江苏省镇江市八年级数学下学期期末考试试题苏科版
苏科初二下册数学《期末考试试题》含答案.

苏科初二下册数学《期末考试试题》含答案.一、选择题1.下列调查中,最不适合普查的是()A.了解一批灯泡的使用寿命情况B.了解某班学生视力情况C.了解某校初二学生体重情况D.了解我国人口男女比例情况2.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.303.下列调查中,最适合采用普查的是()A.长江中现有鱼的种类B.八年级(1)班36名学生的身高C.某品牌灯泡的使用寿命D.某品牌饮料的质量4.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定5.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF6.为了解某校八年级320名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是()A.320名学生的全体是总体B.80名学生是总体的一个样本C.每名学生的体重是个体D.80名学生是样本容量7.下列事件为必然事件的是()A.射击一次,中靶B.12人中至少有2人的生日在同一个月C.画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上8.在□ABCD中,∠A=4∠D,则∠C的大小是()A.36°B.45°C.120°D.144°9.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.485cm B.245cm C.125cm D.105cm10.已知关于x的分式方程22x mx+-=3的解是5,则m的值为()A.3 B.﹣2 C.﹣1 D.8二、填空题11.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______。
苏科版八年级下册数学期末试题(带答案)

2021—2022学年第二学期八年级数学期末复习卷一.选择题(共10小题,每小题3分,共30分)1.下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为()A.y=-3x B.y=3x C.y=13x D.y=-13x4.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到黄球是不可能事件C.摸到白球与摸到黄球的可能性相等D.摸到红球比摸到黄球的可能性小5.一组数据共40个,分为6组,第1到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为()A.4B.6C.8D.106.若互不相等的四条线段的长a、b、c、d满足,m是任意实数,则下列各式中,一定成立的是()A.B.C.D.7.如图,在▱ABCD中,CE平分∠BCD交AD于点E,若AE=2,▱ABCD的周长等于24,则线段AB的长为()A.5B.6C.7D.88.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设直角三角形中()A.两锐角都大于45°B.有一个锐角小于45°C.有一个锐角大于45°D.两锐角都小于45°9.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,按如图所示的方式放置,点A1A2A3,…和点B1B2B3,…分别在直线y=x+1和x轴上,则点C2000的纵坐标是()A.22000B.21999C.22000﹣1D.21999﹣110.如图,在平行四边形ABCD中,AB=5,AD=3,∠BAD的平分线AE交CD于点E,连接BE,若∠BAD=∠BEC,则平行四边形ABCD的面积为()A.B.C.D.15第9题第10题二、填空题(本大题共8小题,每小题3分,共24分)11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.12.已知x+y=5,xy=3,则=.13.已知点P(m,n)是一次函数y=﹣x+3的图象与反比例函数y=的图象的一个交点,则m2+n2的值为.14.菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的面积为.15.如图,在平面直角坐标系xOy中,有一宽度为1的长方形纸带,平行于y轴,在x轴的正半轴上移动,交x轴的正半轴于点A、D,两边分别交函数y1=(x>0)与y2=(x >0)的图象于B、F和E、C,若四边形ABCD是矩形,则A点的坐标为.16.(3分)如图,将△ABC 的绕点A 顺时针旋转得到△AED ,点D 正好落在BC 边上.已知∠C =80°,则∠EAB = °.17.(3分)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A (4,4),C (﹣2,﹣2),点B ,D 在反比例函数y =kx 的图象上,对角线BD 交AC 于点M ,交x 轴于点N ,若BN ND=53,则k 的值是 .18.(3分)如图,在矩形ABCD 中,AB =6,AD =2√3,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ′,当点E ,A ′,C 三点在一条直线上时,DF 的长为 .三、解答题(本大题共有9小题,共计64分)19.(6分)解方程(1)22)3(4)23(-=+x x (2)111142=+-+-x x x20.解方程:(1)x 2 - 4x + 2 = 0;(2)x (x - 1) = 2(x - 1).21.先化简,再求值:(1﹣)÷,其中x=+1.22.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次进价每千克提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,问超市销售这种干果共盈利多少元?23.某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树苗售价120元;若购买树苗超过60棵,则每增加1棵,每棵树苗售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵树苗售价均为100元.如果该学校向园林公司支付树苗款8800元,那么这所学校购买了多少棵树苗?24.如图,把一块等腰直角三角板ABC放在平面直角坐标系的第二象限内,若∠A=90°,AB=AC,且A、B两点的坐标分别为(﹣4,0)、(0,2).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,若B、C两点的对应点E、F都在反比例函数y=的图象上,求m、k的值和直线EF的解析式;(3)在(2)的条件下,直线EF交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMF是平行四边形?若存在,求出点M和点P的坐标;若不存在,请说明理由.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:DF=AE;(2)当t=10时,四边形AEFD是什么四边形?请说明理由.(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.26.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.27.(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为.(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.参考答案与试题解析1.下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻【分析】利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、射击运动员只射击1次,就命中靶心,是随机事件,故选项错误;B、任意一个三角形,它的内角和等于180°,是必然事件,故选项正确;C、抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件,故选项错误;D、打开电视,正在播放新闻,是随机事件,故选项错误.故选:B.2.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为()A.y=-3x B.y=3x C.y=13x D.y=-13x【分析】只需把已知点的坐标代入,即可求得函数解析式.【解答】解:设该反比例函数的解析式为:y=kx(k≠0).把(1,3)代入,得3=k 1,解得k=3.则该函数解析式为:y=3 x.故选:B.【点评】此题考查的是用待定系数法求反比例函数的解析式,正确的理解题意是解题的关键.4.(3分)一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到黄球是不可能事件C.摸到白球与摸到黄球的可能性相等D.摸到红球比摸到黄球的可能性小【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵摸到红球是随机事件,∴选项A不符合题意;∵摸到黄球是随机事件,∴选项B不符合题意;∵白球和黄球的数量相同,∴摸到白球与摸到黄球的可能性相等,∴选项C符合题意;∵红球比黄球多,∴摸到红球比摸到黄球的可能性大,∴选项D不符合题意.故选:C.【点评】此题主要考查了可能性的大小,以及随机事件的判断,要熟练掌握,解答此题的关键是要明确:在一定条件下,可能发生也可能不发生的事件,称为随机事件.5.一组数据共40个,分为6组,第1到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为()A.4B.6C.8D.10【分析】首先计算出第5组的频数,再用总数减去前5组的频数可得第6组的频数.【解答】解:第5组的频数:40×0.1=4,则第6组的频数为:40﹣10﹣5﹣7﹣6﹣4=8,故选:C.6.若互不相等的四条线段的长a、b、c、d满足,m是任意实数,则下列各式中,一定成立的是()A.B.C.D.【分析】熟练掌握比例和分式的基本性质,进行各种演变.【解答】解:A,根据分式的基本性质,错误;B,根据比例的性质可知该等式不成立,错误.C,根据乘法交换律,交换两内项的位置,应是,错误;D,若,根据分式的合比性质,得①,②.①÷②,得.正确.故选:D.7.如图,在▱ABCD中,CE平分∠BCD交AD于点E,若AE=2,▱ABCD的周长等于24,则线段AB的长为()A.5B.6C.7D.8【分析】利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE=DC=AB求出即可.【解答】解:在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠BCE,AB=DC,AD=BC,∴∠DEC=∠DCE,∴DE=DC=AB,∵ABCD的周长等于24,AE=2,∴AB+AD=12,∴AB+AE+DE=12,∴AB=5.故选:A.8.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,E是AD边的中点,菱形ABCD 的周长为32,则OE的长等于()A.4B.8C.16D.18【分析】先根据菱形ABCD的周长为32,求出边长AB,然后根据E为AD边中点,可得OE=12AB,即可求解.【解答】解:∵菱形ABCD的周长为32,∴AB=8,∵E为AD边中点,O为BD的中点∴OE=12AB=4.故选:A.【点评】本题考查了菱形的性质以及三角形中位线定理,解答本题的关键掌握菱形四条边都相等,对角线互相垂直且平分的性质.9.(3分)已知两个函数y1=k1x+b与y2=k2x的图象如图所示,其中A(﹣1,2),B(2,﹣1),则不等式k1x+b>k2x的解集为()A.x<﹣1或x>2B.x<﹣1或0<x<2 C.﹣1<x<2D.﹣1<x<0或0<x<2【分析】不等式k1x+b>k2x的解集,在图象上即为一次函数的图象在反比例函数图象的上方时的自变量的取值范围.【解答】解:∵函数y1=k1x+b与y2=k2x的图象相交于点A(﹣1,2),B(2,﹣1),∴函数y1=k1x+b与y2=k2x的图象:x<﹣1或0<x<2,故选:B.【点评】此题考查了反比例函数与一次函数的交点问题,关键是注意掌握数形结合思想的应用.10.(3分)如图,点B是反比例函数y=kx图象上的一点,矩形OABC的周长是20,正方形OCDF与正方形BCGH的面积之和为68,则k的值为()A.8B.﹣8C.16D.﹣16【分析】首先设B(a,b),再根据正方形BCGH和正方形OCDF的面积之和为68,可得a2+b2=68,由矩形OABC的周长是20,可得a+b=10,再利用完全平方公式(a+b)2=100可计算出ab的值,即可求得结论.【解答】解:设B(a,b),∵正方形BCGH和正方形OCDF的面积之和为68,∴a2+b2=68,∵矩形OABC的周长是20,∴a+b=10,∴(a+b)2=100,a2+b2+2ab=100,68+2ab=100,ab=16,设反比例函数解析式为y=kx(k≠0),∵B在反比例函数图象上,∴k=ab=16,故选:C.【点评】此题主要考查了求反比例函数解析式,以及完全平方公式,关键是根据正方形的面积与长方形的周长得到a2+b2=68,a+b=10.11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.【分析】从袋中任取一球有4+1+7=12种可能,其中摸出白球有四种可能,利用概率公式进行求解.【解答】解:随机从袋中摸出1个球是白色球的概率是.12.已知x+y=5,xy=3,则=.【分析】由已知条件得到x>0,y>0,则根据二次根式的性质化简得原式=+=+,然后通分后利用整体代入的方法计算.【解答】解:∵x+y=5>0,xy=3>0,∴x>0,y>0,∴原式=+=+=•,=×=.故答案为.13.已知点P(m,n)是一次函数y=﹣x+3的图象与反比例函数y=的图象的一个交点,则m2+n2的值为5.【分析】将P(m,n)代入一次函数y=﹣x+3和反比例函数y=的关系式可得,m+n=3,mn=2,进而利用∴m2+n2=(m+n)2﹣2mn代入求值即可.【解答】解:∵点P(m,n)是一次函数y=﹣x+3的图象与反比例函数y=的图象的一个交点,∴m+n=3,mn=2,∴m2+n2=(m+n)2﹣2mn=9﹣4=5,故答案为:5.14.菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的面积为24.【分析】利用因式分解法解方程得到x1=4,x2=5,再根据菱形的性质得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线长,然后根据菱形的面积公式计算.【解答】解:x2﹣9x+20=0,(x﹣4)(x﹣5)=0,x﹣4=0或x﹣5=0,∴x1=4,x2=5,∵菱形一条对角线长为8,∴菱形的边长为5,∵菱形的另一条对角线长=2×=6,∴菱形的面积=×6×8=24.故答案为:24.15.如图,在平面直角坐标系xOy中,有一宽度为1的长方形纸带,平行于y轴,在x轴的正半轴上移动,交x轴的正半轴于点A、D,两边分别交函数y1=(x>0)与y2=(x >0)的图象于B、F和E、C,若四边形ABCD是矩形,则A点的坐标为(,0).【分析】设点A的坐标为(m,0)(m>0),根据矩形的性质以及反比例函数图象上的坐标特征即可找出点A、C的坐标,再根据点C在反比例函数y2=(x>0)的图象上,利用反比例函数图象上点的坐标特征即可得出关于m的分式方程,解方程求出m值,将其代入点A坐标中即可得出结论.