AB 的中点.(1)证明:AC PD ⊥;(2)若二面角P AC D --为150︒,求直线BC 与平面PAB 所成角的正弦值.。

四川省成都市第七中学2020学年高二数学12月月考试题 文(无答案)

四川省成都市第七中学2020学年高二数学12月月考试题 文(无答案)

成都七中实验学校高二(上)第二次月考文科数学试题第Ⅰ卷一、选择题:(本大共12小题,每小题5分,共60分,在每个小题所给出的四个选项中,只有一项是符合要求的,把正确选项的代号填在答题卡的指定位置.)1.某大学中文系共有本科生5000人,其中一、二、三、四年级的学生比为5:4:3:1, 要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生 A .80人 B . 60人 C . 100人 D . 20人2.已知一组数据为20、30、40、50、60、60、70,则这组数据的众数、中位数、平均数的大小关系为 A . 中位数 >平均数 >众数 B . 众数 >中位数 >平均数 C . 众数 >平均数 >中位数 D . 平均数 >众数 >中位数 3.若某几何体的三视图(单位:cm ) 如图所示,则此几何体的体积A .πB .π2C .π3D .π44.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是A .//,,l n αβαβ⊂⊂⇒//l nB .,l αβα⊥⊂⇒l β⊥C .,l n m n ⊥⊥⇒//l mD .,//l l αβ⊥⇒βα⊥5. 对任意的实数k ,直线y =kx +1与圆222x y +=的位置关系一定是A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心6.已知圆22:(2)(1)3C x y -++=,从点(1,3)P --发出的光线,经x 轴反射后恰好经过圆心C ,则入射光线的斜率为A .43-B .23- C .43 D .23 7.已知三棱锥A PBC -中,PA ⊥面,ABC AB AC ⊥22BA CA PA ===,则三棱锥A PBC -底面PBC 上的高是A .66B .263C .63D .4638.执行右面的程序框图,如果输入的t ∈[-1,3], 则输出的s 属于A .[-3,4]B . [-5,2]C . [-4,3]D . [-2,5]9.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x2+y 2-2y =0的两条切线,A ,B 为切点,若四边形PACB 的最小面积是2,则k 的值为A PE4322 正视图侧视图俯视图A .4B .3C .2D .210.如图所示,在棱长为2的正四面体A BCD -中,E 是棱AD 的中点,若P 是棱AC 上一动点,则BP PE +的最小值为A .3B .7C .13+D .511.若直线b x y +=与曲线224690(3)x x y y y -+-+=≤有公共点,则b 的取值范围是A .]221,1[+-B .]221,221[+-C .[122,3]-D .]3,21[-12.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF = 12.则下列结论中正确的个数.....为 ①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值; ④AEF ∆的面积与BEF ∆的面积相等, A .4 B .3 C .2 D .1二、填空题:本大题共4小题,每小题5分,共20分。

2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题(含解析)

2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题(含解析)

2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题一、单选题1.设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】C【分析】先求出共轭复数再判断结果.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .本题考点为共轭复数,为基础题目.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E 为A 1C 1的中点,若BE =1xAA +y AB +z AD,则().A .x =1,12y =,12z =-B .x =1,12y =-,12z =C .12x =,y =1,12z =-D .12x =-,y =1,12z =【正确答案】B【分析】利用空间向量的加减及数乘运算法则进行计算,解决空间向量基本定理问题.【详解】由题意得:()11111111112BE BB B A A E AA AB A B A D =++=-++1111112222AA AB AB AD AA AB AD =-++=-+ ,所以111,,22x y z ==-=故选:B3.设非零向量a ,b满足a b a b +=- ,则A .a ⊥bB .=a bC .a ∥bD .a b> 【正确答案】A【详解】由a b a b +=- 平方得222222a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅= ,则a b ⊥ ,故选A.本题主要考查了向量垂直的数量积表示,属于基础题.4.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为.A .1415B .115C .29D.【正确答案】A【分析】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,可以求(P A ,运用公式()1()P A P A =-,求出()P A .【详解】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,所以232101(15C P A C =,因此114()1()=11515P A P A =--=,故本题选A.本题考查了求对立事件的概率问题,考查了运算能力.5.已知向量()0,1,0a = ,()3,0,2b = ,()2,1,3c =-,则有().A .23a c b=- B .a b c+= C .()b a c⊥- D .a b b c c a⋅=⋅=⋅ 【正确答案】C【分析】对于A ,利用向量的线性运算的坐标表示即可求解;对于B ,利用向量的摸的坐标表示即可求解;对于C ,利用向量的线性运算的坐标表示及向量垂直的坐标表示即可求解;对于D ,利用向量的数量积的坐标运算即可求解.【详解】对于A ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =- ,所以242,0,33b ⎛⎫= ⎪⎝⎭ ,2140,1,33c b ⎛⎫-=- ⎪⎝⎭ ,所以23a c b ≠- ,故A 不正确;对于B ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =-,所以1,a ==b == ,c == ,所以a b c +≠ ,故B 不正确;对于C ,因为()0,1,0a = ,()2,1,3c =- ,所以()2,0,3a c -=-,又()3,0,2b = ,所以()()3200320b a c ⋅-=⨯-+⨯+⨯= ,即()b ac ⊥-,故C 正确.对于D ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =- ,所以0310020a b ⋅=⨯+⨯+⨯=,()3201230b c ⋅=⨯+⨯+⨯-= ,()2011301c a ⋅=⨯+⨯+-⨯= ,所以a b b c c a ⋅=⋅≠⋅,故D 不正确.故选:C.6.已知sin cos αα-=α∈(0,π),则tan α=A .-1B .2C .2D .1【正确答案】A 【详解】sin cos αα-=()0,απ∈,12sin cos 2αα∴-=,即sin 21α=-,故34πα=1tan α∴=-故选A 7.曲线2122y x =+在点51,2⎛⎫- ⎪⎝⎭处的切线的倾斜角为()A .34πB .4πC .23πD .3π【正确答案】A【分析】根据导数的几何意义得到点51,2⎛⎫- ⎪⎝⎭处切线的斜率,再根据斜率求倾斜角即可.【详解】=y x ',所以在点51,2⎛⎫- ⎪⎝⎭处的切线的斜率为-1,倾斜角为34π.故选:A.8.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=【正确答案】A【详解】与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A9.四面体OABC 中,OA a = ,OB b = ,OC c =,点M 在线段OC 上,且2OM MC =,N 为BA 中点,则MN为()A .121232a b c-+ B .211322a b c-++C .112223a b c+-r r r D .221332a b c++ 【正确答案】C【分析】利用空间向量的线性运算及空间向量基本定理,结合图像即可得解.【详解】解:根据题意可得,()2111232223MN MO ON OC OA OB a b c =+=-++=+-.故选:C.10.椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其左焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为()A.,12⎤⎢⎥⎣⎦B.⎣⎦C.⎫⎪⎪⎣⎭D.⎣⎦【正确答案】B【分析】确定四边形1AFBF为矩形,得到1π4e α=⎛⎫+ ⎪⎝⎭,根据三角函数的性质得到离心率范围.【详解】设椭圆右焦点为1F ,连接1AF ,1BF ,AF BF ⊥,则四边形1AFBF 为矩形,则12sin 2cos 2AF AF AF BF c c a αα+=+=+=,故11πsin cos 4e ααα=+⎛⎫+ ⎪⎝⎭,ππ124α⎡⎤∈⎢⎥⎣⎦,,则ππ32π,4α⎡⎤+∈⎢⎥⎣⎦,πsin ,142α⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,23e ∈⎣⎦.故选:B.11.已知a<0,若直线1:210l ax y +-=与直线()2:140l x a y +++=平行,则它们之间的距离为()A.4B.2CD4【正确答案】A【分析】根据平行关系确定参数,结合平行线之间的距离公式即可得出.【详解】解:直线1:210l ax y +-=与直线()2:140l x a y +++=平行,()120a a ∴+-=,解得2a =-或1a =,又a<0,所以2a =-,当2a =-时,直线1:2210l x y -+=与直线2:2280l x y -+=距离为4=.故选:A12.若圆221x y +=上总存在两个点到点(,1)a 的距离为2,则实数a 的取值范围是()A .(-⋃B .(-C .(1,0)(0,1)-D .(1,1)-【正确答案】A【分析】将问题转化为圆22()(1)4x a y -+-=与221x y +=相交,从而可得2121-<+,进而可求出实数a 的取值范围.【详解】到点(,1)a 的距离为2的点在圆22()(1)4x a y -+-=上,所以问题等价于圆22()(1)4x a y -+-=上总存在两个点也在圆221x y +=上,即两圆相交,故2121-<+,解得0a -<<或0a <<所以实数a 的取值范围为(-⋃,故选:A .二、填空题13.已知椭圆2214x y +=,过11,2P ⎛⎫ ⎪⎝⎭点作直线l 交椭圆C 于A ,B 两点,且点P 是AB 的中点,则直线l 的方程是__________.【正确答案】220x y +-=【分析】设1(A x ,1)y ,2(B x ,2)y ,利用“点差法”、线段中点坐标公式、斜率计算公式即可得出.【详解】解:设1(A x ,1)y ,2(B x ,2)y ,则221144x y +=,222244x y +=,12121212((4)0)))((x x x x y y y y ∴+-++-=.1(1,)2P 恰为线段AB 的中点,即有122x x +=,121y y +=,1212()2()0x x y y ∴-+-=,∴直线AB 的斜率为121212y y k x x -==--,∴直线AB 的方程为11(1)22y x -=--,即220x y +-=.由于P 在椭圆内,故成立.故220x y +-=.14.过点()1,2且与圆221x y +=相切的直线的方程是______.【正确答案】1x =或3450x y -+=【分析】当直线斜率不存在时,可得直线:1l x =,分析可得直线与圆相切,满足题意,当直线斜率存在时,设斜率为k ,可得直线l的方程,由题意可得圆心到直线的距离1d r ==,即可求得k 值,综合即可得答案.【详解】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故1x =或3450x y -+=15.已知椭圆2211612x y +=的左、右焦点分别为12,,F F AB 是椭圆过焦点1F 的弦,则2ABF △的周长是___.【正确答案】16根据椭圆的定义求解.【详解】由椭圆的定义知12122,2,BF BF a AF AF a ⎧+=⎪⎨+=⎪⎩所以22||416AB AF BF a ++==.故16.16.已知P 为圆22(1)1x y ++=上任意一点,A ,B 为直线3470x y +-=上的两个动点,且||2AB =,则PAB 面积的最大值是___________.【正确答案】3【分析】直接利用直线和圆的位置关系,利用点到直线的距离公式和三角形的面积公式的应用求出结果.【详解】解:根据圆的方程,圆心(1,0)-到直线3470x y +-=的距离2d =,所以圆上的点P 到直线的最大距离213max d =+=,此时最大面积13232PAB S =⨯⨯=△.故3.三、解答题17.已知直线12:310,:(2)0l ax y l x a y a ++=+-+=.(1)若12l l ⊥,求实数a 的值;(2)当12l l //时,求直线1l 与2l 之间的距离.【正确答案】(1)32a =;(2【分析】(1)由垂直可得两直线系数关系,即可得关于实数a 的方程.(2)由平行可得两直线系数关系,即可得关于实数a 的方程,进而可求出两直线的方程,结合直线的距离公式即可求出直线1l 与2l 之间的距离.【详解】(1)由12l l ⊥知3(2)0a a +-=,解得32a =.(2)当12l l //时,有(2)303(2)0a a a a --=⎧⎨--≠⎩,解得3a =.此时12:3310,:30l x y l x y ++=++=,即233:90x y l ++=,则直线1l 与2l 之间的距离d =本题考查了由两直线平行求参数,考查了由两直线垂直求参数的值,属于基础题.18.在△ABC 中,内角A,B ,C 的对边分别为a ,b ,c ,且.(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值【正确答案】(1)B =60°(2)a c ==【详解】(1)由正弦定理得【考点定位】本题主要考察三角形中的三角函数,由正余弦定理化简求值是真理19.如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别为1AD 、1CD 中点.(1)求证:EF BD ⊥;(2)求两异面直线BD 与1CD 所成角的大小.【正确答案】(1)见解析(2)3π【分析】(1)利用向量乘积为0证明即可;(2)利用向量法求异面直线所成的角.【详解】(1)如图,建立空间直角坐标系D xyz -则(0,0,0),(2,2,0),(1,0,1),(0,1,1)D BEF (1,1,0),(2,2,0)EF BD =-=--因为2200EF BD ⋅=-+=所以EF BD ⊥,即EF BD⊥(2)11(0,2,0),(0,0,2),(0,2,2)C D CD =-1111cos ,2||BD CD BD CD BD CD ⋅==设异面直线BD 与1CD 所成角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦所以3πθ=,即异面直线BD 与1CD 所成角的大小为3π20.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2BC =2CC 1=2,点E 是DC的中点.(1)求点D 到平面AD 1E 的距离;(2)求证:平面AD 1E ⊥平面EBB 1.【正确答案】(2)证明过程见解析.【分析】(1)建立空间直角坐标系,求出平面1D AE 的法向量,利用点到平面距离公式求出答案;(2)利用空间向量的数量积为0证明出1,EA EB EA BB ⊥⊥,从而证明出线面垂直,进而证明出面面垂直.【详解】(1)以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,则()()()()()()110,0,0,1,0,0,0,1,0,0,0,1,1,2,0,1,2,1D A E D B B ,设平面1D AE 的法向量为(),,m x y z = ,则()()()()1,,1,0,10,,1,1,00m D A x y z x z m EA x y z x y ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩,令1x =得:1,1y z ==,所以()1,1,1m = ,则点D 到平面AD 1E 的距离为DA m d m⋅= ;(2)()()11,1,0,0,0,1EB BB == ,所以()()1,1,01,1,0110EA EB ⋅=-⋅=-= ,()()11,1,00,0,10EA BB ⋅=-⋅= ,所以1,EA EB EA BB ⊥⊥,因为1EB BB B =,1,EB BB ⊂平面1EBB ,所以EA ⊥平面1EBB ,因为EA ⊂平面1D AE ,所以平面1D AE ⊥平面1EBB .21.某企业为了了解职工对某部门的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示):(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分的中位数与平均值;(3)从评分在[)40,60的受访职工中,随机抽取2人,求此2人评分都在[)40,50的概率.【正确答案】(1)0.006a =;(2)中位数为5357,均值为76.2;(3)110【分析】(1)根据频率和为1可求频率分布直方图中a 的值;(2)根据组中值可求平均值,根据前3组、前4组的频率和可求中位数.(3)利用古典概型的概率计算公式可求概率.【详解】(1)由直方图可得(0.0040.0180.02220.028)101a +++⨯+⨯=,故0.006a =.(2)由直方图可得平均数为(0.004450.006550.018950.022650.022850.02875)1076.2⨯+⨯+⨯+⨯+⨯+⨯⨯=.前3组的频率和为0.0040.0060.022)100.32++⨯=,前3组的频率和为0.0040.0060.0220.028)100.6+++⨯=,故中位数在[)70,80,设中位数为x ,则700.320.280.510x -+⨯=,故5357x =.故中位数为5357.(3)评分在[)40,60的受访职工的人数为()0.0040.00610505+⨯⨯=,其中评分在[)40,50的受访职工的人数为2,记为,a b在[)50,60的受访职工人数为3,记为,,A B C ,从5人任取2人,所有的基本事件如下:{}{}{}{}{}{}{}{}{}{},,,,,,,,,,,,,,,,,,,a b a A a B a C b A b B b C A B A C B C ,基本事件的总数为10,而2人评分都在[)40,50的基本事件为{},a b ,故2人评分都在[)40,50的概率为110.22.如图,已知椭圆2222:1(0)x y C a b a b +=>>的左、右顶点分别是,A B ,且经过点1,2⎛⎫- ⎪ ⎪⎝⎭,直线:1l x ty =-恒过定点F 且交椭圆于,D E 两点,F 为OA 的中点.(1)求椭圆C 的标准方程;(2)记BDE △的面积为S ,求S 的最大值.【正确答案】(1)2214x y +=(2)2【分析】(1)由直线过定点坐标求得a ,再由椭圆所过点的坐标求得b 得椭圆方程;(2)设()()1122,,,E x y D x y ,直线l 方程与椭圆方程联立消元后应用韦达定理得12122223,44t y y y y t t +==-++,计算弦长DE ,再求得B 到直线l 的距离,从而求得三角形面积,由函数的性质求得最大值.【详解】(1)由题意可得,直线:1l x ty =-恒过定点(1,0)F -,因为F 为OA 的中点,所以||2OA =,即2a =.因为椭圆C经过点1,⎛ ⎝⎭,所以2222112b ⎛ ⎝⎭+=,解得1b =,所以椭圆C 的方程为2214x y +=.(2)设()()1122,,,E x y D x y .由22441x y x ty ⎧+=⎨=-⎩得()224230,0t y ty +--=∆>恒成立,则12122223,44t y y y y t t +==-++,则||ED ===又因为点B 到直线l 的距离d =所以11||22S ED d =⨯⨯==令m =26611m m m m==++,因为1y m m=+,m 时,2110y m'=->,1y m m =+在)m ∈+∞上单调递增,所以当m时,min 13m m ⎛⎫+= ⎪⎝⎭时,故max 2S =.即S的最大值为方法点睛:本题求椭圆的标准方程,直线与椭圆相交中三角形面积问题,计算量较大,属于难题.解题方法一般是设出交点坐标,由(设出)直线方程与椭圆方程联立方程组消元后应用韦达定理,然后由弦长公式求得弦长,再求得三角形的另一顶点到此直线的距离,从而求得三角形的面积,最后利用函数的性质,基本不等式等求得最值.。