【解答】解:设点A的坐标为(m,0)(m>0),则点B坐标为(m,),点C坐标为(m+1,),∵点C在反比例函数y2=(x>0)的图象上,∴=,解得:m=,经检验m=是分式方程=的解.∴点A的坐标为(,0).故答案为:(,0).16.(3分)如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB=20°.【分析】根据旋转的性质可得AC=AD,∠BAC=∠EAD,再根据等边对等角可得∠C=∠ADC,然后求出∠CAD,∠BAE=∠CAD,从而得解.【解答】解:∵△ABC的绕点A顺时针旋转得到△AED,∴AC=AD,∠BAC=∠EAD,∵点D正好落在BC边上,∴∠C=∠ADC=80°,∴∠CAD=180°﹣2×80°=20°,∵∠BAE=∠EAD﹣∠BAD,∠CAD=∠BAC﹣∠BAD,∴∠BAE=∠CAD,∴∠EAB=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,熟记性质并确定出△ACD是等腰三角形是解题的关键.17.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A(4,4),C(﹣2,﹣2),点B,D在反比例函数y=kx的图象上,对角线BD交AC于点M,交x轴于点N,若BNND=53,则k的值是﹣15.【分析】求得直线BD的解析式,根据题意设B点的纵横坐标为5n,则D点的纵坐标为﹣3n,因为B、D在直线y=﹣x+2上,即可得出B(﹣5n+2,5n),D(3n+2,﹣3n),即可得出k=(﹣5n+2)•5n=(3n+2)•(﹣3n),从而求得k=﹣15.【解答】解:∵点A(4,4),C(﹣2,﹣2),∴直线AC为y=x,M(1,1),∵菱形ABCD中AC⊥BD,∴设直线BD为y=﹣x+b,代入M(1,1),求得b=2,∴直线BD为y=﹣x+2,∴N(2,0),∴ON=2,∵BNND =53,设B点的纵横坐标为5n,则D点的纵坐标为﹣3n,∵B、D在直线y=﹣x+2上,∴B(﹣5n+2,5n),D(3n+2,﹣3n),∵点B,D在反比例函数y=kx的图象上,∴k=(﹣5n+2)•5n=(3n+2)•(﹣3n),解得n=1,∴k=﹣15,故答案为﹣15.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,表示出B、D点的坐标是解题的关键.18.(3分)如图,在矩形ABCD中,AB=6,AD=2√3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为6﹣2√7或6+2√7.【分析】利用勾股定理求出CE,再证明CF=CE即可解决问题.(注意有两种情形)【解答】解:如图,由翻折可知,∠FEA=∠FEA′,∵CD∥AB,∴∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF,在Rt△BCE中,EC=√BC2+EB2=√(2√3)2+42=2√7,∴CF=CE=2√7,∵AB=CD=6,∴DF=CD﹣CF=6﹣2√7,当点F在DC的延长线上时,易知EF⊥EF′,CF=CF′=2√7,∴DF=CD+CF′=6+2√7故答案为6﹣2√7或6+2√7.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.19.略20.略21.先化简,再求值:(1﹣)÷,其中x=+1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=+1时,原式==.22.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次进价每千克提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,问超市销售这种干果共盈利多少元?【分析】设第一次购进这种干果的数量为x千克,则第二次购进这种干果的数量为(2x+300)千克,利用单价=总价÷数量,结合第二次的进价比第一次进价每千克提高了20%,即可得出关于x的分式方程,解之经检验后即可得出x的值,再利用总盈利=销售总额﹣进货成本,即可求出结论.【解答】解:设第一次购进这种干果的数量为x千克,则第二次购进这种干果的数量为(2x+300)千克,依题意得:=(1+20%)×,解得:x=600,经检验,x=600是原方程的解,且符合题意,∴9(x+2x+300)﹣3000﹣9000=9×(600+2×600+300)﹣3000﹣9000=6900(元).答:超市销售这种干果共盈利6900元.23.某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树苗售价120元;若购买树苗超过60棵,则每增加1棵,每棵树苗售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵树苗售价均为100元.如果该学校向园林公司支付树苗款8800元,那么这所学校购买了多少棵树苗?【分析】设这所学校购买了x棵树苗(60<x<100),则每棵树苗的售价为(150﹣0.5x)元,利用总价=单价×数量,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【解答】解:∵60×120=7200(元),(120﹣100)÷0.5+60=100(棵),100×100=10000(元),7200<8800<10000,∴购买的树苗棵树超过60棵,且不足100棵.设这所学校购买了x棵树苗(60<x<100),则每棵树苗的售价为120﹣0.5(x﹣60)=(150﹣0.5x)元,依题意得:x(150﹣0.5x)=8800,整理得:x2﹣300x+17600=0,解得:x1=80,x2=220(不合题意,舍去).答:这所学校购买了80棵树苗.24.如图,把一块等腰直角三角板ABC放在平面直角坐标系的第二象限内,若∠A=90°,AB=AC,且A、B两点的坐标分别为(﹣4,0)、(0,2).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,若B、C两点的对应点E、F都在反比例函数y=的图象上,求m、k的值和直线EF的解析式;(3)在(2)的条件下,直线EF交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMF是平行四边形?若存在,求出点M和点P的坐标;若不存在,请说明理由.【分析】(1)作CH⊥x轴于H,如图,利用“AAS”证明△ABO≌△CAH,得到AH=OB =2,CH=OA=4,则OH=OA+AH=6,然后根据第二象限的坐标特征写出C点坐标;(2)根据平移的性质得D(﹣4+m),E(m,2),F(﹣6+m,4),再根据反比例函数图象上点的坐标特征得到2•m=4(﹣6+m),解得m=12,则E点坐标为(12,2),F点的坐标为(6,4),所以k=24,然后利用待定系数法确定直线EF的解析式;(3)先确定G点坐标为(0,6),再根据平行四边形的性质得G点为GF为中点,根据线段的中点坐标公式得到G点坐标为(3,5),设M点坐标为(x,0),利用G点为MP为中点得到P点坐标为(6﹣x,10),然后根据反比例函数图象上点的坐标特征得到10(6﹣x)=24,解得x=,从而得到M点和P点坐标.【解答】解:(1)作CH⊥x轴于H,如图,∵A、B两点的坐标分别为(﹣4,0)、(0,2).∴OA=4,OB=2,∵∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠CAH=∠ABO,在△ABO和△CAH中,∴△ABO≌△CAH(AAS),∴AH=OB=2,CH=OA=4,∴OH=OA+AH=6,∴C点坐标为(﹣6,4);(2)∵△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,∴D(﹣4+m),E(m,2),F(﹣6+m,4),∵点E、F都在反比例函数y=的图象上,∴2•m=4(﹣6+m),解得m=12,∴E点坐标为(12,2),F点的坐标为(6,4),∴k=12×2=24,∴反比例函数的解析式为y=,设直线EF的解析式为y=px+q,把E(12,2),F(6,4)代入得,解得,∴直线EF的解析式为y=﹣x+6;(3)如图,∵当x=0时,y=﹣x+6=6,∴G点坐标为(0,6),∵四边形PGMF为平行四边形,∴Q点为GF为中点,∴Q点坐标为(3,5),设M点坐标为(x,0),∵Q点为MP为中点,P点坐标为(6﹣x,10),∵P(6﹣x,10)在反比例函数y=图象上,∴10(6﹣x)=24,解得x=,∴M点坐标为(,0),P点坐标为(,10).25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:DF=AE;(2)当t=10时,四边形AEFD是什么四边形?请说明理由.(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.【分析】(1)由已知条件可得Rt△CDF中∠C=30°,即可知DF=CD=AE=2t;(2)由(1)知DF∥AE且DF=AE,即四边形AEFD是平行四边形,可得出AD=60﹣4t =20cm,AE=2t=20cm,则AD=AE,得出四边形AEFD是菱形;(3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.【解答】解:(1)∵Rt△ABC中,∠B=90°,∠A=60°,∴∠C=90°﹣∠A=30°.又∵在Rt△CDF中,∠C=30°,CD=4t∴DF=CD=2t,∵AE=2t∴DF=AE;(2)四边形AEFD是菱形.理由:∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,∵当t=10时,AD=60﹣4t=20cm,AE=2t=20cm,∴AD=AE,∴四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由如下:当∠EDF=90°时,则DE∥BC.∴∠ADE=∠C=30°,∴AD=2AE,∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°但DF=15,DE=15,∴DF≠DE,∴四边形BEDF不可能为正方形.26.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.【分析】(1)由勾股定理可求BD=5,由三角形的面积公式和S△DPQ=(S△BED﹣S△BDP)可求解;(2)当t=时,可得BP==BE,由中位线定理可得MN∥BD,MN=BD=5,PQ ∥BD,PQ=BD=5,可得MN∥PQ,MN=PQ,可得结论.(3)连接BQ,由等腰三角形的性质可得∠AQD+∠BQA=90°,由直角三角形的性质可得DQ=CQ,∠DCQ=∠CDQ,由“SAS”可证△ADQ≌△BCQ,可得∠AQD=∠BQC,即可得结论.【解答】解:(1)∵四边形ABCD是矩形,AB=3,BC=4,∴BC=4,CD=3,∴BD==5,∴BD=BE=5,∵Q为DE的中点,∴S△DPQ=S△DPE,∴S△DPQ=(S△BED﹣S△BDP)==t.故答案为:t.(2)当t=时,四边形MNQP为平行四边形,理由如下:∵M、N分别为AB、AD的中点,∴MN∥BD,MN=BD=,∵t=时,∴BP==BE,且点Q是DE的中点,∴PQ∥BD,PQ=BD=,∴MN∥PQ,MN=PQ,∴四边形MNQP是平行四边形.(3)AQ⊥CQ.理由如下:如图,连接BQ,∵BD=BE,点Q是DE中点,∴BQ⊥DE,∴∠AQD+∠BQA=90°,∵在Rt△DCE中,点Q是DE中点,∴DQ=CQ,∴∠DCQ=∠CDQ,且∠ADC=∠BCD=90°,∴∠ADQ=∠BCQ,且BC=AD,DQ=CQ,∴△ADQ≌△BCQ(SAS),∴∠AQD=∠BQC,且∠AQD+∠BQA=90°,∴∠BQC+∠BQA=90°,∴∠AQC=90°,∴AQ⊥CQ.27.(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为25.(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.【分析】(1)根据四边形ABCD的面积等于正方形EBFD的面积计算即可;(2)如图乙中,延长PC至D,取CD=1,连接AD.只要证明△ABP≌△ACD(SAS),即可推出四边形ABPC的面积等于△APD的面积;(3)如图丙中,延长CD至DF=AB,连接EF、BE、CE.只要证明五边形ABCDE的面积等于四边形BCFE的面积即可;【解答】解:(1)由题可知.故答案为25.(2)如图,延长PC至D,取CD=1,连接AD.∵等边△ABC中,∠BAC=60°,∠BPC=120°,∴∠BPC+∠BAC=180°,∴四边形ABPC中,∠ABP+∠ACP=360°﹣180°=180°,∴∠ABP=∠ACD=180°﹣∠ACP,又∵AB=AC,BP=CD,∴△ABP≌△ACD(SAS),∴AP=AP,∠BAP=∠CAP.∵∠BAP+∠P AC=∠BAC=60°,∴∠CAD+∠P AC=60°,∴△APD为等边三角形且PD=PC+CD=3+1=4,∴.(3)如图,延长CD至DF=AB,连接EF、BE、CE.∵AB=DF,AE=DE,∠BAE=∠FDE=90°,∴△ABE≌△DFE(SAS),∴EB=EF.∵CD+AB=CD+DF=4,BC=4,∴CD+DF=CF=BC,∴△EBC≌△EFC(SSS),∴.。
苏科版八年级下册数学期末测试卷及含答案

苏科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如果m2+2m﹣2=0,那么代数式(m+ )•的值是()A.﹣2B.﹣1C.2D.32、在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是().A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶13、在正数范围内定义一种运算☆,其规则为a☆b=+,根据这个规则x☆(x+1)=的解为()A.x=B.x=1C.x=- 或1D.x= 或-14、下列调查中,适合用普查方法的是()A.了解中央电视台《中国诗词大会》的收视率B.了解太和县某学校初一(1)班学生的身高情况C.了解太和县出产的樱桃的含糖量D.调查某品牌笔芯的使用寿命5、下列计算正确的是()A. B. C. D.6、如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°7、小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是()A. B. C. D.8、若反比例函数y= 的图象经过点(2,﹣6),则k的值为()A.﹣12B.12C.﹣3D.39、小明使用电脑软件探究函数的图象,他输入了一组a,b的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a,b的值满足()A. ,B. ,C. ,D.,10、如图,E,F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE、DF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB =S四边形DEOF中正确的有()A.4个B.3个C.2个D.1个11、下列说法正确的是( )A.平行四边形的对角线互相平分且相等B.矩形的对角线相等且互相平分 C.菱形的对角线互相垂直且相等 D.正方形的对称轴是正方形的对角线12、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.13、电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是( )A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况14、若二次根式有意义,则的取值范围是()A. B. C. D.15、花城中学初一(1)班有50名同学,其中必然有()A.5名同学在同一个月过生日B.5名同学与班主任在同一个月过生日 C.5名同学不在同一个月过生日 D.5名同学与班主任不在同一个月过生日二、填空题(共10题,共计30分)16、如图,长方形,,,将长方形折叠,使得顶点落在边上的点处,连结、.动点在线段上(点与点、不重合),动点在线段的延长线上,且,连结交于点,作于点.点、在移动过程中,线段的长度是________.17、如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1, S2, S3,则S1,S 2, S3之间的关系是 ________.18、已知a= ﹣,b= + ,求a2+b2的值为________.19、如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2 ,反比例函数y= 的图象经过点B,则k的值为________.20、计算:=________.21、小明和小乐一起玩“石头、剪刀、布”的游戏,两位同学同时出布的概率是________.22、如图,正方形ABCD,点E在CD上,连接AE,BD,点G是AE中点,过点G作FH⊥AE,FH分别交AD,BC于点F,H,FH与BD交于点K,且HK=2FG,若EG=,则线段AF的长为________.23、如图,正方形ABCD的边长为3,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转至正方形的位置,与CD相交于点M,则点M的坐标为________.24、袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有________个.25、若分式的值为正,则的取值范围是________.三、解答题(共5题,共计25分)26、先化简再求值:,其中,.27、某厂拟生产一种七年级使用的文具,但无法确定颜色,为此委托贝贝同学进行调查,贝贝调查了七年级(2)班的50名同学,结果是喜欢红色的20人,喜欢黄色的10人,喜欢绿色的15人,喜欢蓝色的5人.(1)你认为贝贝的调查结果能反映实际情况吗?(2)为更准确地为厂商提供信息,调查时应注意什么问题.28、不透明的布袋里装有红、蓝、黄三种颜色小球共40个,它们除颜色外其余都相同,其中红色球20个,蓝色球比黄色球多8个.(1)求袋中蓝色球的个数;(2)现再将2个黄色球放入布袋,搅匀后,求摸出1个球是黄色球的概率.29、如图,在△ABC中,∠A=90°,点D为BC的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,试写出线段BE,EF,FC之间的数量关系,并说明理由.30、将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、C7、A8、A9、D10、B11、B12、D13、C14、B15、A二、填空题(共10题,共计30分)17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
苏科八年级苏科初二数学下册第二学期期末测试题及答案(共五套)

苏科八年级苏科初二数学下册第二学期期末测试题及答案(共五套)一、解答题1.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?2.先化简:22241a aa a a+--÷-,再从﹣1、0、1、2中选一个你喜欢的数作为a的值代入求值.3.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?4.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.5.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.6.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.7.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.8.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.(1)点B的坐标为,直线ON对应的函数表达式为;(2)当EF=3时,求H点的坐标;(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.9.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.10.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?11.为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.(1)本次调查共随机抽取了名学生;(2)补全条形统计图;(3)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 ;(4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.12.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.(思维拓展)(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)13.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?14.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB,A,B均为格点,按要求完成下列问题.(1)以AB为对角线画一个面积最小的菱形AEBF,且E,F为格点;(2)在(1)中该菱形的边长是,面积是;(3)以AB为对角线画一个菱形AEBF,且E,F为格点,则可画个菱形.15.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析(2)成立 【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CD B CDF BE DF∠∠=== ∴△CBE ≌△CDF (SAS ). ∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF , ∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°, 又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF ∵∠GCE =∠GCF , GC =GC ∴△ECG ≌△FCG (SAS ). ∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质.2.1a 2--,当1a =-时,原式1=3 【分析】本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题. 【详解】原式2(1)1111(2)(2)22a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠, 即当0a =、1、2、2-时原分式无意义, 故当1a =-时,原式11123=-=--. 【点睛】本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.3.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论. 【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,依题意,得:10012010.8x x-=, 解得:x =5,经检验,x =5是原方程的解,且符合题意. 答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元). 全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元). 答:可以盈利37.5元. 【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键. 4.(1)见解析;(2)15;见解析. 【分析】(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求. (2)证明△ABE 的周长=AB +AD 即可. 【详解】解:(1)如图,点E 即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形 ∴AD =BC =10,AB =CD =5 又由(1)知BE =DE ∴15ABEAB AE BE AB AE ED AB CAD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键. 5.(1)详见解析;(2)24 【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点 ∴AE =DE ∵AF ∥BC ∴∠AFE =∠DBE在△AEF 和△DEB 中AFE DBE DEB AEF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△DEB (AAS ) ∴AF =DB ∵D 是BC 的中点 ∴BD=CD=AF∴四边形ADCF 是平行四边形 ∵∠BAC =90°, ∴AD =CD =12BC ∴四边形ADCF 是菱形;(2)解:设AF 到CD 的距离为h ,∵AF ∥BC ,AF =BD =CD ,∠BAC =90°,AC =6,AB =8 ∴S 菱形ADCF =CD•h =12BC•h =S △ABC =12AB•AC =168242⨯⨯=. 【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.6.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析 【分析】(1)根据正方形的性质和三角形的内角和解答即可; (2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可. 【详解】解:(1)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°; (2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°, ∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=, ∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α; (3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI . ∵四边形ABCD 是正方形, ∴AD =AB ,∠ADF =∠ABC =90°, ∴∠ABI =90°, 又∵BI =DF ,∴△DAF ≌△BAI (SAS ), ∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF , 又∵AE 是△EAI 与△EAF 的公共边, ∴△EAI ≌△EAF (SAS ), ∴∠BEA =∠FEA . 【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解. 7.(1)50;(2)8,5;(3)108°;(4)240人. 【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a 的值,进而从总人数中减去其他组的人数得到b 的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数. 【详解】(1)12÷24%=50人 故答案为50.(2)a =50×16%=8人,b=50﹣15﹣8﹣12﹣10=5人,故答案为:8,5.(3)360°×1550=108°答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×1050=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.【点睛】考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.8.(1)(3,2),12y x=;(2)H(16,11);(3)4415,证明见解析.【分析】(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣3),由点G在直线ON上,可得e﹣3=12(e+5),解得e=11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x =;(2)∵EF=3,EF:FG=3:5.∴FG=5,设矩形EFGH的宽为3a,则长为5a,∵点E 在直线OM 上,设点E 的坐标为(e ,e ),∴F (e ,e ﹣3),G (e +5,e ﹣3),∵点G 在直线ON 上,∴e ﹣3=12(e +5), 解得e =11,∴H (16,11).(3)s 1:s 2的值是一个常数,理由如下:如图,连接EG ,延长EF 交x 轴于J ,延长HG 交x 轴于k .设E (a ,a ),EF =3m ,FG =5m ,则G (a +5m ,a ﹣3m ),∵点G 在直线y =12x 上, ∴a ﹣3m =12(a +5m ), ∴a =11m ,∴E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),∴S △OEG =S △OEJ +S 梯形EJKG ﹣S △OKG =12×11m ×11m +12(8m +11m )•5m •12﹣12×16m ×8m =44m 2,S 矩形EFGH =EF •FG =15m 2,∴12S S =224415m m =4415. ∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.9.(1)AP=EF ,AP ⊥EF ,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS 证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.10.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.11.(1)200;(2)图见解析;(3)144;(4)6 500人【分析】(1)用阅读时长在“6小时及以上”的人数除以对应百分比即可计算;(2)先根据统计图中的数据求出课外阅读时长在“2~4小时”和“4~6小时”的人数,然后补全条形统计图即可;(3)用360°乘以课外阅读时长“4~6小时”对应的百分比即可求出;(4)用初中生总数乘以一周课外阅读时长不少于4小时的百分比即可.