2022-2023学年山东省菏泽第一中学高二上学期12月月考数学试题(解析版)

2022-2023学年山东省菏泽第一中学高二上学期12月月考数学试题(解析版)

2022-2023学年山东省菏泽第一中学高二上学期12月月考数学试题一、单选题1.抛物线22y x =的焦点坐标是( )A .1,02⎛⎫ ⎪⎝⎭B .1,08⎛⎫ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭【答案】D【分析】先把抛物线化为标准方程,直接写出焦点坐标.【详解】抛物线22y x =的方程为212x y =,所以焦点在y 轴 由122p =, 所以焦点坐标为10,8⎛⎫⎪⎝⎭.故选:D .2.设n S 为等差数列{}n a 的前n 项和,已知311a =,1060S =,则5a =( ) A .7 B .8C .9D .10【答案】A【详解】设等差数列{}n a 的公差为d ,由题意建立方程,即可求出1a ,d ,再根据等差数列的通项公式,即可求出结果.【分析】设等差数列{}n a 的公差为d ,由题意可知11211?104560a d a d +=⎧⎨+=⎩,解得115a =,2d =-,所以5141587a a d =+=-=. 故选:A3.设点B 是(2,3,5)A 关于坐标平面xOy 的对称点,则||=AB ( ) A .10 BC .38D【答案】A【分析】根据空间直角坐标系的坐标特点得点B 坐标,根据空间中两点间的距离公式计算即可得||AB .【详解】解:因为点B 是(2,3,5)A 关于坐标平面xOy 的对称点,所以(2,3,5)B -所以10AB AB ==.故选:A.4.已知向量()()1,1,0,1,0,=-=a b m ,且ka b +与2a b -互相平行,则k =( ) A .114-B .15C .35D .12-【答案】D【分析】由空间向量平行的条件求解.【详解】由已知(1,,)ka b k k m +=-,2(3,1,2)a b m -=--, 因为ka b +与2a b -平行, 若0m =,则131k k -=-,12k =-, 若0m ≠,则1312k k mm-==--,k 无解. 综上,12k =-,故选:D .5.设向量OA ,OB ,OC 不共面,空间一点P 满足OP xOA yOB zOC =++,则A ,B ,C ,P 四点共面的一组数对(,,)x y z 是( )A .111(,,)432B .131(,,)442-C .(1,2,3)-D .121(,,)332-【答案】B【分析】由题设条件可知,A ,B ,C ,P 四点共面等价于1x y z ++=,由此对选项逐一检验即可. 【详解】因为向量OA ,OB ,OC 不共面,OP xOA yOB zOC =++, 所以当且仅当1x y z ++=时,A ,B ,C ,P 四点共面, 对于A ,1111432++≠,故A 错误;对于B ,1311442-++=,故B 正确;对于C ,1231-+≠,故C 错误;对于D ,1211332-++≠,故D 错误.故选:B.6.已知数列{}n a 中,11a =且()133nn n a a n a *+=∈+N ,则16a 为( )A .16B .14C .13D .12【答案】A【分析】采用倒数法可证得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,根据等差数列通项公式可推导得到n a ,代入16n =即可.【详解】由133n n n a a a +=+得:1311133n n n n a a a a ++==+,又111a ,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,13为公差的等差数列,()1121133n n n a +∴=+-=,32n a n ∴=+,1616a ∴=. 故选:A.7.已知三个数1,a ,9成等比数列,则圆锥曲线2212x ya +=的离心率为( )A 3B 5C 510D 310 【答案】D【详解】椭圆、双曲线的方程简单性质,等比数列的性质,分类讨论,由已知求得a 值,然后分类讨论求得圆锥曲线2212x y a +=的离心率解决即可. 【解答】因为三个数1,a ,9成等比数列, 所以29a =,则3a =±.当3a =时,曲线方程为22132x y +=,表示椭圆, 31, 3 当3a =-时,曲线方程为22123y x -=,表示双曲线,255102. 故选:D8.若数列{}n a 是等差数列,首项10a >,公差()2020201920200,0d a a a <+<,则使数列{}n a 的前n 项和0n S >成立的最大自然数n 是( )A .4039B .4038C .4037D .4036【答案】B【分析】根据等差数列的单调性,结合等差数列前n 项和公式进行求解即可. 【详解】因为0d <,所以等差数列{}n a 是递减数列, 因为()2020201920200a a a +<,所以201920200,0a a ><,且20192020a a >,201920200a a +>, ()1403920192020403920204038201920204039()40390,403820190,22a a a a S a S a a ++===⨯=+所以使数列{}n a 的前n 项和0n S >成立的最大自然数n 是4038. 故选:B二、多选题9.下列结论错误的是( )A .过点()1,3A ,()3,1B -的直线的倾斜角为30︒B .若直线2360x y -+=与直线20ax y ++=平行,则23a =-C .直线240x y +-=与直线2410x y ++=D .已知()2,3A ,()1,1B -,点P 在x 轴上,则PA PB +的最小值是5 【答案】AC【分析】对于A ,tan AB k α=即可解决;对于B ,由题意得231a -=即可解决;对于C ,平行线间距离公式解决即可;对于D ,数形结合即可. 【详解】对于A ,131tan 312AB k α-===--,即30α≠︒,故A 错误; 对于B ,直线2360x y -+=与直线20ax y ++=平行,所以123a =-,解得23a =-,故B 正确;对于C ,直线240x y +-=与直线2410x y ++=(即1202x y ++=)之间的距离为d =故C 错误;对于D ,已知()2,3A ,()1,1B -,点P 在x 轴上,如图取()1,1B -关于x 轴的对称点()1,1B '--,连接AB '交x 轴于点P ,此时22(21)(31)5PA PB PA PB AB ''+=+≥=+++,所以PA PB +的最小值是5,故D 正确; 故选:AC.10.已知数列{}n a 的前n 项和为n S ,25n S n n =-,则下列说法不正确...的是( ) A .{}n a 为等差数列 B .0n a >C .n S 最小值为254- D .{}n a 为单调递增数列【答案】BC【分析】根据n S 求出n a ,并确定{}n a 为等差数列,进而可结合等差数列的性质以及前n 项和分析求解.【详解】对于A ,当2n ≥时,()()221515126n n n a S S n n n n n -⎡⎤==-----=-⎣⎦-, 1n =时114a S ==-满足上式,所以26,N n a n n *=-∈,所以()()1216262n n a a n n +-=+---=, 所以{}n a 为等差数列,故A 正确;对于B ,由上述过程可知26,N n a n n *=-∈,12340,20,0a a a =-<=-<=,故B 错误;对于C ,因为25n S n n =-,对称轴为52.52=, 又因为N n *∈,所以当2n =或3时,n S 最小值为6-,故C 错误; 对于D ,由上述过程可知{}n a 的公差等于2, 所以{}n a 为单调递增数列,故D 正确. 故选:BC.11.在正方体1111ABCD A B C D -中,E ,F ,G 分别为BC ,11CC BB ,的中点,则下列结论中正确的是( )A .1D D AF ⊥B .点G 到平面AEF 的距离是点C 到平面AEF 的距离的2倍 C .1//A G 平面AEFD .异面直线1A G 与EF 5【答案】BC【分析】对于选项A :由11//DD CC 以及1CC 与AF 不垂直,可知A 错误;对于选项B :利用等体积法,A GEF G AEF A CEF C AEF V V V V ----==,可求得结果,进而判断选项B 正确;对于选项C :取11B C 的中点M ,根据面面平行的性质即可得出1//A G 平面AEF ,可知选项C 正确; 对于选项D :根据线面垂直的判定定理和性质,结合二面角的定义可知D 错误;【详解】对于选项A :因为1AC AC ≠,所以1ACC △不是等腰三角形,所以1CC 与AF 不垂直,因为11//DD CC ,所以1DD 与AF 不垂直,故选项A 错误;对于选项B :设正方体的棱长为2,设点G 到平面AEF 的距离与点C 到平面AEF 的距离分别为12,h h ,则11133A GEF GEFG AEF AEFV AB S V h S--=⋅==⋅,21133A CEF CEFC AEF AEFV AB S V h S--=⋅==⋅,所以12121221112GEFCEFS h h S ⨯⨯===⨯⨯△△,故选项B 正确; 对于选项C :取11B C 的中点M ,连接11,,GM A M BC ,由题意可知:1//GM BC ,因为1//BC EF ,所以//GM EF ,GM ⊄平面AEF , EF ⊂平面AEF ,所以//GM 平面AEF ,因为1A M AE ∥,1A M 平面AEF , AE ⊂平面AEF ,所以1//A M 平面AEF ,因为11,,A MGM M A M GM =⊂平面1AGM ,所以平面AEF //平面1AGM , 因为1AG ⊂平面1AGM ,所以1//A G 平面AEF ,故选项C 正确; 对于选项D :因为111//,//AD EF AG D F ,所以异面直线1A G 与EF 所成的角为1AD F ∠(或其补角),设正方体的棱长为2,则22112253AD D F AF AC CF ===+=,,, 在1AD F △中,由余弦定理可得:2221111110cos 22225AD D F AF AD F AD D F +-∠===⋅⨯⨯D 错误,故选:BC .12.下列命题中,正确的命题有( ) A .a b a b +=-是a ,b 共线的充要条件 B .若//a b ,则存在唯一的实数λ,使得a b λ=C .对空间中任意一点O 和不共线的三点A ,B ,C ,若243OP OA OB OC =-+,则P ,A ,B ,C 四点共面D .若{},,a b c 为空间的一个基底,则{},2,3a b b c c a +++构成空间的另一个基底 【答案】CD【分析】对A ,向量a 、b 同向时a b a b +=-不成立; 对B , b 为零向量时不成立; 对C ,根据空间向量共面的条件判定; 对D ,根据能成为基底的条件判定.【详解】对A ,向量a 、b 同向时,a b a b +≠-,∴只满足充分性,不满足必要性,∴A 错误; 对B ,b 应该为非零向量,故B 错误; 对C ,由于243OP OA OB OC =-+得,1324PB PA PC =+, 若,PA PC 共线,则,,PA PC PB 三向量共线,故A ,B ,C 三点共线,与已知矛盾,故,PA PC 不共线,由向量共面的充要条件知,PB PA PC ,共面,而,PB PA PC ,过同一点P ,所以P ,A ,B ,C 四点共面,故C 正确;对D ,若{},,a b c 为空间的一个基底,则a ,b ,c 不共面, 假设a b +,2b c +,3c a +共面,设()()23a b x b c y c a +=+++,所以13102yxx y =⎧⎪=⎨⎪=+⎩ ,无解,故a b +,2b c +,3c a +不共面, 则{},2,3a b b c c a +++构成空间的另一个基底,故D 正确. 故选: CD .三、填空题13.等比数列{}n a 中,39a =-,114a =-,则7a =______. 【答案】6-【分析】由等比数列的性质计算.【详解】因为{}n a 是等比数列,所以2731136a a a ==,又{}n a 的所有奇数项同号,所以76a =-.故答案为:6-.14.