【详解】(1)本次调查共随机抽取了:50÷25%=200(名);(2)课外阅读时长“2~4小时”的有:200×20%=40(人),课外阅读时长“4~6小时”的有:200-30-40-50=80(人),故条形统计图如下:;(3)阅读时长在“2小时以内”的人数所占的百分比为:30÷200×100%=15%,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1-20%-25%-15%)=144°; (4)10000×(1-20%-15%)=6500(人).【点睛】本题考查了扇形统计图和条形统计图的结合,由图表获取数据是解题关键.12.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠, ()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE = 2.51 1.5EF DF BE ∴=-=-=. 故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△,∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.13.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.14.(1)见解析;(210,6;(3)3【分析】(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.(2)利用勾股定理,菱形的面积公式计算即可.(3)画出满足条件的菱形即可判断.【详解】解:(1)如图,菱形AEBF 即为所求.(2)AE =223+1=10,菱形AEBF 的面积=12×6×2=6, 故答案为10,6.(3)如图备用图可知:可以画3个菱形,故答案为3.【点睛】本题主要考查了格点作图和菱形的性质应用,涉及了勾股定理等,正确理解,准确利用网格的特点是解题的关键.15.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s=或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s =∴综上所述,存在8163t s s=或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥ 12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=,①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝⎭,解得3/a cm s =, ②当83t ≥时,由题意有382382t t at -⎛⎫-=+ ⎪⎝⎭,解得3/a cm s =, ∴综上所述,存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。
江苏省镇江市2022届八年级第二学期期末经典数学试题含解析

江苏省镇江市2022届八年级第二学期期末经典数学试题一、选择题(每题只有一个答案正确)1.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定2.已知一次函数y =(m+1)x+m 2﹣1的图象经过原点,则m 的值为(( )A .0B .﹣1C .1D .±13.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123;④乙的速度比甲的速度快1米/秒,其中正确的编号是( )A .①②B .②③C .①②③D .①②③④4.若关于x 的一元二次方程230x x m -+=有解,则m 的值可为( )A .2B .3C .4D .55.已知12x <<,则()22|3|x x -+-( ) A .25x - B .-2 C .52x - D .26.在△ABC 中,AB=15,AC=13,BC 上的高AD 长为12,则△ABC 的面积为( )A .84B .24C .24或84D .42或847.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )A .测量对角线,看是否互相平分B .测量两组对边,看是否分别相等C.测量对角线,看是否相等D.测量对角线的交点到四个顶点的距离,看是否都相等8.如图,直线364y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(-4,0)B.(-1,0)C.(-2,0) D.(-3,0)9.已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为()A.1 B.2 C.-2 D.-110.下列图形不是中心对称图形的是()A.B.C.D.二、填空题11.若ABC∆的三边长分别是6、8、10,则最长边上的中线长为______.12.在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点A作已知直线l的平行线”.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线A D即为所求.老师说:“小云的作法正确”.请回答:小云的作图依据是____________.13.小玲在一次班会中参加知识抢答活动,现有语文题5道,数学题6道,综合题7道,她从中随机抽取1道,抽中数学题的概率是_________.143x-x 的取值范围是_______ .15.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.16.如图,一艘渔船以30海里/h 的速度由西向东追赶鱼群.在A 处测得小岛C 在船的北偏东60°方向;40min 后渔船行至B 处,此时测得小岛C 在船的北偏东30︒方向.问:小岛C 于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).17.将一次函数y =﹣2x ﹣1的图象向上平移3个单位,则平移后所得图象的解析式是_____.三、解答题18.如图,等腰直角ABC ∆中,90ABC ∠=︒,点P 在AC 上,将ABP ∆绕顶点B 沿顺时针方向旋转90°后得到CBQ ∆.(1)求PCQ ∠的度数;(2)当4AB =,2AP =时,求PQ 的大小;(3)当点P 在线段AC 上运动时(P 不与A ,C 重合),求证:2222PB PA PC =+.19.(6分)某公司销售部有销售人员14人,为提高工作效率和员工的积极性,准备实行“每月定额销售,超额有奖”的措施.调查这14位销售人员某月的销售量,获得数据如下表:月销售量(件)145 55 37 30 24 18 人数(人) 1 1 2 5 3 2 (1)求这14位营销人员该月销售量的平均数和中位数(2)如果你是该公司的销售部管理者,你将如何确定这个定额?请说明理由.20.(6分)解不等式组3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩①②,并将解集在数轴上表示出来.21.(6分)已知:正方形ABCD 中,对角线AC 、BD 交于点O ,过O 点的两直线OE 、OF 互相垂直,分别交AB 、BC 于E 、F ,连接EF .(1)求证:OE=OF ;(2)若AE=4,CF=3,求EF 的长;(3)若AB=8cm ,请你计算四边形OEBF 的面积.22.(8分)如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==. 求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.23.(8分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,//CE BD ,//DE AC .(1)求证:四边形OCED 是正方形.(2)若2AC =,则点E 到边AB 的距离为______.24.(10分)先化简,再求值:当m =10时,求21111m m m m++---的值. 25.(10分)已知在△ABC 中,AB=1,BC=412,CA=11255. (1)分别化简412,11255的值. (2)试在4×4的方格纸上画出△ABC ,使它的顶点都在方格的顶点上(每个小方格的边长为1). (3)求出△ABC 的面积.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B .2.C【解析】【分析】先根据一次函数y =(m+1)x+(m 2﹣1)的图象经过原点得出关于m 的不等式组,求出m 的值即可.【详解】∵一次函数y =(m+1)x+(m 2﹣1)的图象经过原点,∴21010m m +≠⎧⎨-=⎩,解得m =1. 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数y =kx+b (k≠0)中,当b =0时函数图象经过原点是解答此题的关键.3.D【解析】【分析】易得乙出发时,两人相距8m ,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s 跑完总路程500可得乙的速度,进而求得100s 时两人相距的距离可得b 的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c 的值.【详解】解:甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b =5×100﹣4×(100+2)=92(米);5a ﹣4×(a+2)=0,解得a =8,c =100+92÷4=123(秒),∴正确的有①②③④.故选D .【点睛】考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.4.A【解析】【分析】根据判别式的意义得到△()2340m =--,然后解不等式求出m 的范围后对各选项进行判断.【详解】解:根据题意得:△()2340m =--, 解得94m . 故选:A .【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与△24b ac =-有如下关系:当△0>时,方程有两个不相等的实数根;当△0=时,方程有两个相等的实数根;当△0<时,方程无实数根.5.C【解析】【分析】首先根据x 的范围确定x−3与x−2的符号,然后即可化简二次根式,然后合并同类项即可.【详解】∵12x <<,∴x−3<0,x−2<0,∴()22|3|x x -+-=3−x +(2−x )=5−2x . 故选:C .【点睛】本题主要考查了二次根式的化简,化简时要注意二次根式的性质:2a =|a|.6.C【解析】【分析】由于高的位置不确定,所以应分情况讨论.【详解】(1)△ABC 为锐角三角形,高AD 在三角形ABC 的内部,∴BD=22AB AD -=9,CD=22AC AD -=5,∴△ABC 的面积为195122⨯+⨯()=84,(2)△ABC 为钝角三角形,高AD 在三角形ABC 的外部,∴BD=22AB AD -=9,CD=22AC AD -=5,∴△ABC 的面积为195122⨯-⨯()=24, 故选C.【点睛】此题主要考察勾股定理的应用,解题的关键是根据三角形的形状进行分类讨论.7.D【解析】【分析】根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【详解】解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;B、两组对边是否分别相等,能判定平行四边形,故本选项错误;C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.故选:D.【点睛】本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.8.C【解析】【分析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标并根据三角形中位线定理得出CD//x轴,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【详解】解:连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示在364y x =+中,当y=0时,3064x =+,解得x=-8,A 点坐标为(8,0)-, 当x=0时,6y =,B 点坐标为(0,6),∵点C 、D 分别为线段AB 、OB 的中点,∴点C (-4,3),点D (0,3),CD ∥x 轴,∵点D′和点D 关于x 轴对称,∴点D′的坐标为(0,-3),点O 为线段DD′的中点.又∵OP ∥CD ,∴OP 为△CD′D 的中位线,点P 为线段CD′的中点,∴点P 的坐标为(2,0)-,故选:C.【点睛】本题考查轴对称——最短路径问题,一次函数图象与坐标轴交点问题,三角形中位线定理.能根据轴对称的性质定理找出PC+PD 值最小时点P 的位置是解题的关键.9.C【解析】【分析】直接把点(1,-2)代入反比例函数y=k x 即可得出结论. 【详解】∵反比例函数y=k x的图象过点A(1,−2), ∴−2=1k , 解得k=−2.故选C.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式10.D【解析】【分析】根据中心对称图形的概念求解.【详解】A 、是中心对称图形.故不能选;B 、是中心对称图形.故不能选;C 、是中心对称图形.故不能选;D 、不是中心对称图形.故可以选.故选D【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题11.1【解析】【分析】根据勾股定理的逆定理得到这个三角形是直角三角形,根据直角三角形斜边上中线的性质计算即可.【详解】解:2268100+=,100102=,2226810∴+=,∴这个三角形是直角三角形,斜边长为10,∴最长边上的中线长为1,故答案为:1.【点睛】本题考查的是直角三角形的性质、勾股定理的逆定理的应用,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.12.①四边相等的四边形是菱形②菱形的对边平行【解析】【分析】利用作法可判定四边形ABCD 为菱形,然后根据菱形的性质得到AD 与l 平行.【详解】由作法得BA=BC=AD=CD ,所以四边形ABCD 为菱形,所以AD ∥BC ,故答案为:四条边相等的四边形为菱形,菱形的对边平行.【点睛】本题考查了作图-复杂作图、菱形的判定与性质,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.13.13【解析】【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.【详解】解:抽中数学题的概率为615673=++, 故答案为:13. 【点睛】本题考查了概率,正确利用概率公式计算是解题的关键.14.x≥1【解析】【分析】直接利用二次根式的有意义的条件得到关于x 的不等式,解不等式即可得答案.【详解】由题意可得:x ﹣1≥0,解得:x≥1,故答案为:x≥1.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.15.(3,1)【解析】【分析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y 轴对称的点的坐标的特征,即可完成.16.【解析】【分析】过C作CD⊥AB,易得∠BAC=∠BCA=30°,进而得到BC=BA=20,在Rt△BCD中,利用30°角所对的直角边是斜边的一半与勾股定理即可求出CD.【详解】如图,过C作CD⊥AB,∵渔船速度为30海里/h,40min后渔船行至B处∴AB=4030=2060⨯海里由图可知,∠BAC=90°-60°=30°,∠ABC=90°+30°=120°,∴∠BCA=180°-120°-30°=30°∴∠BAC=∠BCA∴BC=BA=20海里在Rt△BCD中,∠BCD=30°,∴BD=12BC=10海里∴2222BC BD=2010=103--海里故答案为:103【点睛】本题考考查了等腰三角形的性质,含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.17.y=﹣1x+1【解析】【分析】根据平移法则上加下减可得出解析式.【详解】由题意得:平移后的解析式为:y=﹣1x﹣1+3=﹣1x+1.故答案为:y=﹣1x+1.【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.三、解答题18.(1)90PCQ ∠=︒;(1)PQ =(3)见解析.【解析】【分析】(1)由于∠PCB=∠BCQ=45°,故有∠PCQ=90°;(1)利用勾股定理得出AC 的长,再利用旋转的性质得出AP=CQ ,求得PC 的长度,进而利用勾股定理得出PQ 的长;(3)先证明△PBQ 也是等腰直角三角形,从而得到PQ 1=1PB 1=PA 1+PC 1.【详解】(1)∵△ABP 绕顶点B 沿顺时针方向旋转90°后得到△CBQ ,∴ABP CQB ∆≅∆,∴45A ACB BCQ ∠=∠=∠=︒,∴90PCQ ACB BCQ ∠=∠+∠=︒.(1)当4AB =时,有AC =AP CQ =PC =∴PQ ==(3)由(1)可得ABP CBQ ∠=∠,AP CQ =,PB BQ =,90ABP PBC CPQ PBC ∠+∠=∠+∠=︒,∴BPQ ∆是等腰直角三角形,PCQ ∆是直角三角形.∴PQ =,∵AP CQ =,∴22222PQ PC CQ PA PC =+=+,故有2222PB PA PC =+.【点睛】考查了旋转的性质以及勾股定理和等腰直角三角形的性质等知识,得出旋转前后对应线段之间关系是解题关键.19.(1)平均数38(件);中位数:30(件);(2)答案见解析【解析】【分析】(1)按照平均数,中位数的定义分别求得.(2)根据平均数,中位数的意义回答.【详解】(1)解:平均数1(14555372305243182)14x =++⨯+⨯+⨯+⨯=38(件) 中位数:30(件)(2)解:定额为38件,因为平均数反映平均程度;或:定额为30件,因为中位数可以反映一半员工的工作状况,把一半以上作为目标;或:除去最高分、最低分的平均数为1(5537230524318)12+⨯+⨯+⨯+=30.75≈31(件) 因为除去极端情形较合理.【点睛】本题考查了学生对平均数、中位数的计算及运用其进行分析的能力.20.23x <<-,数轴表示见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:由①去括号、移项、合并同类项,得2-4x >,解得>-2x ;由②去分母、移项、合并同类项,得-3 -9x >解得3x <所以不等式组的解集为23x <<-不等式组的解集在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.21.(1)见解析;(2)EF=5;(3)16cm 2【解析】【分析】(1)根据正方形的性质可得OB=OC ,∠OBE=∠OCF=45°,再利用同角的余角相等得到∠BOE=∠COF ,从而推出△OBE ≌△OCF ,即可得OE=OF ;(2)由(1)中的全等三角形可得BE=CF=3,由正方形的性质可知AB=BC ,推出BF=AE=4,再根据勾股定理求出EF 即可;(3)由(1)中的全等三角形可将四边形OEBF 的面积转化为△OBC 的面积,等于正方形面积的四分之一.【详解】(1)∵四边形ABCD 为正方形∴OB=OC ,∠OBE=∠OCF=45°,BD ⊥AC∴∠BOF+∠COF=90°,∵OE ⊥OF∴∠BOF+∠BOE=90°∴∠BOE=∠COF在△OBE 和△OCF 中,∵∠OBE=∠OCF ,OB=OC ,∠BOE=∠COF∴△OBE ≌△OCF (ASA )∴OE=OF(2)∵△OBE ≌△OCF∴BE=CF=3,∵四边形ABCD 为正方形∴AB=BC即AE+BE=BF+CF∴BF=AE=4∴(3)∵△OBE ≌△OCF∴S 四边形OEBF =S △OBE +S △OBF=S △OCF + S △OBF=S △BOC =14S 正方形ABCD =2184⨯ =16cm 2【点睛】本题考查正方形的性质,全等三角形的判定与性质以及勾股定理,熟练掌握正方形的性质得出全等三角形的条件是解题的关键.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)由题意由“HL”可判定Rt△ABC≌Rt△EDF(2)根据一组对边平行且相等的四边形是平行四边形,可证四边形BCDF是平行四边形.【详解】证明:(1)∵AF=EC∴AC=EF又∵BC=DF,∴Rt△ABC≌Rt△EDF(2)∵Rt△ABC≌Rt△EDF∴BC=DF,∠ACB=∠DFE∴∠BCF=∠DFC∴BC∥DF,BC=DF∴四边形BCDF是平行四边形【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是灵活运用性质和判定解决问题.23.(1)证明见解析;(2)1.5.【解析】【分析】(1)首先根据已知条件可判定四边形OCED是平行四边形,然后根据正方形对角线互相平分的性质,可判定四边形OCED是菱形,又根据正方形的对角线互相垂直,即可判定四边形OCED是正方形;(2)首先连接EO,并延长EO交AB于点F,根据已知条件和(1)的结论,可判定EF即为点E到AB 的距离,即为EO和OF之和,根据勾股定理,可求出AD和CD,即可得解.【详解】解:(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是正方形,∴AC=BD,,∴OC=OD.∴四边形OCED是菱形.∵AC⊥BD,∴∠COD=90°.∴四边形OCED是正方形.(2)解:连接EO ,并延长EO 交AB 于点F ,如图所示由(1)中结论可得,OE=CD又∵正方形ABCD ,2AC =,AD=CD ,OF ⊥AB ∴222AC AD CD =+∴AD=CD=1, ∴10.5,12OF AD OE CD ==== ∴10.5 1.5EF OE OF =+=+=EF 即为点E 到AB 的距离,故答案为1.5.【点睛】此题主要考查正方形的判定和利用正方形的性质求解线段的长度,熟练运用即可解题. 24.43. 【解析】【分析】首先将原式的分子与分母分解因式,进而化简求出答案.【详解】21111m m m m++---=()()11111m m m m m ++++-- =1111m m m ++-- =1+11m m +- =21m m +- , 当m =10时,原式=10+210-1=43. 【点睛】 此题考查分式的化简求值,解题关键在于掌握运算法则25.见解析【解析】【分析】(1)首先化简12和125,再分别计算乘法即可;(2)根据勾股定理画出AC=5,再确定B的位置,既要使AB=1,又要使BC=22即可;(3)利用三角形的面积公式,以BA为底,确定AB上的高为2,再计算即可.【详解】(1)412=4×1222⨯⨯=22,1125 5=15×255⨯=15×55=5;(2)如图所示:(3)△ABC的面积12⨯1×2=1平方单位.【点睛】本题主要考查了应用与设计作图,以及勾股定理的应用和二次根式的计算,关键是正确化简AC、BC的长.。
2022-2023学年江苏省镇江市八年级(下)期末数学试卷(含解析)

2022-2023学年江苏省镇江市八年级(下)期末数学试卷一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.小明在电脑上1分钟录入汉字50个,小明的爸爸1分钟录入汉字30个.如果小明和爸爸各录入x 个汉字,那么爸爸比小明多用分钟.( )A. x 50−x30B. x30−x50C. 30x −50x D. 50x −30x2. 将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm ),刻度尺上的“1cm ”和“6cm ”分别对应数轴上“−1.2cm ”和“x cm ”,则x 的值为( )A. 3.8B. 2.8C. 4.8D. 63.在俄罗斯方块游戏中,已拼成的图案如图所示,现又出现一小方块拼图向下运动,你必须进行以下哪项操作,才能使所有的方块自动消失( )A. 向右平移1格B. 向右平移2格C. 向左平移1格D. 向左平移2格4. 有4张大小相同的正方形纸片,按图中的虚线剪开(同一图形中,作相同标记的两条线段相等),利用剪下来的两部分图形能拼成三角形和平行四边形的有( )A. 1个B. 2个C. 3个D. 4个5. 小明在桌上摆放小棒,他发现:两根小棒最多有1个交点,三根小棒最多有3个交点…,若n根小棒最多有300个交点,则n的值为( )A. 24个B. 25个C. 26个D. 27个6. 周末,小丽同学做了以下几件事情:第一件:小丽去文具店购买黑色水笔,支付费用与购买黑色水笔支数的关系:第二件:小丽去奶奶家吃饭,饭后,和奶奶聊一会天,然后再按原速度原路返回,小丽离家的距离与时间的关系;第三件:小丽和奶奶聊天时,了解到:奶奶用的手机是含有月租费的计费方式,奶奶每月支付的话费与通话时间的关系.用如图的函数图象刻画上述事情,排序正确的是( )A. (1)(2)(3)B. (2)(1)(3)C. (1)(3)(2)D. (2)(3)(1)二、填空题(本大题共6小题,共24.0分)7. 因式分解:4x2−1=.8. 12+3=______.9. 如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为2米,顶端距离地面1.5米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2.4米,则小巷的宽度为______ 米.10. 已知矩形纸片ABCD中,AB=8cm,AD=16cm,将此长方形纸片折叠,使点B与点D重合,折痕为EF,则折痕EF的长为______ cm.11.如图,小丽和小明下棋,小丽执白色棋子,小明执黑色棋子,若棋盘中心的白色棋子位置用(1,−2)表示,小明将第4枚黑色棋子放入棋盘后,所有棋子构成轴对称图形,则小明放的黑色棋子的位置可能是______ .12.如图,在平面直角坐标系中,A、B、C的坐标分别为(−3,0),(0,3),(3,0).一个电动玩具从原点O出发,第一次跳跃到点P1,使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称,….电动玩具照此规律跳下去,则点P2023的坐标是______ .三、计算题(本大题共1小题,共6.0分)13. 解方程:1x−2=1−x2−x−3.四、解答题(本大题共7小题,共66.0分。
2023-2024学年江苏省镇江市八年级下学期期末数学试卷及参考答案
2023-2024学年江苏省镇江市八年级下学期期末数学试卷全卷满分120分,考试时间100分钟.一、填空题(本大题共有12小题,每小题2分,共计24分.)1.若二次根式4−x 在实数范围内有意义,则x 的取值范围是 ▲ .2.已知在平行四边形ABCD 中,AB =3cm ,BC =4cm ,则平行四边形周长为 ▲ cm . 3.为了解端午节期间某市场里粽子的质量情况,适合的调查方式是 ▲ (填“普查”或“抽样调查”).4.当x = ▲ 时,分式112−−x x 的值为0.5.=÷312 ▲ .6.若点)1()2(21y B y A ,、,−−在反比例函数)0(>=k xk y 的图像上,则y 1与y 2的大小关系 是 ▲ .7.有六张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段,②角,③等边三角形,④平行四边形,⑤矩形,⑥菱形,将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是 ▲ .8.若菱形的两对角线长分别为a 、b ,且满足 02122=−++−b a a ,则该菱形的面积为▲ .9.函数xk y 3−=的图像与直线x y =没有交点,那么k 的取值范围是 ▲ . 10.若关于x分式方程223=−−x mx 的解是正数,则m 的取值范围是 ▲ . 11.如图,在平面直角坐标系中,已知点A (0,7),点B (1,0). 以AB 为边长作正方形ABCD ,点C 在反比例函数)大于,且00(x k xk y ≠=的图像上,将正方形沿x 轴的负半轴方向平移a 个单位长度后,点D 刚好落在该函数图像上,则a 的值是 ▲ .(第12题)A BEDPC(第11题 )12.如图,在菱形ABCD 中,∠ABC =60°,AB =4,点E 是边AD 上的动点,连接CE 且点P 是CE 的中点,连接AP 、DP ,则AP +DP 的最小值等于 ▲ .二、选择题(本大题共有6小题,每小题3分,共计18分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.在一个扇形统计图中,有一扇形的面积占整个圆面积的20%,则这个扇形的圆心角为( ▲ ) A .36°B .54°C .72°D .90°14.若m 、n 的值均扩大为原来的10倍,则下列分式的值不变的是( ▲ )A .mn 1+ B .mmn − C .2nm + D .2mm n −15.如图,将△ABC 绕点A 逆时针旋转130°,得到△ADE ,这时点B ,D ,C 恰好在同一条直线上,则∠ADE 的度数为( ▲ ) A .35° B .30°C .25°D .20°16.如图所示,小雅同学将一张正方形彩纸剪成四个部分,用其中的面积为27cm 2和108cm 2的两个小正方形分别做了纸飞机,原正方形边长为( ▲ ) A .38cmB .39cmC .310cmD .312cm17.如图,射线OA 、OB 分别表示买牛肉和买猪肉所需费用y (单位:元)与购买数量x (单位:千克)的关系,已知买牛肉每千克所需的费用比买猪肉每千克所需的费用的3倍少20元,设买猪肉每千克所需的费用为a 元,则可列方程为( ▲ ) A .203120300−=a a B .203120300+=a a C .a a 120203300=+ D .a a 120203300=−x/千克y/元300120ABO(第17题)27cm 2108cm 2(第16题)xAOCy(第18题)B(第15题)AB CED18.如图,四边形OACB 为平行四边形,其中,点A 在反比例函数)00(>>=x k xk y ,的图像上,点B在反比例函数)0(12>−=x xy 的图像上,点C 在x 轴的正半轴上,若四边形OACB 的面积为40,则k 的值是( ▲ ) A .28B .27C .26D .25三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.(本小题满分10分)计算:(1)213218−+−;(2))32)(32()35(2−++−.20.(本小题满分10分)(1)化简:)112(1212x x x x x −−÷+−+; (2)解方程:12122=−−−xx .21.(本小题满分8分)甲、乙两个机器人检测零件,甲比乙每小时多检测8个,甲检测400个零件所用的时间与乙检测240个零件所用的时间相等,求甲、乙两个机器人每小时各检测零件多少个?AE BCD(第24题)22.(本小题满分8分)某学校为了解在校生的体能素质情况,从全体八年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A 级:优秀,B 级:良好,C 级:及格,D 级:不及格),其中B 级占30%.解答下列问题:(1)除去题中文本和统计图中所给信息外,请再写出两条信息,并简要说明理由;信息1: ▲ ; 理由: ▲ ; 信息2: ▲ ; 理由: ▲ ;(2)如果从该校八年级学生中随机抽取一位学生,你预测抽到哪个等级的学生可能 性最大 ▲ .23.