直线230x y +-=被圆()()22214x y-++=截得的弦长____________【分析】首先求出圆心坐标与半径,再利用点到直线的距离公式求出圆心到直线的距离,最后利用勾股定理与垂径定理计算可得;【详解】圆()()22214x y -++=的圆心为2,1,半径2r =, 圆心2,1到直线的距离d ==所以直线被圆截得弦长为22223525522255r d ⎛⎫-=-= ⎪ ⎪⎝⎭. 故答案为:2555. 15.已知数列{}n a .的前n 项和为n S ,且()*2120N n n n a a a n +++-=∈.若11151912a a a ++=,则29S =______.【答案】116【分析】先判断出数列是等差数列,然后运用等差数列的性质可得答案.【详解】(){}*211220N ,2,n n n n n n n a a a n a a a a +++++-=∈∴=+∴为等差数列,111912915111519152,12,4,a a a a a a a a a ∴+=+=++=∴=129291529292941162a a S a +∴=⨯==⨯=. 故答案为:116.四、双空题16.如图,在棱长为1的正方体ABCD A B C D -''''中,M 为BC 的中点,则AM 与D B ''所成角的余弦值为___________;C 到平面DA C ''的距离为___________.【答案】103【分析】第一空根据向量法即可求得异面直线之间的夹角. 第二空利用等体积法即可求得.【详解】由已知连接BD ,如图所示建立空间直角坐标系,则()0,0,1A ,1,1,12M ⎛⎫⎪⎝⎭,()0,1,0B ',()1,0,0D '1,1,02AM ⎛⎫= ⎪⎝⎭()1,1,0D B ''=-10cos ,10AM D B AM D B AM D B ''''==''⋅ AM 与D B ''所成角的余弦值为1010如图所示设C 到平面DA C ''的距离为d 因为C A DC A DCC V V '''--=1111322sin 601113232d d ⨯⋅=⨯⨯⨯⨯⇒=103五、解答题17.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=. (1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1)12n n b -=;(2)当5q =-时,321S =.当4q =时,36S =-.【分析】设{}n a 的公差为d ,{}n b 的公比为q ,(1)由条件可得3d q +=和226d q +=,解方程得12d q =⎧⎨=⎩,进而可得通项公式; (2)由条件得2200q q +-=,解得5,4q q =-=,分类讨论即可得解.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则1(1)n a n d =-+-,1n n b q -=.由222a b +=得3d q +=.①(1)由335a b +=得226d q +=②联立①和②解得30d q =⎧⎨=⎩(舍去),12d q =⎧⎨=⎩ 因此{}n b 的通项公式为12n n b -=.(2)由131,21b T ==得2200q q +-=.解得5,4q q =-=.当5q =-时,由①得8d =,则321S =.当4q =时,由①得1d =-,则36S =-.【点睛】本题主要考查了等差数列和等比数列的基本量运算,属于基础题.18.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC .(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.【答案】(1)122AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC ,平方即求得模长.(2) 求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =,CB b =,1CC c =,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+, 所以()22211AC AC c a b ⎡⎤==-+⎣⎦ 222222c a b a c b c a b =++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++,1DC c a =-,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅=∴11CA DC ⊥∴异面直线1CA 与1DC 所成的角为90°.19.已知等差数列{}n a 的前n 项和为258,224,100n S a a S +==.(1)求{an }的通项公式;(2)若+11n n n b a a =,求数列{n b }的前n 项和Tn . 【答案】(1)31n a n =-(2)2(32)n n T n =+【分析】(1)由等差数列的通项公式以及等差数列的前n 项和公式展开可求得结果;(2)由裂项相消求和可得结果.【详解】(1)设等差数列{}n a 的公差为d ,由题意知,1112()4248(81)81002a d a d a d +++=⎧⎪⎨⨯-+=⎪⎩ 解得:123a d =⎧⎨=⎩ ∴1(1)23(1)31n a a n d n n =+-=+-=-.故{}n a 的通项公式为31n a n =-.(2)∵1111()(31)(32)33132n b n n n n ==--+-+ 111111111111()()()()325358381133132111111111 ()325588113132111 =()3232=2(32)n T n n n n n n n =⨯-+⨯-+⨯-++--+=⨯-+-+-++--+⨯-++ 即:{}n b 的前n 项和2(32)n n T n =+. 20.如图,在直三棱柱111ABC A B C 中,2AB AC ==,14AA =,AB AC ⊥,1BE AB ⊥交1AA 于点E ,D 为1CC 的中点.(1)求证:BE ⊥平面1AB C ;(2)求直线1B D 与平面1AB C 所成角的正弦值.【答案】(1)证明见解析;15【分析】(1)先证明1AA AC ⊥,从而可得AC ⊥平面11AA B B ,进而可得AC BE ⊥,再由线面垂直的判定定理即得;(2)建立空间直角坐标系,利用线面角的向量求法即得.【详解】(1)因为三棱柱111ABC A B C 为直三棱柱,所以1AA ⊥平面ABC ,又AC ⊂平面ABC ,所以1AA AC ⊥,又AC AB ⊥,1AB AA A ⋂=,AB ⊂平面11AA B B ,1AA ⊂平面11AA B B ,所以AC ⊥平面11AA B B ,因为BE ⊂平面11AA B B ,所以AC BE ⊥,又因为1BE AB ⊥, 1AC AB A ⋂=,AC ⊂平面1AB C ,1AB ⊂平面1AB C ,所以BE ⊥平面1AB C ;(2)由(1)知AB ,AC ,1AA 两两垂直,如图建立空间直角坐标系A xyz -,则()0,0,0A ,()12,0,4B ,()0,2,0C ,()2,0,0B ,()0,2,2D ,设()0,0,E a ,()12,0,4AB =,()2,0,BE a =-,()0,2,0AC =,因为1AB BE ⊥,所以440a -=,即1a =,则()2,0,1BE =-,由(1)平面1AB C 的一个法向量为()2,0,1BE =-,又()12,2,2B D =--,设直线1B D 与平面1AB C 所成角的大小为π20θθ⎛⎫≤≤ ⎪⎝⎭,则 11115sin cos ,512BE B D BE B D BE B D θ⋅====⋅⋅, 因此,直线1B D 与平面1AB C 1521.已知数列{}1221,2,5,43.++===-n n n n a a a a a a(1)令1n n n b a a +=-,求证:数列{}n b 是等比数列;(2)若n n c nb =,求数列{}n c 的前n 项和n S .【答案】(1)见解析 (2)11133244n n S n +⎛⎫=-+ ⎪⎝⎭【分析】(1)根据递推公式证明2113n n n na a a a +++--为定值即可; (2)利用错位相减法求解即可.【详解】(1)证明:因为2143n n n a a a ++=-,所以()2113n n n n a a a a +++-=-,即13n n b b +=, 又1213b a a -==,所以数列{}n b 是以3为首项,3为公比的等比数列;(2)解:由(1)得11333n n n n a a +--=⋅=, 3n n n c nb n =⋅=,则23323333n n S n =+⨯+⨯++⋅,23413323333n n S n +=+⨯+⨯++⋅,两式相减得()2311131313233333331322n n n n n n S n n n +++-⎛⎫-=++++-⋅=-⋅=-- ⎪-⎝⎭, 所以11133244n n S n +⎛⎫=-+ ⎪⎝⎭. 22.如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直,1//122AF DE DE AD AD BE AF AD DE AB ⊥⊥====,,,,.(1)求证:BF ∥平面CDE ;(2)求二面角B EF D --的余弦值;(3)判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF ?若存在,求出BQ BE 的值,若不存在,说明理由.【答案】(1)详见解析 (2)63(3)存在点Q ;17BQ BE =【分析】(1)根据线面平行的判断定理,作辅助线,转化为证明线线平行;(2)证得DA ,DB ,DE 两两垂直,从而建立以D 点为原点的空间直角坐标系,求得平面DEF 和平面BEF 的一个法向量,根据法向量的夹角求得二面角的余弦值;(3)设()[]()0,,20,1BQ BE λλλλ==-∈,求得平面CDQ 的法向量为u ,若平面CDQ ⊥平面BEF ,则0m u =⋅,从而解得λ的值,找到Q 点的位置.【详解】(1)取DE 的中点M ,连结MF ,MC ,因为12AF DE =,所以AF DM =,且AF DM =, 所以四边形ADMF 是平行四边形,所以//MF AD ,且MF AD =,又因为//AD BD ,且AD BC =,所以//MF BC ,MF BC =,所以四边形BCMF 是平行四边形,所以//BF CM ,因为BF ⊄平面CDE ,CM ⊂平面CDE ,所以//BF 平面CDE ;(2)因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥, 所以DE ⊥平面ABCD ,DB ⊂平面ABCD ,则DE DB ⊥,故DA ,DB ,DE 两两垂直,所以以DA ,DB ,DE 所在的直线分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,()0,1,0B ,()1,1,0C -,()0,0,2E ,()1,0,1F ,所以()0,1,2BE =-,()1,0,1EF =-,()0,1,0n =为平面DEF 的一个法向量. 设平面BEF 的一个法向量为(),,m x y z =,由0m BE ⋅=,0m EF ⋅=,得200y z x z -+=⎧⎨-=⎩, 令1z =,得()1,2,1m →=. 所以26cos ,36m n m n m n →→→→→→⋅===. 如图可得二面角B EF D --为锐角,所以二面角B EF D --的余弦值为63. (3)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . 证明如下:设()[]()0,,20,1BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(),,u a b c =,又因为()1,1,0DC =-, 所以0u DQ ⋅=,0u DC ⋅=,即(1)200b c a b λλ-+=⎧⎨-+=⎩, 若平面CDQ ⊥平面BEF ,则0m u =⋅,即20a b c ++=, 解得[]10,17λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF , 且此时17BQ BE =.。