(本小题满分9分)自1997年以来,我国铁路一共经历了六次大提速.2004年第五次提速后,一列客车从A 地开往B 地,以120 km/h 的平均速度行驶需要5 h ,2007年又经历了第六次提速.(1)设第六次提速后该路段的平均速度为v ,全程运行的时间为t ,请写出t 与v 之间的函数表达式;(2)如果第六次提速后该路段的平均速度为200 km/h ,那么提速后全程运行需要多长时间? (3)如果全程运行时间控制在2.5 h 内,那么提速后的平均速度至少应为多少?24.(本小题满分9分)如图,点E 在平行四边形ABCD 的边AB 上.(1)只用无刻度直尺.......在CD 上作出点F ,使得AE =CF (保留作图痕迹); (2)依据你的作图,证明:AE =CF . C 级 B 级 体育测试各等级学生人数条形图 人数A 级 D 级等级6128(第22题)2 10 4 6 8 14 12(1)小明在学习矩形的时候发现:如图1,当点P 在矩形ABCD 的边BC 上时,点P 到4个顶点间的距离PA ,PB ,PC ,PD 之间满足PA 2+PC 2=PB 2+PD 2,请对小明发现的结论给出证明;(2)如图2,当点P 在矩形ABCD 内部或矩形ABCD 外部时,PA ,PB ,PC ,PD 之间的数量关系仍成立吗?如果成立,请加以证明(请选择点P 在矩形ABCD 内部或外部的一种情况即可),如果不成立,请说明理由;(3)在Rt △ABC 中,∠C =90°,AB =8,P 为平面内一点,PA =7,PC =3,则PB 长的取值范围是 ▲ (直接写出结果). (第25题)P图1ABDC图2ABCD阅读材料:在学习反比例函数的性质时,通过图像直观感受到反比例函数的图像关于原点对 称.小明利用代数方法进行了推导. 证明:在反比例函数x ky =)(0≠k 的图像上任取一点A (a ,ak ), 则点A 关于原点的对称点B 的坐标为(-a ,ak−). ∵k a k a =−⋅−)(, ∴点B 也在反比例函数xky =的图像上. ∵点A 是反比例函数x k y =上的任意一点,它关于原点对称的点都在反比例函数x k y =的图像上,∴反比例函数xky =的图像关于原点对称. 问题解决:下面我们来研究一个新函数xy 3=. (1)函数xy 3=的图像关于 ▲ 对称,请证明该结论; (2)已知点P (x ,y 1),Q (2,y 2)在函数xy 3=的图像上,且21y y <,则x 的取值范围是 ▲ .(3)已知函数2+=nx y )(0≠n ,当211−<>x x 或时,函数2+=nx y )(0≠n 的图像在函数xy 3=的图像的上方,求n 的范围.2023-2024学年江苏省镇江市八年级下学期期末数学试卷答案及评分标准一、填空题(本大题共有12小题,每小题2分,共计24分.) 1.4≥x 2.14 3.抽样调查 4.x = -1 5.2 6.y 1>y 2 7.218.1 9.k <3 10.m >4且m≠6 11.6 12.72 二、选择题(本大题共有6小题,每小题3分,共计18分.)13.C 14.B 15.C 16.B 17.D 18.A 三、解答题(本大题共有8小题,共计78分.) 19.(本小题满分10分)(1)213218−+−=122423−+− ………………………………3分 =1− ………………………………5分 (2))32)(32()35(2−++−341528−+−=………………………………4分 1529−=;………………………………5分 20.(本小题满分10分)(1))112(1212xx x x x −−÷+−+ ())1()1(2112−−−÷−+=x x x x x x ………………………………3分 ()1)1(112+−⋅−+=x x x x x ……………………………………4分1−=x x…………………………………………………5分 (2)解:12122=−+−x x …………………………1分 212−=+x …………………………3分 5=x …………………………4分检验:025≠−=x x 时,当,是原方程的解5=∴x ……………………5分21.(本小题满分8分)解:设乙每小时做x 个,则甲每小时做(x +8)个.240400=………………………………………3分解得:x =12,x +12=20……………………………6分 经检验:x =12是原方程的解……………………7分答:甲每小时做20个,乙每小时做12个.……………………8分 22.(本小题满分8分)(1)信息1: 总人数40人…………………………2分 理由: 12÷0.3=40……………………………3分信息2:A 级占15%……………………………5分 理由:406×100%=15%………………………6分 (其它答案参考给分)(2)C 级………………………………8分 23.(本小题满分9分)(1)解:120×5=600vt 600=……………………………3分 (2)当v =200时,3200600==t 答:提速后全程运行3小时.………………6分 (3)当t =2.5时,2405.2600==v 千米/小时 由函数增减性可知,速度至少为240千米/小时.………………9分24.(本小题满分9分)(1)连接AC 、BD 交于点O ……………………………2分 连接EO 并延长交CD 于F ………………………4分 (2)证明: ∵在平行四边形ABCD 中∴AB ∥CD ……………………………………5分 ∴∠EAO =∠FCO ,∠AEO =∠CFO ……………6分 ∵OA =OC ……………………………………7分 ∴△AEO ≌△CFO …………………………8分 ∴AE =CF ……………………………………9分A BDE FCO25.(本小题满分12分)(1)证明:∵在矩形ABCD 中∴∠B =∠D =90º,AB =CD ……………1分 在Rt △PAB 中 ,AB 2=PA 2-PB 2………2分 Rt △PCD 中,CD 2=PD 2-PC 2………3分 ∴PA 2-PB 2=PD 2-PC 2即PA 2+PC 2=PB 2+PD 2…………………4分 (2)当点P 在矩形ABCD 的内部时过P 作EF ∥AD ,分别交AB ,CD 于点E ,F 易证四边形ABCD 为矩形…………5分 由(1)可知:PA 2+PF 2=PE 2+PD 2 ① 同理:PB 2+PF 2=PE 2+PC 2 ②………6分 ①-②,PA 2-PB 2=PD 2-PC 2………7分 ∴PA 2+PC 2=PB 2+PD 2 ………………8分(当点P 在矩形ABCD 的外部时,参考以上过程给分.) (3)1≤PB ≤9 …………………12分(写对一半给2分) 26.(本小题满分12分)(1)y 轴…………1分证明:在xy 3=的图像上任取一点A (a ,a 3),则点A 关于y 轴的对称点B 坐标为(-a ,a3).………………2分 ∵把x =-a 代入x y 3=中,a y 3=,即点B 在xy 3=的图像上, ∴xy 3=的图像关于y 轴对称;……………4分 (2)x <-2或x >2; ………………………………7分(写对一个给2分) (3)Ⅰ:把x =1代入xy 3=中,得y =3,点(1,3) 再把x =1,y =3代入y =nx +2中,得n =1.…………………8分 Ⅱ:把21−=x 代入x y 3=中,得y =6,点(21−,6) 再把21−=x ,y =6代入y =nx +2中,得n =-8.……………9分 结合函数图像,得n >1或n <-8. ……………………12分。
新苏科初二数学下学期期末测试题及答案(共五套) 百度文库
新苏科初二数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC =2.如图,将△ABC 沿着它的中位线DE 折叠后,点A 落到点A ’,若∠C =120°,∠A =26°,则∠A ′DB 的度数是( )A .120°B .112°C .110°D .100°3.若顺次连接四边形ABCD 各边的中点得到一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形4.下列事件为必然事件的是( ) A .射击一次,中靶B .12人中至少有2人的生日在同一个月C .画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上5.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是( ) A .2000B .200C .20D .26.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠ 7.下列图形不是轴对称图形的是( )A .等腰三角形B .平行四边形C .线段D .正方形8.如图,是一组由菱形和矩形组成的图案,第1个图中菱形的面积为S (S 为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推…,则第2020个图中阴影部分的面积可以用含S 的代数式表示为( )(S ≥2且S 是正整数)A .20184S B .20194S C .20204S D .20214S9.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .410.如图,E 是正方形ABCD 边AB 延长线上一点,且BD =BE ,则∠E 的大小为( )A .15°B .22.5°C .30°D .45°二、填空题11.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m 2.12.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.13.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.14.如图,在□ABCD 中,AD=6,点E 、F 分别是BD 、CD 的中点,则EF=______.15.在平行四边形ABCD 中,对角线AC 与BD 相交于点O .要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AB =AD ,且AC =BD ;②AB ⊥AD ,且AC ⊥BD ;③AB ⊥AD ,且AB =AD ;④AB =BD ,且AB ⊥BD ;⑤OB =OC ,且OB ⊥OC .其中正确的是_____(填写序号). 16.在函数y =1xx 中,自变量x 的取值范围是_____. 17.如图,在矩形ABCD 中,AC 、BD 交于点O ,DE ⊥AC 于点E ,若∠AOD =110°,则∠CDE =________°.18.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图. 19.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是_____.20.如图,在□ABCD 中,AB =7,AD =11,DE 平分∠ADC ,则BE =__.三、解答题21.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?22.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB 边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.23.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.24.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?25.在矩形纸片ABCD中,AB=6,BC=8.(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,求BF 的长;(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.26.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?27.如图,已知一次函数y=x+2的图象与x轴、y轴分别交于点A,B两点,且与反比例函数y=mx的图象在第一象限交于点C,CD⊥x轴于点D,且OA=OD.(1)求点A的坐标和m的值;(2)点P是反比例函数y=mx在第一象限的图象上的动点,若S△CDP=2,求点P的坐标.28.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为.(不需要证明);(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可. 【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意; C.∵//AB CD ∴180C D ∠+∠=︒ ∵A C ∠=∠ ∴180A D +=︒∠∠ ∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD 为等腰梯形,故本选项符合题意. 故选:D 【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.2.B解析:B 【分析】根据轴对称和平行线的性质,可得∠A 'DE =∠B ,又根据∠C =120°,∠A =26°可求出∠B 的值,继而求出答案. 【详解】解:由题意得:DE ∥BC ,∴∠A 'DE =∠B =180°﹣120°﹣26°=34°, ∴∠BDE =180°﹣∠B =146°,故∠A 'DB =∠BDE ﹣∠A 'DE =146°﹣34°=112°. 故选:B . 【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.3.D解析:D 【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得. 【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH 四边形EFGH 是矩形 90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥ BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形 故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.4.C解析:C【分析】必然事件就是一定会发生的事件,依据定义即可判断.【详解】解:A.射击一次,中靶是随机事件;B.12人中至少有2人的生日在同一个月是随机事件;C.画一个三角形,其内角和是180°是必然事件;D.掷一枚质地均匀的硬币,正面朝上是随机事件;故选:C.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.B解析:B【分析】某校共有2000名学生,按10%的比例抽样,用总数乘以10%即可得出样本容量【详解】解:2000×10%=200,故样本容量是200.故选:B.【点睛】本题考查了样本容量,一个样本包括的个体数量叫做样本容量,等于总数乘以抽取的比例.6.D解析:D【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确∠=∠,所以选项D正确;再根据∠EBC再根据等腰三角形的性质即可得出A EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 判断选项B 不一定正确即可. 