辽宁省大连市第八中学2023-2024学年高二上学期12月月考数学试题

辽宁省大连市第八中学2023-2024学年高二上学期12月月考数学试题

辽宁省大连市第八中学2023-2024学年高二上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .1x =,12y =,12z =-C .12x =,1y =,12z =-4.已知抛物线2:C y x =的焦点为为B ,1BF =,则BAF ∠=(A .30°B .45°5.美术绘图中常采用“三庭五眼鼻底,鼻底至下颏的范围分为上庭、中庭、下庭,各占脸长的例,以眼形长度为单位,把脸的宽度自左至右分成第一眼、第二眼、第三眼、第四眼、第五眼五等份.如图,假设三庭中一庭的高度为中提供的直线AB 近似记为该人像的刘海边缘,且该人像的鼻尖位于中庭下边界和第三眼的中点,则该人像鼻尖到刘海边缘的距离约为(A .524C .9246.已知双曲线221(0)x y m m-=>曲线的渐近线方程为()A .2y x=±B .y =±7.已知直线20kx y k -+=与直线二、多选题9.4名男生和3名女生排队(排成一排)照相,下列说法正确的是()A .若女生必须站在一起,那么一共有5335A A 种排法B .若女生互不相邻,那么一共有3434A A 种排法C .若甲不站最中间,那么一共有1666C A 种排法A .无论λ取何值,三棱锥B .若24λ=,则EG ⋅ C .点1D 到平面EFG 的距离为D .若异面直线EF 与AG 12.法国数学家加斯帕·蒙日被称为相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,圆的蒙日圆.若椭圆Γ:22x a 动点M 作Γ的两条切线,分别与A .2a b=B .MPQ 面积的最大值为C .M 到Γ的左焦点的距离的最小值为D .若动点D 在Γ上,将直线三、填空题四、解答题(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成角的余弦值.18.已知圆C 过点(02)M -,,(1)求圆C 的标准方程.(2)设直线10ax y -+=与圆C 的直线l 垂直平分弦AB ?若存在,求出实数19.已知圆22:22M x y x ++(1)求曲线E 的方程;(2)点A 是曲线E 与y 轴正半轴的交点,过点,AB AC 的斜率分别是12,k k ,试探索12k k ⋅是否为定值,若是,求出该定值;若不是,请说明理由.20.如图,在四棱锥P ABCD -中,ABC ∠=∠二面角P AD B --为直二面角.(1)求证:PA BD ⊥;(2)若直线PB 与平面PAD 弦值.21.已知双曲线C :22x a -A(1)求双曲线C 的方程(2)动直线12y x t =+交双曲线22.抛物线1C :24x y =,双曲线一点3,4M m ⎛⎫⎪⎝⎭作1C 的切线,其斜率为(1)求2C 的标准方程;。

2022-2023学年上海市南洋模范中学高二上学期12月月考数学试题(解析版)

2022-2023学年上海市南洋模范中学高二上学期12月月考数学试题(解析版)

2022-2023学年上海市南洋模范中学高二上学期12月月考数学试题一、填空题1.在空间直角坐标系中,点(1,2,3)A -关于xOz 平面对称的点的坐标是______. 【答案】()1,2,3--【分析】根据空间对称的知识求得正确答案.【详解】点关于xOz 平面对称点,横坐标和竖坐标不变,纵坐标相反, 所以点(1,2,3)A -关于xOz 平面对称的点的坐标是()1,2,3--. 故答案为:()1,2,3--2.为了解某校高三年级男生的体重,从该校高三年级男生中抽取17名,测得他们的体重数据如下(按从小到大的顾序排列,单位:kg )56 56 57 58 59 59 61 63 64 65 66 68 69 70 73 74 83 据此估计该校高三年级男生体重的第75百分位数为______kg 【答案】69【分析】根据百分位数的求法求得正确答案. 【详解】170.7512.75⨯=, 数据从小到大第13个数是69, 所以第75百分位数为69kg 故答案为:693.第14届国际数学教有大会(ICME-14)于2021年7月12日至18日在上海举办,已知张老师和李老师都在7天中随机选择了连续的3天参会,则两位老师所选的日期恰好都不相同的概率为______. 【答案】625##0.24 【分析】先确定随机试验张老师和李老师各在7天中随机选择了连续的3天参会的基本事件数,再确定事件两位老师所选的日期恰好都不相同所包含的基本事件数,由古典概型概率公式求事件两位老师所选的日期恰好都不相同的概率.【详解】因为张老师在7天中随机选择连续的3天参会共有5种选法,即()12,13,14,()13,14,15,()14,15,16,()15,16,17,()16,17,18,所以随机试验张老师和李老师各在7天中随机选择连续的3天参会的基本事件数为25,其中两位老师所选的日期恰好都不相同选法有:张老师选()12,13,14,李老师选()15,16,17或()16,17,18,张老师选()13,14,15,李老师选()16,17,18,张老师选()15,16,17,李老师选()12,13,14,张老师选()16,17,18,李老师选()12,13,14或()13,14,15,即事件两位老师所选的日期恰好都不相同包含6个基本事件,所以事件两位老师所选的日期恰好都不相同的概率625P =. 故答案为:625. 4.设等差数列{}n a 的公差为d ,若1234576,,,,,,a a a a a a a 的方差为1,则d =________.【答案】12±【详解】由题意得2222222411[(3)(2)()0()(2)(3)]47x a d d d d d d d =∴=-+-+-++++= ,因此12d =±5.某学校随机抽取100名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[]0,100,样本数据分组为[)0,20,[)20,40,[)40,60,[)60,80,[]80,100.则该校学生上学所需时间的均值估计为______________.(精确到1分钟).【答案】34.【详解】由直方图可得0.0250.00650.0032201x +++⨯⨯=(). 所以0.0125x =,该校学生上学所需时间的均值估计为:10200.012530200.02550200.006570200.00390200.00333.6⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=分钟,故该校新生上学所需时间的平均值为34分,故答案346.由8个整数形成的样本数据中,至少有六个互不相同的整数,若平均数、中位数、唯一的众数和全距(即样本中最大数与最小数之差)都是8,则可能成为样本数据中的最大整数是________. 【答案】12【分析】根据平均数、中位数、唯一的众数和全距求得最大整数的值.【详解】依题意,平均数=中位数=众数=8,所以偏态系数为0,数据分布对称, 因为存在众数且众数唯一,所以可设这8个整数为123456,,,8,8,,,x x x x x x , 且12345688x x x x x x <<<=<<<, 所以6116882x x x x -=⎧⎪⎨+=⎪⎩,解得612x =.故答案为:127.如图:已知矩形ABCD 中,2AB =,BC t =,若PA ⊥平面ABCD ,在BC 边上取点E ,使PE DE ⊥,则满足条件的E 点有两个时,t 的取值范围是________.【答案】4t >【分析】由题意可证得DE AE ⊥,转化为以AD 为直径的圆与矩形另一边有2个交点,根据圆心到直线的距离小于半径求解即可. 【详解】连接AE ,如图,因为PA ⊥平面ABCD ,DE ⊂平面ABCD ,所以PA DE ⊥,又PE DE ⊥,PA PE P =,,PA PE ⊂平面PAE ,所以DE ⊥平面PAE , 因为AE ⊂平面PAE ,所以DE AE ⊥. 即E 点为以AD 为直径的圆与BC 的交点.因为2AB =,BC t =,满足条件的E 点有2个,即圆心也就是AD 中点到BC 的距离小于半径即可,即平行线间的距离22tAB =<,解得4t >. 故答案为:4t >8.某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为__________元. 【答案】8800【详解】要使得这8位员工月工资的中位数最大值,即月工资数据不清楚的两个人的工资分别为比8200小,比9500大,即中位数为9100850088002+=. 9.已知正方体1111ABCD A B C D -中,M ,N 分别为棱AB ,1BB 的中点,过1D ,M ,N 三点作该正方体的截面,若截面为一个多边形Γ,则Γ在顶点1D 处的内角的余弦值为________.【答案】413【分析】建立空间直角坐标系,根据1//D P QN →→,1//D Q PM →→求出,P Q 坐标,利用向量的夹角公式求解即可.【详解】设正方体棱长为2,多边形Γ与棱11,B C AD 相交于,Q P ,以1,,DA DC DD 所在直线分别为,,x y z 轴建立空间直角坐标系,如图,则1(2,1,0),(2,2,1),(0,0,2)M N D ,设(,0,0)P a ,(,2,2)Q b ,则11(,0,2),(2,1,0),(,2,0),(2,0,1)D P a PM a D Q b QN b →→→→=-=-==--,由正方体左右侧面平行,与截面多边形Γ分别交于1D P QN ,,所以1//D P QN , 同理,可得1//D Q PM 故1//D P QN →→,1//D Q PM →→,所以2(2)2(2)a b b a =-⎧⎨=-⎩,解得43a b ==,所以14(,0,2)3D P →=-,14(,2,0)3D Q →=,则111111161649cos ,16163613||||49D P D Q D P D Q D P D Q →→→→→→⋅<>====++, 所以Γ在顶点1D 处的内角的余弦值为413. 故答案为:413. 10.已知A 、B 、C 是半径为1的球面上的三点,若1AB AC ==,则BC 的最大值为______. 【答案】3【分析】设ABC 的外接圆半径为r ,2BC x =,由条件列关系式确定,x r 的关系,由此可求x 的最大值,由此确定BC 的最大值.【详解】因为A 、B 、C 是半径为1的球面上的三点,过点A 、B 、C 作球的截面,设截面圆的圆心为1O ,半径为r ,设BC 的中点为D ,则1O D BC ⊥,因为1AB AC ==,所以AD BC ⊥,设2BC x =,则21AD x =-,211O D r x =--,又22211BD O D O B +=,所以()22221r x r x =+--,所以22114x r =-,因为球的半径为1,所以1r ≤,所以当1r =时,2x取最大值,最大值为34,所以BC 的最大值为3, 故答案为:3.11.在直三棱柱111ABC A B C 中,11AB AC AA ===,{}1Ω,01,02,03P AP AB AC AA λμηλμη==++≤≤≤≤≤≤,若Ω中所有的点构成的几何体的体积为3,则AB 与AC 夹角的大小为________.【答案】π6或5π6【分析】由条件确定区域Ω与三棱柱111ABC A B C 的体积关系,结合柱体体积公式列方程可求AB 与AC 夹角的正弦值,由此可得夹角大小.【详解】因为{}1Ω,01,02,03P AP AB AC AA λμηλμη==++≤≤≤≤≤≤, 所以Ω中所有的点构成的几何体的体积是直三棱柱111ABC A B C 体积的236⨯=倍, 则16sin ,3AB AC AB AC AA ⨯⨯=,又11AB AC AA ===,所以1sin ,2AB AC =,因为[],0,πAB AC ∈,所以π,6AB AC =或5π6, 所以AB 与AC 夹角的大小为π6或5π6.故答案为:π6或5π6.12.在一个112⨯⨯的长方体内部,有一半径为12的小球自由运动,则当小球在长方体内滚动时,长方体内没有被小球滚到的部分其体积为________. 【答案】5212π-【分析】根据条件,画直观图,直接计算即可.【详解】由题意,小球在长方体内活动如图中虚线所示,是由上下两个半球和中间的圆柱构成, 所以小球不能达到的空间体积为2314151121223212πππ⎛⎫⎛⎫⨯⨯-⨯⨯-⨯=-⎪ ⎪⎝⎭⎝⎭; 故答案为:5212π-.二、单选题13.如图是6株圣女果植株挂果个数(两位数)的茎叶图,则6株圣女果植株挂果个数的中位数为( )A .21B .21.5C .22D .22.5【答案】B【分析】根据中位数的知识求得正确答案. 【详解】6个数据为16,18,21,22,22,31, 所以中位数为212221.52+=. 故选:B14.已知数列{}n a 的前n 项和为n S ,若()e ,0,1a =-与()20232023,π,b a S =垂直,则{}n a 不可能是( )A .公差大于0的等差数列B .公差小于0的等差数列C .公比大于0的等比数列D .公比小于0的等比数列【答案】C【分析】根据空间向量互相垂直的性质、空间向量数量积的运算性质,结合等差数列和等比数列的性质逐一判断即可.【详解】因为()e ,0,1a =-与()20232023,π,b a S =垂直,所以2023202300a b a S ⋅=⇒-=,则20232023S a =,若20232023S a =,则2022202320230S S a =-=,所以保证20220S =即可, 若{}n a 为等差数列,取前2022项分别为2021,,3,1,1,3,,2021---即可,反之,取2021,,3,1,1,3,,2021---也可,故A 、B 均可能,若{}n a 为等比数列,取(1)nn a =-即可,故D 有可能,若公比大于0,则()2022120221S a q ==或()()202212022111a q S q q-=≠-均不为0,故C 不可能; 故选C .15.设a ,b ,c ,x ,y ,z 是正数,且2a +2b +2c =10, 2x +2y +2z =40, ax +by +cz =20,则a b cx y z++++=A .14B .13C .12D .34【答案】C【详解】由柯西不等式得()2222222111111444222a b c x y z ax by cz ⎛⎫⎛⎫++++≥++ ⎪ ⎪⎝⎭⎝⎭当且仅当111222a b c x y z ==时等号成立, 2222221040a b c x y z ++=++=,,20ax by cz ++=∴等号成立111222a b c x y z ∴== 12a b c x y z ++∴=++故答案选C16.已知a ,b 是异面直线,若直线m 上任意一点到a ,b 的距离都相等,则这样的直线m ( ) A .存在且只有一条 B .存在且只有两条 C .存在无数条 D .不存在【答案】B【分析】分别过a ,b 作与它们都平行的平面,再作一个他们正中间的平面,将两条异面直线投影到中间平面上,投影直线构成的四个角的角平分线即为所求.【详解】分别过a ,做平面α,使得b α,过b 作平面β,使得a β∥,然后在这两个平行平面中间作一个平面γ,使得平面γ到平面α、平面β的距离相等,则直线,a b 在平面γ内的投影分别为,a b '',则//,//a a b b '',则在平面γ内两条直线,a b ''构成的四个角的角平分线即为所求直线(共两条), 故选:B .三、解答题17.某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者.假设携带病毒的人占5%,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验.如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次. (1)求按照专家提出的这种化验方法需要化验的次数并说明是否能减少化验次数; (2)若携带病毒的人只占2%,按照k 个人一组,试问k 取多少时化验次数最少? 【答案】(1)平均需要化验4262次,能减少化验次数. (2)k 取8时化验次数最少【分析】(1)设每个人需要的化验次数为X ,结合独立重复试验概率计算公式、对立事件概率计算公式求得()E X ,从而确定正确答案.(2)假设k 个人一组,设每个人需要的化验次数为Y ,结合独立重复试验概率计算公式、对立事件概率计算公式求得()E Y ,从而确定正确答案. 【详解】(1)设每个人需要的化验次数为X ,若混合血样呈阳性,则15X =;若混合血样呈阴性,则65X =;因此,X 的分布列为510.955P X ⎛⎫== ⎪⎝⎭,5610.955P X ⎛⎫==- ⎪⎝⎭,()551()0.95610.950.42625E X ⎡⎤=+⨯-≈⎣⎦, 说明每5个人一组,平功每个人需要化验0.4262次;100000.4262426210000⨯=<,所以能减少化验次数.(2)假设k 个人一组,设每个人需要的化验次数为Y ,若混合血样呈阳性,则1Y k =;若混合血样呈阴性,则11Y k =+; 因此,Y 的分布列为10.98k P X k ⎛⎫== ⎪⎝⎭,1110.98kP X k ⎛⎫=+=- ⎪⎝⎭,()()()11()0.98110.9810.98k kk E Y k k k ⎡⎤=++⨯-=+-⎣⎦, 利用计算器,对k 取1,2,3,,逐一计算110.98kk+-,发现当k 取8时,()E Y 取到最小值0.2742, 此时,10000个人大约需要化验2742次.18.现有甲、乙、丙三个人相互传接球,第一次从甲开始传球,甲随机地把球传给乙、丙中的一人,接球后视为完成第一次传接球;接球者进行第二次传球,随机地传给另外两人中的一人,接球后视为完成第二次传接球;依次类推,假设传接球无失误,设第n 次传球后,甲接到球的概率为n P . (1)求0P ,1P ,2P 的值;(2)试用1n P -表示()*n P n N ∈,并求数列{}n P 的通项公式.【答案】(1)01P =,10P =,212P =(2)()1112n n P P -=-,1111332n n P -⎛⎫=-- ⎪⎝⎭【分析】(1)直接由题意求值即可.(2)由(1)得10P =,根据*n ∈N ,2n ≥时,第n 次传给甲的事件是第n 1-次传球后,球不在甲手上并且第n 次必传给甲的事件,进而有()1112n n P P -=-,然后变形借助等比数列的定义即可求出数列{}n P 的通项公式.【详解】(1)第一次从甲开始传球,甲随机地把球传给乙、丙中的一人,则01P =,10P =, 接球者进行第二次传球,随机地传给另外两人中的一人,则212P =. 故:01P =,10P =,212P =. (2)第一次传球后,球落在乙或丙手中,则10P =,*n ∈N ,2n ≥时,第n 次传给甲的事件是第n 1-次传球后,球不在甲手上并且第n 次必传给甲的事件, 于是有()1112n n P P -=-,即1111323n n P P -⎛⎫-=-- ⎪⎝⎭, 数列13n P ⎧⎫-⎨⎬⎩⎭是首项为11133P -=-,公比为12-的等比数列, 则1111332n n P -⎛⎫-=-- ⎪⎝⎭,所以1111332n n P -⎛⎫=-- ⎪⎝⎭.故:1111332n n P -⎛⎫=-- ⎪⎝⎭.19.高二A 班计划在学校即将举办的夏季游园会上为同学们提供单球冰激凌的销售服务.已知购买一圆柱形桶装冰激凌需要1300元,此桶装冰激凌桶内底面直径为25厘米,冰激凌净高20厘米.单球冰激凌的平均直径约为5厘米,一副一次性杯勺的成本约1元(其他成本忽略不计).根据前期调查,冰激凌球能全部售完.高二A 班打算将每个单球冰激凌定价为15元,你认为这样的定价是否合理?请作出必要的计算,结合计算结果阐述你的理由. 【答案】合理,理由见解析【分析】根据条件先求圆柱和单球冰激凌的体积,再计算每个单球冰激凌的成本,最后比较.【详解】2212.5203125V R h πππ==⋅⋅=圆柱,33441252.5336V r πππ==⋅=球, 每个单球冰激凌的成本价为125296130019.6731253ππ⋅+=≈(元),定价为15元,利润率约为55%,较为合理.【点睛】本题考查几何体的实际应用问题,重点考查读题能力,抽象概括能力,属于基础题型. 20.如图,等高的正三棱锥P-ABC 与圆锥SO 的底面都在平面M 上,且圆O 过点A ,又圆O 的直径AD ⊥BC ,垂足为E ,设圆锥SO 的底面半径为1,圆锥体积为33π.(1)求圆锥的侧面积;(2)求异面直线AB 与SD 所成角的大小;(3)若平行于平面M 的一个平面N 3P A 与底面ABC 所成角的大小.【答案】(1)2π;(2)3(3)3arctan 2 【分析】(1)利用圆锥体积可求得圆锥的高,进而得到母线长,根据圆锥侧面积公式可求得结果;(2)作//DF AB 交圆锥底面圆于点F ,则SDF ∠即为异面直线AB 与SD 所成角,在SDF ∆中,求解出三边长,利用余弦定理可求得cos SDF ∠,从而得到结果;(3)根据截面面积之比可得底面积之比,求得ABC S ∆,进而求得等边三角形的边长,利用正棱锥的特点可知若Q 为ABC ∆的中心,则PAQ ∠即为侧棱PA 与底面ABC 所成角,在Rt PAQ ∆中利用正切值求得结果.【详解】(1)设圆锥高为h ,母线长为l由圆锥体积得:21313h π⨯⨯= 3h ∴=132l ∴=+= ∴圆锥的侧面积:2S π=(2)作//DF AB 交圆锥底面圆于点F ,连接AF ,SF则SDF ∠即为异面直线AB 与SD 所成角 由题意知:126ADF EAB CAB π∠=∠=∠=,AF DF ⊥ 33DF AD ∴==2SD SF == 2222323cos 232SDF +-∴∠==⨯⨯ 3SDF ∴∠= 即异面直线AB 与SD 所成角为:3(3)平行于平面M 的一个平面N 33ABC O S S ∆∴=3ABC S ∆∴=又21sin 323ABC S AB π∆=⨯=AB 2∴=,即ABC ∆为边长为2的等边三角形 设Q 为ABC ∆的中心,连接PQ ,则22234133AQ AE ==-三棱锥-P ABC 为正三棱锥 PQ ∴⊥平面ABCPAQ ∴∠即为侧棱PA 与底面ABC 所成角33tan 223PQ PAQ AQ ∴∠=== 3arctan 2PAQ ∴∠= 即侧棱PA 与底面ABC 所成角为:3arctan 2【点睛】本题考查圆锥侧面积的求解、异面直线所成角的求解、直线与平面所成角的求解.解决立体几何中的角度问题的关键是能够通过平移找到异面直线所成角、通过找到直线在平面内的投影,得到线面角.21.同底的两个正三棱锥内接于半径为R 的球,它们的侧面与底面所成的角分别为12,.αα求:(1)侧面积的比;(2)体积的比;(3)角12αα+的最大值.【答案】(1)21cos :cos αα(2)12tan :tan αα(3)4arctan 3π- 【分析】分别计算出其侧面积,再计算比值.分别计算出其侧体积,再计算比值.根据tan x 在(0,)2π 单调递增,通过计算12tan()αα+的最大值,求出角12αα+的最大值. 【详解】解:(1)设O 为球心,1O 为正三棱锥底面ABC 所在圆的圆心,两个三棱锥的顶点分别为P ,Q ,取BC 的中点D ,则,,PD BC AD BC ⊥⊥∴∠1PDO 是侧面与底面所成二面角的平面角, ∴∠1PDO 1α=,同理1QDO ∠=2α.11,cos DO PD α∴=12cos DO QD α=, 11133.22cos P ABC DO S BC PD BC α-∴=⋅⋅=⋅侧 1213322cos Q ABC DO S BC QD BC α-=⋅⋅=⋅侧. P ABC S -∴侧:Q ABC S -侧=21cos :cos αα.(2)111112tan ,tan PO DO QO DO αα=⋅=⋅,这两个三棱锥的底都是三角形ABC ∆,1112::tan :tan .P ABC Q ABC V V PO QO αα--∴==(3)设ABC ∆边长为a ,1OO h =,则1111tan ,PO R h DO DO α-== 1211tan ,QO R h DO DO α+==而111,33DO AD ===12.3AO AD ==222211,3R h AO a -== ()121122221212112tan tan 2tan 1tan tan 13RDO R R h a DO DO DO αααααα+∴+===----0.=< 12,2πααπ∴<+<当平面ABC 通过球心O 时,aR 时,12tan()αα+取最大值43-,这时12αα+也最大,最大值为4arctan 3π-. 【点睛】用已知数量表示所求量,再求比值.求角的最大值,可以根据单调性通过求其三角函数值的最值来求.。