【详解】解:∵ABC ∆绕点C 顺时针旋转得到DEC ∆, ∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180ACD 2∠︒-;∠EBC=∠BEC=180BCE2∠︒-, ∴选项A 、C 不一定正确 ∴∠A =∠EBC∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090, ∴选项B 不一定正确; 故选D . 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.7.B解析:B 【分析】根据轴对称图形的概念判断即可. 【详解】等腰三角形是轴对称图形,故A 错误; 平行四边形不是轴对称图形,故B 正确; 线段是轴对称图形,故C 错误; 正方形是轴对称图形,故D 错误; 故答案为:B. 【点睛】本题主要考查了轴对称图形的判断,针对平常所熟悉的图形的理解进行分析,要注意平行四边形的特殊.8.B解析:B 【分析】观察图形发现第2个图形中的阴影部分的面积为S 4,第3个阴影部分的面积为16S,依此类推,得到第n 个图形的阴影部分的面积即可. 【详解】解:观察图形发现:第2个图形中的阴影部分的面积为S4,第3个图形中的阴影部分的面积为16S , …第n 个图形中的阴影部分的面积为14n S -,故第2020个图中阴影部分的面积可以用含S 的代数式表示为20194S .故选:B . 【点睛】本题考查了图形的变化类问题,解题的关键是仔细的观察图形,找到规律用通项公式表示出来.9.A解析:A 【分析】根据菱形性质求出AO =4,OB =3,∠AOB =90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可. 【详解】解:∵四边形ABCD 是菱形,设AB,CD 交于O 点, ∴AO =OC ,BO =OD ,AC ⊥BD , ∵AC =8,DB =6,∴AO =4,OB =3,∠AOB =90°, 由勾股定理得:AB =2234+=5, ∵S 菱形ABCD =12×AC×BD =AB×DH , ∴12×8×6=5×DH , ∴DH =245, 故选A .【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC×BD =AB×DH 是解此题的关键.10.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.二、填空题11.1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:1解析:1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:112.20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,解析:20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.13.【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1解析:【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.14.3【解析】【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵点E. F分别是BD、CD的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点,116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.15.①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD 是平行四边形,AB =AD ,∴四边形ABCD 是菱形,又∵AC =BD ,∴四边形ABCD 是正方解析:①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD 是平行四边形,AB =AD ,∴四边形ABCD 是菱形,又∵AC =BD ,∴四边形ABCD 是正方形,①正确;∵四边形ABCD 是平行四边形,AB ⊥AD ,∴四边形ABCD 是矩形,又∵AC ⊥BD ,∴四边形ABCD 是正方形,②正确;∵四边形ABCD 是平行四边形,AB ⊥AD ,∴四边形ABCD 是矩形,又∵AB =AD ,∴四边形ABCD 是正方形,③正确;④AB =BD ,且AB ⊥BD ,无法得出四边形ABCD 是正方形,故④错误;∵四边形ABCD 是平行四边形,OB =OC ,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键.16.x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必解析:x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.17.35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是解析:35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE 的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=∠OCD=55°,又∵DE⊥AC,∴∠CDE=180°-∠OCD-∠DEC=180°-55°-90°=35°,故答案为:35.【点睛】本题考查了矩形的性质,三角形内角和,三角形外角的性质,掌握知识点是解题关键.18.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.19.1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=解析:1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=△BOC面积=12×2×1=1.故答案为:1.【点睛】本题考查正方形的性质以及全等三角形的判定,根据全等三角形的性质将阴影部分的面积转化为△BOC面积是解题的关键.20.4【解析】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AB=7,AD=11,解析:4【解析】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD 中,AB=7,AD=11,∴CD=AB=7,BC=AD=11,∴BE=BC-CE=11-7=4.三、解答题21.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元, 依题意,得:10012010.8x x-=, 解得:x =5, 经检验,x =5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.22.(1)483y x =-+;见解析;(2)()6,5D ;见解析;(3)12或694,见解析. 【分析】(1)利用矩形的性质,求出点A 、C 的坐标,再用待定系数法即可求解;(2)Rt △AED 中,由勾股定理得:222AE DE AD +=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC 时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】 解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.23.(1)见解析;(2)152【分析】(1)由矩形的性质得到AB ∥CD ,再根据平行线的性质得到∠DFO=∠BEO 再证明△DOF ≌△BOE ,根据全等三角形的性质得到DF=BE ,从而得到四边形BEDF 是平行四边形;(2)先证明四边形BEDF 是菱形,再得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理求解即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO .在△DOF 和△BOE 中 DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DOF ≌△BOE(AAS ).∴DF =BE .又∵DF ∥BE ,∴四边形BEDF 是平行四边形.(2)解:∵DE =DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形.∴DE =BE ,EF ⊥BD ,OE =OF .设AE =x ,则DE =BE =8-x ,在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2,∴x2+62=(8-x)2.解得x=74.∴DE=8-74=254.在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2,∴BD=10.∴OD=12BD=5.在Rt△DOE中,根据勾股定理,有DE2-OD2=OE2,∴OE=154.∴EF=2OE=152.【点睛】考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.24.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.根据题意得12000x=264002x-10解得x=120.经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.25.(1)25 4(2)15 2【分析】(1)根据折叠的性质可得∠ADB=∠EDB,再根据两直线平行,内错角相等可得∠ADB=∠DBC,然后求出∠FBD=∠FDB,根据等角对等边可得BF=DF,设BF=x,表示出CF,在Rt△CDF中,利用勾股定理列出方程求解即可;(2)根据折叠的性质可得DH=BH,设BH=DH=x,表示出CH,然后在Rt△CDH中,利用勾股定理列出方程求出x,再连接BD、BG,根据翻折的性质可得【详解】(1) 由折叠得,∠ADB=∠EDB ,∵矩形ABCD 的对边AD ∥BC ,∴∠ADB=∠DBC ,∴∠FBD=∠FDB ,∴BF=DF ,设BF=x ,则CF=8−x ,在Rt △CDF 中,222+=CD CF DF即2226(8)x x +-=解得x=254故答案:254(2)由折叠得,DH=BH ,设BH=DH=x ,则CH=8−x ,在Rt △CDH 中, 222+=CD CH DH即2226(8)x x +-=解得x=254连接BD 、BG ,由翻折的性质可得,BG=DG ,∠BHG=∠DHG ,∵矩形ABCD 的边AD ∥BC ,∴∠BHG=∠DGH ,∴∠DHG=∠DGH ,∴DH=DG ,∴BH=DH=DG=BG ,∴四边形BHDG 是菱形,在Rt △BCD 中, S 菱形BHDG =12BD ⋅GH=BH ⋅CD , 即12×10⋅GH=254×6,解得GH=152.故答案:15 2【点睛】本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.26.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.27.(1)(-2,0);8(2)(1,8)或(3,83)【分析】(1)根据待定系数法就可以求出函数的解析式;(2)1||2CDP P CS CD x x=⨯⨯-△,即可求解.【详解】解:(1)对于一次函数2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为(2,0)-、(0,2),OA OD =,故点(2,0)D ,则点C 的横坐标为2,当2x =时,24y x =+=,故点(2,4)C ,将点C 的坐标代入反比例函数表达式得:42m =, 解得:8m =,故点A 的坐标为(2,0)-,8m =;(2)1142222CDP P C P S CD x x x =⨯⨯-=⨯⨯-=, 解得:3P x =或1,故点P 的坐标为(1,8)或8(3,)3.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.28.(1)AE+CF=EF ;(2)如图2,(1)中结论成立,即AE+CF=EF ;如图3,(1)中结论不成立,AE=EF+CF .【分析】(1)根据题意易得△ABE ≌△CBF ,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC 到H ,使CH=AE ,连接BH ,根据题意可得△BCH ≌△BAE ,则有BH=BE ,∠CBH=∠ABE ,进而可证△HBF ≌△EBF ,推出HF=EF ,最后根据线段的等量关系可求解;如图3,在AE 上截取AQ=CF ,连接BQ ,根据题意易得△BCF ≌△BAQ ,推出BF=BQ ,∠CBF=∠ABQ ,进而可证△FBE ≌△QBE ,推出EF=QE 即可.【详解】解:(1)如图1,AE+CF=EF ,理由如下:∵AB ⊥AD ,BC ⊥CD ,∴∠A=∠C=90°,∵AB=BC ,AE=CF ,∴△ABE ≌△CBF (SAS ),∴∠ABE=∠CBF ,BE=BF ,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°, ∴11,22AE BE CF BF ==, ∵∠MBN=60°,BE=BF ,∴△BEF 是等边三角形,∴1122AE CF BE BF BE EF +=+==,故答案为AE+CF=EF;(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。
2019-2020学年江苏省镇江市八年级(下)期末数学试卷 (含答案解析)
2019-2020学年江苏省镇江市八年级(下)期末数学试卷一、选择题(本大题共6小题,共18.0分)1.下列是中心对称图形但不是轴对称图形的是()A. B. C. D.2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是12③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A. ①②③B. ①②④C. ②③④D. ②④3.如果把a+b4a2的a和b都扩大为原来的2倍,那么这个代数式的值()A. 不变B. 扩大2倍C. 缩小到原来的14D. 缩小到原来的124.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度p也随之改变,ρ与V在一定范围内满足ρ=mV,它的图象如图所示,则该气体的质量m为()A. 1.4kgB. 5kgC. 7kgD. 6.4kg5.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=−2x的图象上,则()A. a<b<0B. b<a<0C. a<0<bD. b<0<a6.甲、乙两名同学同时从学校出发前往火车站,已知学校到火车站的路程是a(km),甲骑自行车经过b(ℎ)到达,乙骑摩托车,比甲提前20min到达火车站,则甲平均速度是乙平均速度的()A. ab B. 3b2C. 3b−13bD. 以上均错二、填空题(本大题共12小题,共24.0分)7.若√1−2x在实数范围内有意义,则x的取值范围是______.8. “抛掷一枚质地均匀的硬币,正面向上”是________事件(填“必然”或“随机”或“不可能”).9. 计算:√(−2015)2= ______ . 10. 若最简二次根式√2x −1与√3是同类二次根式,则x =__.11. 在一次数学测试中,某班40名学生的成绩分为五组,第一组到第四组的频数分别为6,8,10,8,则第五组频率是______.12. 一个菱形的两条对角线长分别为12cm 、16cm ,这个菱形的周长=________ cm .13. 如图,在▱ABCD 的边AD 上截取DE =DC ,若∠ECB =65°,则∠A 的度数是______ .14. 反比例函数y =(m +1)x m 2−5,当x >0时,y 随x 的增大而增大,则m =_____;.15. 甲、乙两组学生去距学校4.5千米的敬老院开展慰问活动,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知步行速度是骑自行车速度的13,设步行速度为x 千米/时,则根据题意可以列出方程______.16. 函数y =x +5的图象与反比例函数y =−2x 的图象的一个交点为A(a,b),则1a −1b =______. 17. 若方程x−7x−6−k 6−x =7的解为正数,则k 的范围是__.18. 如图,正方形ABCD 的顶点B 在x 轴上,点A 、点C 在双曲线y =kx (k >0,x >0)上,若直线BC 的解析式为y =12x −2,则k 的值为___。