2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题(解析版)

2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题(解析版)

2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题一、单选题1.沈阳二中24届篮球赛正如火如荼地进行中,全年级共20个班,每四个班一组,如1—4班为一组,5—8班为二组……进行单循环小组赛(没有并列),胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛,最后胜出的三个班级再进行单循环赛,按积分的高低(假设没有并列)决出最终的冠亚季军,请问此次篮球赛学校共举办了多少场比赛?( ) A .51 B .42 C .39 D .36【答案】D【分析】先进行单循环赛,6支球队按抽签的方式进行淘汰赛,最后3个班再进行单循环赛,分别求出所需比赛场次,即可得出答案. 【详解】先进行单循环赛,有245C =30场,胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛, 6支球队打3场,决出最后胜出的三个班, 最后3个班再进行单循环赛,由23C =3场. 所以共打了30+3+3=36场. 故选:D.2.“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】先根据焦点在x 轴上的椭圆求出m ,再根据充分性,必要性的概念得答案.【详解】由方程22212x y m m +=+表示焦点在x 轴上的椭圆得:220m m >+>, 解得21m -<<-或m>2, 由充分性,必要性的概念知,“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的充分不必要条件.故选:A.合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1 B .2C .3D .4【答案】C【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断.【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kx y ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确;对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C.【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.4.()823x y z ++的展开式中,共有多少项?( ) A .45 B .36 C .28 D .21【答案】A【分析】按照展开式项含有字母个数分类,即可求出项数.【详解】解:当()823x y z ++展开式的项只含有1个字母时,有3项,当()823x y z ++展开式的项只含有2个字母时,有2137C C 21=项,当()823x y z ++展开式的项含有3个字母时,有27C 21=项,所以()823x y z ++的展开式共有45项; 故选:A.5.已知()52232x x --21001210a a x a x a x =++++,则0110a a a ++=( )【答案】A【分析】首先令0x =,这样可以求出0a 的值,然后把2232x x --因式分解,这样可以变成两个二项式的乘积的形式,利用两个二项式的通项公式,就可以求出110a a 、的会下,最后可以计算出0110a a a ++的值.【详解】令0x =,由已知等式可得:50=232a =,()55552[(12)(2)]2((2)3122)x x x x x x =-+=-⋅+--,设5(12)x -的通项公式为:51551(2)(2)rrr r r r r T C x C x -+=⋅⋅-=⋅-⋅,则常数项、x 的系数、5x 的系数分别为:0155555(2)2C C C --⋅⋅、、;设5(2)x +的通项公式为:5512r r r r T C x -+=⋅⋅‘’‘’‘,则常数项、x 的系数、5x 的系数分别为: 4501555522C C C ⋅⋅、、,0115401555522)(2240,a C C C C =⋅⋅⋅=-⋅⋅+-5551055(2)32a C C =-⋅⋅=-,所以01103224032240a a a ++=--=-,故本题选A.【点睛】本题考查了二项式定理的应用,正确求出通项公式是解题的关键.6.平行四边形ABCD 内接于椭圆22221x y a b +=()0a b >>AB 的斜率为1,则直线AD 的斜率为( )A .1-4B .1-2C .D .-1【答案】A【分析】利用对称关系转化为中点弦问题即可求解. 【详解】22222223331,,,2444c c a b b a a a a -=∴==∴=, 设112233(,),(,),(,),A x y B x y D x y设E 为AD 中点,由于O 为BD 中点,所以//OE AB ,所以1OE k =, 因为1133(,),(,)A x y D x y 在椭圆上,所以22112222332211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得2131321313OE AD y y y y b k k a x x x x +--=⋅=⋅+-, 所以22114AD b k a ⨯=-=-,即14AD k =-.故选:A.7.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形,若110PF =,椭圆与双曲线的离心率分别为12,e e ,则121e e ⋅+的取值范围是A .()1,+∞B .4,3⎛⎫+∞ ⎪⎝⎭C .6,5⎛⎫+∞ ⎪⎝⎭D .10,9⎛⎫+∞ ⎪⎝⎭【答案】B【分析】本题主要考查椭圆和双曲线的定义,椭圆和双曲线的离心率,平面几何分析方法,值域的求法.由于椭圆和双曲线有公共点,那么公共点既满足椭圆的定义,也满足上曲线的定义,根据已知条件有22PF c =,利用定义列出两个离心率的表达式,根据题意求121e e ⋅+的表达式,表达式分母还有二次函数含有参数,根据三角形两边和大于第三边,求出c 的取值范围,进而求得121e e ⋅+的取值范围.【详解】设椭圆方程为()222221122111x y a b c a b +=-=,双曲线方程为()222221122111x y a b c a b -=+=,由椭圆和双曲线的几何性质可得,1211222,2PF PF a PF PF a +=-=,依题意可知22PF c =,110PF =,代入可得,125,5a c a c =+=-.故2122212251112525c c c e e a a c c ⋅+=⋅+=+=--,三角形两边的和大于第三边,故5410,2c c >>,120,0a a >>,故5c <故22223745402554252525c c c <⇒<⇒<-><-. 故选:B.【点睛】(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a +=,得到a ,c 的关系.(2)双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a -=,得到a ,c 的关系.8.已知A ,B ,C ,D 是椭圆E :22143x y +=上四个不同的点,且()1,1M 是线段AB ,CD 的交点,且3AM CM BMDM==,若l AC ⊥,则直线l 的斜率为( )A .12B .34C .43D .2【答案】C【分析】设出点的坐标()()()()11223344,,,,,,,A x y B x y C x y D x y ,由3AMBM=得到3AM MB =,列出方程,得到12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,分别把()()1122,,,A x y B x y 代入椭圆,得到()()111122143x y -+-=,同理得到()()331122143x y -+-=,两式相减得到34AC k =-,利用直线垂直斜率的关系求出直线l 的斜率. 【详解】设()()()()11223344,,,,,,,A x y B x y C x y D x y ,因为3AM BM =,故3AM MB =,所以()()1212131131x x y y ⎧-=-⎪⎨-=-⎪⎩,则12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,又()()1122,,,A x y B x y 都在椭圆上,故2211143x y +=,且()()22119114443x y -+-=, 两式相减得:()()1181142442443x y -⨯+-⨯=,即()()111122143x y -+-=①, 同理可得:()()11221x y -+-=②,②-①得:()()131311043x x y y -+-=, 所以131334ACy y k x x -==--, 因为l AC ⊥,所以直线l 的斜率为143AC k -=. 故选:C【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.二、多选题9.已知两点(5,0),(5,0)M N -,若直线上存在点P ,使||||6PM PN -=,则称该直线为“B 型直线”.下列直线中为“B 型直线”的是( ) A .1y x =+ B .2y = C .43y x =D .2y x =【答案】AB【解析】首先根据题意,结合双曲线的定义,可得满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支;进而可得其方程,若该直线为“B 型直线”,则这条直线必与双曲线的右支相交,依次分析4条直线与双曲线的右支是否相交,可得答案.【详解】解:根据题意,满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支; 则其中焦点坐标为(5,0)M -和(5,0)N ,即5c =,3a =, 可得4b =;故双曲线的方程为221916x y -=,(0)x > 双曲线的渐近线方程为43y x =±∴直线43y x =与双曲线没有公共点, 直线2y x =经过点(0,0)斜率43k >,与双曲线也没有公共点 而直线1y x =+、与直线2y =都与双曲线221916x y-=,(0)x >有交点 因此,在1y x =+与2y =上存在点P 使||||6PM PN -=,满足B 型直线的条件 只有AB 正确 故选:AB .10.甲箱中有3个白球和3个黑球,乙箱中有2个白球和4个黑球.先从甲箱中随机取出一球放入乙箱中,分别以12,A A 表示由甲箱中取出的是白球和黑球的事件;再从乙箱中随机取出一球,以B 表示从乙箱中取出的球是黑球的事件,则下列结论正确的是( ) A .12,A A 两两互斥B .()22|3P B A = C .事件B 与事件2A 相互独立 D .()914P B =【答案】AD【分析】根据条件概率、全概率公式、互斥事件的概念等知识,逐一分析选项,即可得答案. 【详解】因为每次取一球,所以12,A A 是两两互斥的事件,故A 项正确; 因为()()1212P A P A ==,()()()2225|7P BA P B A P A ==,故B 项错误; 又()()()1114|7P BA P B A P A ==,所以()()()1214159272714P B P BA P BA =+=⨯+⨯=,故D 项正确.从甲箱中取出黑球,放入乙箱中,则乙箱中黑球变为5个,取出黑球概率发生变化,所以事件B 与事件2A 不相互独立,故C 项错误. 故选:AD11.已知抛物线E :2y x =,O 为坐标原点,一束平行于x 轴的光线1l 从点41,116P ⎛⎫⎪⎝⎭射入,经过E 上的点()11,A x y 反射后,再经E 上的另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则( ) A .12116x x =B .54AB =C .ABP QBP ∠=∠D .延长AO 交E 的准线于点C 则存在实数λ使得CB CQ λ= 【答案】ACD【分析】根据抛物线的光学性质可知,直线AB 经过抛物线的焦点,直线2l 平行于x 轴,由此可求出点,A B 的坐标,判断各选项的真假.【详解】如图所示:因为141,1,16P l ⎛⎫ ⎪⎝⎭过点P 且1//l x 轴,故(1,1)A ,故直线101:1414AF y x -⎛⎫=⋅- ⎪⎝⎭- 化简得4133y x =-,由24133y x y x⎧=-⎪⎨⎪=⎩消去x 并化简得231044y y --=,即1214y y =-,()21212116x x y y ==,故A 正确;又11y =, 故214y =-,B 11,164⎛⎫- ⎪⎝⎭,故121125116216AB x x p =++=++=,故B 错误;因为412511616AP AB =-==,故APB △为等腰三角形,所以ABP APB ∠=∠,而12l l //,故PBQ APB ∠=∠,即ABP PBQ ∠=∠,故C 正确;直线:AO y x =,由14y xx =⎧⎪⎨=-⎪⎩得11,,44C ⎛⎫-- ⎪⎝⎭故C B y y =,所以,,C B Q 三点共线,故D 正确.故选:ACD . 12.已知当随机变量()2,XN μσ时,随机变量X Z μσ-=也服从正态分布.若()2,,X X N Z μμσσ-~=,则下列结论正确的是( )A .()0,1ZNB .()12(1)P X P Z μσ-<=-<C .当μ减小,σ增大时,(2)P X μσ-<不变D .当,μσ都增大时,(3)P X μσ-<增大 【答案】AC【分析】根据正态分布与标准正态分布的关系以及正态分布的性质及特点可判断各选项正误. 【详解】对任意正态分布()2,X N μσ,X Z μσ-=服从标准正态分布()0,1ZN 可知A 正确,由于X Z μ-=,结合正态分布的对称性可得()(1)12(1)P X P Z P Z μσ-<=<=->,可知B 错误,已知正态分布()2,X N μσ,对于给定的*N k ∈,()P X k μσ-<是一个只与k 有关的定值,所以C正确,D 错误. 故选:AC.三、填空题 13.设()2,XB p ,若()519P X ≥=,则p =_________ .【答案】13【分析】由二项分布的概率公式()()1n kk kn P X k p p -==-C ,代入()()()112P X P X P X ≥==+=可得结果. 【详解】()2,XB p ,()()()()()0122222112C 1+C 12P X P X P X p p p p p p ∴≥==+==--=-,2529p p ∴-=,解得:13p ∴=或53p =(舍去)故答案为:13.14.已知()35P A =,()12P B A =,()23P B A =,则()P B =______. 【答案】1330【分析】根据已知条件结合全概率公式求解即可 【详解】因为()35P A =,所以32()1()155P A P A =-=-=, 因为()23P B A =,所以()()211133P B A P B A =-=-=, 所以由全概率公式可得()()()()()P B P B A P A P B A P A =+ 131213253530=⨯+⨯=, 故答案为:133015.现有三位男生和三位女生,共六位同学,随机地站成一排,在男生甲不站两端的条件下,有且只有两位女生相邻的概率是______. 【答案】2##0.4.【分析】先计算出男生甲不站两端,3位女生中有且只有两位女生相邻的总情况,再按照古典概型计算概率即可.【详解】3位男生和3位女生共6位同学站成一排共有66A 种不同排法,其中男生甲不站两端,3位女生中有且只有两位女生相邻有2322233422A (A A 6A A )-种不同排法,因此所求概率为232223342266A (A A 6A A )2=.A 5- 故答案为:25.16.关于曲线C :22111x y +=,有如下结论: ①曲线C 关于原点对称; ②曲线C 关于直线0x y ±=对称; ③曲线C 是封闭图形,且封闭图形的面积大于2π; ④曲线C 不是封闭图形,且它与圆222x y +=无公共点; 其中所有正确结论的序号为_________. 【答案】①②④【分析】利用曲线方程的性质,对称性的应用及曲线间的位置关系即可判断上述结论是否正确. 【详解】对于①,将方程中的x 换为x -,y 换为y -,得()()222211111x y x y +=+=--,所以曲线C 关于原点对称,故①正确;对于②,将方程中的x 换为y 或y -,y 换为x 或x -,得()()2222221111111y x x y y x +=+=+=--,所以曲线C 关于直线0x y ±=对称,故②正确; 对于③,由22111x y +=得221110y x=-≥,即21x ≥,同理21y ≥,显然曲线C 不是封闭图形,故③错误;对于④,由③知曲线C 不是封闭图形,联立22221112x y x y ⎧+=⎪⎨⎪+=⎩,消去2y ,得42220x x -+=,令2t x =,则上式转化为2220t t -+=,由()224240∆=--⨯=-<可知方程无解,因此曲线C 与圆222x y +=无公共点,故④正确. 故答案为:①②④.四、解答题17.给出下列条件:①若展开式前三项的二项式系数的和等于16;②若展开式中倒数第三项与倒数第二项的系数比为4:1.从中任选一个,补充在下面问题中,并加以解答(注:若选择多个条件,按第一个解答计分)已知()*nx n N ⎛∈ ⎝⎭,___________. (1)求展开式中二项式系数最大的项; (2)求展开式中所有的有理项.【答案】(1)4352T x =和74254T x =(2)51T x =,4352T x =,35516T x =【分析】(1)无论选①还是选②,根据题设条件可求5n =,从而可求二项式系数最大的项. (2)利用二项展开式的通项公式可求展开式中所有的有理项. 【详解】(1)二项展开式的通项公式为:211C C ,0,1,2,,2rr r rr n n n r r n T x x r n --+⎛⎫=== ⎪⎝⎭⎝⎭.若选①,则由题得012C C C 16n n n ++=,∴()11162n n n -++=,即2300n n +-=,解得5n =或6n =-(舍去),∴5n =.若选②,则由题得()221111C 22141C 22n n nn n n n n n n ----⎛⎫- ⎪⎝⎭==-=⎛⎫ ⎪⎝⎭,∴5n =, 展开式共有6项,其中二项式系数最大的项为22443515C 22T x x ⎛⎫== ⎪⎝⎭,,7732345215C 24T x x ⎛⎫== ⎪⎝⎭. (2)由(1)可得二项展开式的通项公式为:5521551C C ,0,1,2,,52rr r rr r r T x x r --+⎛⎫=== ⎪⎝⎭⎝⎭.当52rZ -∈即0,2,4r =时得展开式中的有理项,所以展开式中所有的有理项为:51T x =,5423522215C 22T x x -⎛⎫= ⎪⎝⎭=,5342545415C 216T x x -⎛⎫= ⎪=⎝⎭.18.已知圆()22:()(21)4C x a y a a -+-+=∈R ,定点()1,2M -.(1)过点M 作圆C 的切线,切点是A ,若线段MA C 的标准方程;(2)过点M 且斜率为1的直线l ,若圆C 上有且仅有4个点到l 的距离为1,求a 的取值范围. 【答案】(1)22(3)(5)4x y -+-=或22(1)(3)4x y +++=(2)(4【分析】(1)由题可知,圆心(),21C a a -,2r =,由勾股定理有222MC MA r =+,根据两点间距离公式计算即可求出a 的值,进而得出圆的方程;(2)因为圆C 上有且仅有4个点到l 的距离为1,圆C 的半径为2,因此需圆心C 到直线l 的距离小于1,设直线l 的方程为:()211y x -=+,根据点到直线的距离公式列出不等式,即可求出a 的取值范围.【详解】(1)解:由题可知,圆心(),21C a a -,2r =由勾股定理有222MC MA r =+,则222(1)(23)225a a ++-=+= 即2510150a a --=,解得:3a =或1a =-,所以圆C 的标准方程为:22(3)(5)4x y -+-=或22(1)(3)4x y +++=. (2)解:设直线l 的方程为:()211y x -=+,即30x y -+=, 由题,只需圆心C 到直线l 的距离小于1即可,所以1d =<,所以4a -44a <所以a 的取值范围为(4.19.某种植物感染α病毒极易导致死亡,某生物研究所为此推出了一种抗α病毒的制剂,现对20株感染了α病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:mg )进行统计.规定:植株吸收在6mg (包括6mg )以上为“足量”,否则为“不足量”.现对该20株植株样本进行统计,其中 “植株存活”的13株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共1株.(1)完成以下22⨯列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关?(2)①若在该样本“吸收不足量”的植株中随机抽取3株,记ζ为“植株死亡”的数量,求ζ得分布列和期望E ζ;②将频率视为概率,现在对已知某块种植了1000株并感染了α病毒的该植物试验田里进行该药品喷雾试验,设“植株存活”且“吸收足量”的数量为随机变量η,求D η.参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++【答案】(1)不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关;(2)①分布列见解析,125E ζ=,②240 【解析】(1)已知“植株存活”但“制剂吸收不足量”的植株共1株,由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填表即可(2)代入公式计算2220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯,有关(3)①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株,所以抽取的3株中ξ的可能取值是2,3,根据古典概型计算即可. ②“植株存活”且“制剂吸收足量”的概率为123205p ==,332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【详解】解:(1) 由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填写列联表如下:吸收足量 吸收不足量 合计 植株存活 12 1 13 植株死亡 3 4 7 合计 155202220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯所以不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关. ①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株, 所以抽取的3株中ξ的可能取值是2,3.其中24353(2)5C P C ξ===, 34352(3)5C P C ξ===ξ的分布列为: ξ2 3 P3525所以321223555E ξ=⨯+⨯=. ②332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【点睛】考查完成22⨯列联表、离散型随机变量的分布列、期望以及二项分布的方差,难题. 20.安排5个大学生到,,A B C 三所学校支教,设每个大学生去任何一所学校是等可能的. (1)求5个大学生中恰有2个人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.【答案】(1);(2)详见解析.【详解】试题分析:(1)5个大学生去三所学校支教,共有种方法,若恰有2人去A 校支教,那就从5人中先选2人,去A 大学,然后剩下的3人去B 和C 大学支教,有种方法,最后根据古典概型求概率;(2)根据题意,,表示5人都去了同一所大学支教,表示5人去了其中2所大学支教,那可以将5人分组,分为4和1,或是3和2,然后再分配到2所大学,计算概率,表示5人去了3所大学支教,那分组为113,或是122型,再将三组分配到三所大学,计算概率,最后列分布列.试题解析:(1)5个大学生到三所学校支教的所有可能为53243=种,设“恰有2个人去A 校支教”为事件M ,则有352280C ⋅=种,∴80()243P M =. 答:5个大学生中恰有2个人去A 校支教的概率80243. (2)由题得:1,2,3ξ=,15ξ=⇒人去同一所学校,有133C =种,∴ 31(1)24381P ξ===, 25ξ=⇒人去两所学校,即分为4,1或3,2有24323552()90C C C A ⋅+⋅=种,∴ 903010(2)2438127P ξ====, 35ξ=⇒人去三所学校,即分为3,1,1或2,2,1有312235253311()1502!2!C C C C A ⋅⋅⋅⋅+⋅= 种,∴15050(3)24381P ξ===. ∴ 的分布列为【解析】1.排列组合;2.离散型随机变量的分布列.21.已知椭圆22:143x y Γ+=的右焦点为F ,过F 的直线l 交Γ于,A B 两点.(1)若直线l 垂直于x 轴,求线段AB 的长;(2)若直线l 与x 轴不重合,O 为坐标原点,求△AOB 面积的最大值;(3)若椭圆Γ上存在点C 使得||||AC BC =,且△ABC 的重心G 在y 轴上,求此时直线l 的方程. 【答案】(1)3 (2)32(3):1l x =、:0l y =或3:1l x y =+【分析】(1)根据直线垂直x 轴,可得,A B 坐标,进而可求线段长度.(2)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,进而根据三角形面积求表达式,进而根据函数最值进行求面积最大值.(3)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,以及重心坐标公式,即可求解.【详解】(1)因为(1,0)F ,令1x =,得21143y +=,所以32y =±,所以||3AB = (2)设直线:1(0)l x my m =+≠,1122(,),(,)A x y B x y ,不妨设210,0y y ><,由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=, 2144(1)m ∆=+,122634m y y m -+=+,122934y y m -=+, ()2221122221212169434434m y y y y y m m m y --⎛⎫- ⎪++-+-==+⎝⎭2211112122AOBm SOF y y +=⋅-=21m t +=,则1t ≥,2661313AOB t S t t t==++△,记1()3h t t t =+,可得1()3h t t t=+在[)1,+∞上单调递增所以211322AOBSOF y y =⋅-≤当且仅当0m =时取到, 即AOB 面积的最大值为32;(3)①当直线l 不与x 轴重合时,设直线:1l x my =+,1122(,),(,)A x y B x y ,AB 中点为M .由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=,122634m y y m -+=+,122934y y m -=+, 因为ABC 的重心G 在y 轴上,所以120C x x x ++=, 所以121228()234C x x x m y y m -=--=-+-=+,又()12122242234M m y y x x x m +++===+,1223234M y y my m +-==+, 因为||||AC BC =,所以CM AB ⊥ ,故直线:()M M CM y y m x x -=--,所以29()34C M C M m y y m x x m =--=+,从而2289,3434m C m m -⎛⎫ ⎪++⎝⎭, 代入22143x y +=得22(31)0m m -=,所以0,m =:1l x =或:1l x y =+.② 当直线l 与x 轴重合时,点C 位于椭圆的上、下顶点显然满足条件,此时:0l y =. 综上,:1l x =,:0l y =或:1l x y =+. 22.已知双曲线2222:100x y C a b a b-=>>(,),1F 、2F 分别是它的左、右焦点,(1,0)A -是其左顶点,且双曲线的离心率为2e =.设过右焦点2F 的直线l 与双曲线C 的右支交于P Q 、两点,其中点P 位于第一象限内. (1)求双曲线的方程;(2)若直线AP AQ 、分别与直线12x =交于M N 、两点,证明22MF NF ⋅为定值; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由. 【答案】(1)2213y x -= (2)证明见解析 (3)存在,2【分析】(1)根据题意可得1a =,2ce a==,即可求解,b c 的值,进而得到双曲线方程; (2)设直线l 的方程及点,P Q 的坐标,直线l 的方程与双曲线C 的方程联立,得到1212,y y y y +的值,进而得到点,M N 的坐标,计算22MF NF ⋅的值即可;(3)在直线斜率不存在的特殊情况下易得2λ=,再证明222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,将角度问题转化为斜率问题,即222tan 21PAPAk PAF k ∠=-,22tan PF AF P k ∠=-,即可求解=2λ. 【详解】(1)解:由题可知:1a = ∵2ce a==,∴c =2 ∵222+=a b c ,∴b = ∴双曲线C 的方程为:2213y x -=(2)证明:设直线l 的方程为:2x ty =+,另设:()11,P x y ,()22,Q x y ,∴()2222131129032y x t y ty x ty ⎧⎪⎨⎪-=⇒-++==+⎩, ∴121222129,3131t y y y y t t -+==--,又直线AP 的方程为()1111y y x x =++,代入()11311,2221y x M x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, 同理,直线AQ 的方程为()2211y y x x =++,代入()22311,2221y x N x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, ∴()()1222123333,,,221221y y MF NF x x ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,∴()()()()()12121222212121212999999441144334439y y y y y y MF NF x x ty ty t y y t y y ⋅=+=+=+++++⎡⎤+++⎣⎦2222999993109124444393131t t t t t t ⨯-=+=-=-⎛⎫⨯+⨯+ ⎪--⎝⎭,故22MF NF ⋅为定值.(3)解:当直线l 的方程为2x =时,解得(2,3)P , 易知此时2AF P △为等腰直角三角形,其中22,24AF P PAF ππ∠=∠=,即222AF P PAF ∠=∠,也即:=2λ,下证:222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,121112222212112122tan 212(1)tan 21tan 1(1)1()1PAPAy PAF k x y x PAF y PAF k x y x ⨯∠++∠====-∠-+--+,∵()222211111313y x y x -=⇒=-,∴()()()()()()11111222121112121tan 22122131y x y x y PAF x x x x x ++∠===--+--+--,∴21221tan tan 22PF y AF P k PAF x ∠=-=-=∠-, ∴结合正切函数在0,,22πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭上的图像可知,222AF P PAF ∠=∠,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省眉山中学2018届高二数学12月月考试题 文(无答案)
一、选择题(每题5分,共60分)
1. 直线012=-+y x 在y 轴上的截距为( ) A. 1- B.
21 C. 2
1
- D. 1 2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( )
A .椭圆
B .直线
C .线段
D .圆
3. .双曲线18
42
2=-y x 的实轴长是( ) A .2 B .2 2 C .4 D .42
4. 椭圆6322
2
=+y x 的焦距是 ( )
A .2
B .)23(2-
C .52
D .)23(2+
5.若直线()120x m y ++-=和直线240mx y ++=平行,则m 的值为( ) A .1 B .-2 C .1或-2 D .32
-
6. 已知焦点在x 轴上的双曲线渐近线方程为x y 3
2
±
=,则此双曲线的离心率等于( )
A. 35
B.213
C. 313
D. 2
3
7.圆02:2
2
1=-+x y x C 与圆4)3(:2
22=-+y x C 的公切线的条数( )
A. 3
B. 2
C. 1
D. 0
8.若变量y x ,满足约束条件⎪⎩

⎨⎧≥≥+-≤-+,1,01,03y y x y x 则42-+=y x z 的最大值为( )
A. 4-
B. 1-
C. 1
D. 5
9、设)0,()0,(21c F c F 、-是椭圆的两个焦点,P 是以21F F 为直
径的圆与椭圆的一个交点,若12212F PF F PF ∠=∠,则椭圆的离心率为( ) A
10. 如图,椭圆22
221(0)x y a b a b
+=>>的内接三角形ABC (顶点A 、B 、C 都在椭圆上)
的边,AB AC 分别过椭圆的焦点1F 和2F ,则ABC ∆周长( ) A.总大于6a B.总等于6a
C .总小于6a
D .与6a 的大小不确定
11. 椭圆)0(1:22
22>>=+b a b
y a x C 的左右焦点分别为21,F F ,若椭圆C 上恰好有6个不同
的点P ,使得P F F 21∆为等腰三角形,则椭圆C 的离心率的取值范围是( ) A.)32,31( B. )1,21( C. )1,32( D.)1,2
1()21,31(
12.设椭圆)0(12222>>=+b a b y a x 的离心率23=e )23
,0(P 到椭圆上的点的最远
距离是
4
7
,则短半轴之长=b ( ) A .161 B .81 C .4
1
D .
2
1
二、填空题(每题5分,共20分)
13.若双曲线
116
252
2=-y x 上一点P 到焦点1F 的距离为6,则点P 到另一焦点2F 的距离是______________.
14.过点(1,1)M 作一直线与椭圆22
194
x y +=相交于A .B 两点,若M 点恰好为弦AB 的中点,
则AB 所在直线的方程为 .
15.21,F F 是椭圆17
922=+y x 的两个焦点,A 为椭圆上一点,且︒
=∠4521F AF ,则2
1F AF ∆的面积为_________.
16、对于曲线C :
22
141
x y k k +=--,给出下面四个命题: ①曲线C 不可能表示椭圆;
②当14k <<时,曲线C 表示椭圆;
③若曲线C 表示双曲线,则1k <或4k >; ④若曲线C 表示焦点在x 轴上的椭圆,则2
51<<k . 其中所有正确命题的序号为______________.
三、解答题(共70分)
17.(本小题共10分)求经过点P (-3,0),Q (0,-2)的椭圆的标准方程,并求出椭圆的长轴长、短轴长.
18.(本小题共10分)双曲线的离心率等于2,且与椭圆
22
1259
x y +=有相同的焦点,求此双曲线方程以及该双曲线的渐近线方程.
19.(本小题共12分)圆82
2
=+y x 内有一点)2,1(0-P ,AB 为过点0P 且倾斜角为α的弦. (1)当o 135=α时,求AB 的长;
(2)当弦被点0P 平分时,写出直线AB 的方程.
20.(本小题共12)已知圆C 过点)2
2,22(P 且与圆)0()2()2(:222>=+++r r y x M 关于直线02=++y x 对称. (1)求圆C 的方程;
(2)直线l 过点)2
1,21(D ,且截圆C 的弦长为3,求直线l 的方程;
21.(本小题共12分)平面坐标系xOy 中,过椭圆)0(1:22
22>>=+b a b
y a x M 右焦点的直
线03=-+y x 交M 于B A ,两点,P 为AB 的中点,且OP 的斜率为
2
1
. (1)求M 的方程;
(2)D C ,为M 上的两点,若四边形ACBD 的对角线AB CD ⊥,求四边形ACBD 的面积S 的最大值.
22.(本小题共14分)已知椭圆:C 12222=+b y a x )0(>>b a 的离心率为22
,若圆
222a y x =+被直线02=--y x 截得的弦长为2.
(1)求椭圆C 的标准方程;
(2)已知A 、B 为动直线0),1(≠-=k x k y 与椭圆C 的两个交点,问:在x 轴上是否存在定点M ,使得⋅为定值?若存在,试求出点M 的坐标和定值;若不存在,请说明理由.
欢迎您的下载,资料仅供参考!。

相关文档
最新文档