最新苏科初二数学下学期期末考试试题百度文库
最新苏科初二数学下学期期末考试试题百度文库一、选择题1.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC .其中一定能判断这个四边形是平行四边形的条件共有A .1组B .2组C .3组D .4组 2.满足下列条件的四边形,不一定是平行四边形的是( ) A .两组对边分别平行B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等 3.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①∠ABE =∠DCE ;②∠AHB =∠EHD ;③S △BHE =S △CHD ;④AG ⊥BE .其中正确的是( )A .①③B .①②③④C .①②③D .①③④4.下列式子为最简二次根式的是( )A .22a b +B .2aC .12aD .12 5.如果a =32+,b =3﹣2,那么a 与b 的关系是( ) A .a +b =0 B .a =b C .a =1b D .a >b6.如图,在平面直角坐标系中,菱形OABC 的顶点A 的坐标为(4,3),点D 是边OC 上的一点,点E 在直线OB 上,连接DE 、CE ,则DE+CE 的最小值为( )A .5B 7+1C .5D .2457.已知反比例函3y x =-,下列结论中不正确的是( ) A .图像经过点(1,3)- B .图像在第二、四象限C .当1x >时,30y <<D .当0x <,y 随着x 的增大而减小8.下列分式中,属于最简分式的是( )A .62aB .2x xC .11x x --D .21x x + 9.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是( ) A .2000 B .200 C .20 D .210.下列调查中,最适宜采用全面调查方式的是( )A .调查某市成年人的学历水平B .调查某批次日光灯的使用寿命C .调查市场上矿泉水的质量情况D .了解某个班级学生的视力情况二、填空题11.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 是AB 上的任意一点,作PD ⊥AC 于点D ,PE ⊥CB 于点E ,连结DE ,则DE 的最小值为_____.12.在英文单词tomato 中,字母o 出现的频数是_____.13.小明用a 元钱去购买某种练习本.这种练习本原价每本b 元(b >1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.14.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.15.已知()22221140ab a b a b +=≠+,则代数式20192020b a a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为_____.16.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.17.如图,AB ∥CD ,AB =7,CD =3,M 、N 分别是AC 和BD 的中点,则MN 的长度_____.18. 如图,在ABCD 中,已知8AD cm =,6AB cm =,DE 平分ADC ∠,交BC 边于点E ,则BE = ___________ cm .19.如图,已知22AB =,C 为线段AB 上的一个动点,分别以AC ,CB 为边在AB 的同侧作菱形ACED 和菱形CBGF ,点C ,E ,F 在一条直线上,120D ∠=︒,P 、Q 分别是对角线AE ,BF 的中点,当点C 在线段AB 上移动时,线段PQ 的最小值为________.20.▱ABCD 的周长是32cm ,∠ABC 的平分线交AD 所在直线于点E ,且AE :ED =3:2,则AB 的长为_____.三、解答题21.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标.22.已知23x =23y =-求22x xy y ++的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年第二学期期末考试八年级数学试卷本试卷共4页,共26题.全卷满分120分,考试时间90分钟.注意事项:请将答案填写在答题纸上.一、填空题(本大题共有12小题,每小题2分,共计24分.)1.“明天的太阳从西方升起”这个事件属于 ▲ 事件.(填“必然”、“不可能”或“随机”). 2.当x ▲ 时,分式32+-x x 无意义. 3.计算aa a -+-111的结果是 ▲ . 4.要使得二次根式3-x 有意义,则x 的取值范围是 ▲ .5.计算2(32)= ▲ .6.如图,平行四边形ABCD 中,AB =5,AD =3,AE 平分∠DAB ,交BC 的延长线于F 点,则CF = ▲ . 7.在12,18, 20中与2是同类二次根式的是 ▲ . 8.反比例函数xk y 5-=的图像有一支位于第一象限,则实数k 的取值范围是 ▲ . 9.如图,为测量池塘边A 、B 两点的距离,小明在池塘的一侧选取一点O ,测得OA 、OB 的中点分别是点D 、E ,且DE =14米,则A 、B 间的距离是 ▲ 米.10.关于x 的分式方程02142=+--x x m 有增根,则m 的取值是 ▲ . 11.已知114x y,则代数式2722x xy yy x xy的值为 ▲ .12.如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 ▲ . 二、选择题(本大题共有6小题,每小题3分,共计18分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )(第6题)(第9题)(第12题)BFA DB ′ECA B C D 14.下列调查中,适合采用普查方式的是( ▲ )A .对某河流水质情况的调查B .对中秋节期间市场上月饼质量情况调查C .对某班50名同学身高情况的调查D .对某类烟花爆竹燃放安全情况的调查 15.顺次连接矩形各边中点所得的中点四边形一定是( ▲ )A. 平行四边形B. 菱形C. 矩形D. 正方形 16.下列计算正确的是( ▲ )A.325B.2312⨯=C. 1(5)5 D. 2(31)217.若0ab,则函数y ax 与函数byx在同一坐标系中的大致图像可能是( ▲ ) A . B . C . D .18.定义新运算:⎪⎩⎪⎨⎧≠>-≤-=*)0,( )( 1b b a ba b a a b a ,若函数x y *=3的图像与一次函数yx m 图像有2个交点,则m 的取值范围为( ▲ )A. 52≤<mB. 52<<mC. 2<m 或5> mD. 2<m 或5≥m三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本小题满分15分)(1)化简:2211a a a a ; (2362242;(3)0)21(2143124--⨯-⨯. 20.(本小题满分10分) (1)解方程:5311x x ; (2)解方程:2216124x x x.21.(本小题满分6分)1201101009080706060分以下分数频数605040302010先化简,再求值:34)232(2--⨯-+-x x x x x ,其中15x 且x 是整数,请你选取一个合适的x 的值代入求值. 22.(本小题满分8分)如图,四边形ABCD 是平行四边形,点E 、F 分别是BC 和AD 的中点. 求证:(1)ABE ∆≌CDF ∆.(2)四边形AECF 是平行四边形.23.(本小题满分8分)某课题组为了解全市八年级学生对数学知识的掌握情况,在一次数学检测中,从全市24000名八年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数 频率 x <6020 0.10 60≤x <70 28 0.14 70≤x <80 540.27 80≤x <90 a0.20 90≤x <100 24 0.12100≤x <110 18 b110≤x ≤120160.08(1)随机抽取部分学生的总人数是 人,表格中的b = . (2)请补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24000名八年级考生数学成绩为优秀的学生约有多少名?24.(本小题满分8分)某街道改建指挥部对某路段工程进行招标,从标书得知:甲单独完成这项工程所需天数是乙单独完成这项工程所需天数的32,若甲先做10天,剩下由甲乙合作30天完成. (1)求甲乙两队单独完成各需多少天?(2)已知甲队,乙队每天的施工费用分别为0.84万元,0.56万元,工程预算费用为50万元,为缩短工期减少对住户影响,安排甲乙两队合作完成,问工程预算的施工费用是否够用?若不够,需追加预算多少万元?请给出判断并说明理由.25.(本小题满分10分)如图,ABC ∆和DEF ∆是两个边长都是4cm 的等边三角形,且点B 、D 、C 、E 都在直线MN 上,已知MN =20cm .开始点B 与M 重合,点E 与N 重合,连接AD 、CF . (1)判断四边形ACFD 的形状,并说明理由;(2)若DEF ∆以1cm/s 的速度从N 到M 的移动,同时ABC ∆以3cm/s 的速度从M 到N 的移动,当点C 到达N 点时,立刻以原速返回,直到点B 再次回到M 点时,两个三角形停止运动.假设ABC ∆运动的时间为t (s )①问t 为何值时,四边形ACFD 第一次成为菱形?并说明理由.②问移动过程中,四边形ACFD 可能是矩形吗?若可能,求出t 的值;若不可能,请说明理由.26.(本小题满分13分)小华以前在学习一次函数的时候,通过研究发现:将一次函数)0( ≠=k kx y 的图像向右平移m 个单位,再向上平移n 个单位后(0,0m n ),得到的新的函数表达式为()y k x m n ;类似地,将反比例函数)0(≠=k xk y 的图像向右平移m 个单位,再向上平移n 个单位后(0,0mn ),得到的新的函数表达式为k yn x m,请运用这一知识解决问题: (1)直接运用:函数331yx 的图像可以由函数3y x的图像向右平移_____个单位,再向上平移_____个单位得到,其对称中心的坐标是_________________. (2)理解运用:如图直线l 和双曲线交于点A 、B ,其中点A 坐标是(2,2)①求出双曲线的函数表达式;②将直线l 向左平移2个单位,再向下平移3个单位,求出平移后的直线表达式;③直接写出不等式4312x x 的解集.(3)灵活应用:小华经过研究发现函数62yx的图像也是双曲线,已知点P、Q分别是两支上的两个动点,分别过点P、Q作x轴的垂线,垂足分别为M、N,问x轴上是否存在一个点C,使得△PMC和△QNC的面积相等,若存在求出点C坐标及相等的面积,若不存在请说明理由.2015-2016学年第二学期期末考试 八年级数学参考答案及评分标准一、填空题(本大题共有12小题,每小题2分,共计24分.)1.不可能 2.3- 3.1-4.3x ≥ 5.526- 6.27.18 8.5k > 9.28 10.0或4- 11.12- 12.16或45 二、选择题(本大题共有6小题,每小题3分,共计18分.) 13.D 14.C 15.B 16.B 17.A 18.D三、解答题(本大题共有8小题,共计78分.)19.(1)2211a a a a (2)362242=)1)(1(12-+⨯+a a a a a '662 6 (2)' (51)a a '0 (5)(3)0)21(2143124--⨯-⨯=1-224-22 ⨯..................4分 '1.. (5)20.(1)5311x x (2)2216124x x x解:'5(1)3(1)....................2x x 解:22'(2)16 4....................2x x'4 (4x)'2 (4x)检验:4x原方程的解'....5 检验:2x 是增根,原方程无解' (5)21.34)232(2--⨯-+-x x x x x =3)2)(2(23--+⨯--x x x x x '2 (4x)由题意得'4 (5x)当4x时,原式='4 2 (6)22.(1)∵四边形ABCD 是平行四边形∴AB =CD ;∠B =∠D ;AD =BC …………………1分 ∵E 、F 分别是BC 和AD 的中点∴BE =12BC ;DF =12AD ,∴BE =DF …………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧=∠=∠=DF BE D B CD AB △ABE ≌△CDF (SAS)……………………………4分 (2)∵四边形ABCD 是平行四边形∴AD //BC ;AD =BC∵E 、F 分别是BC 和AD 的中点∴EC =12B C ;AF =12AD ∴BE =DF 且BE //DF …………………7分∴四边形AECF 是平行四边形…………………8分23.(1)200;0.09………………………4分 (2)图形正确…………………………6分 (3)(0.120.080.09)240006960………………8分24.(1)设甲乙单独完成各需2x 、3x 天,根据题意得:4030123x x+=……………………………………………………1分 解之得:30x =.经检验:30x =是原方程的解且符合题意……………3分 260x =、390x =答:甲单独完成要60天,乙单独完成要90天。
……………………4分 (2)111()366090÷+=,乙合作36天完成任务. 36(0.840.56)36 1.450.4⨯+=⨯=(万元)…………………6分答:预算的施工费用不够,还需追加0.4万元 ………………8分25.(1)平行四边形………………1分说理正确………………………………3分 (2)①当B 和D 重合时∵四边形ACFD 是平行四边形,且此时AD =DF ,∴四边形ACFD 为菱形……………………………………………5分(204)(31)4t =-÷+=…………………6分(2)②当B 和E 重合时,四边形ACFD 为矩形 当1603t <≤时202(4)3t t t -+-= 5t =………………………………………8分 当163233t <≤时3(20)2(4)3t t t -+-= 6t =………………………………………10分26.(1)1;3;(1,3)………………………………3分(2)①设双曲线为(0)ky k x=≠,将(2,2)代入得: 4k =∴双曲线表达式为4y x=…………………………5分 ②设原直线l 为(0)y mx m =≠,将(2,2)代入得:1m =∴原直线l 表达式为y x =…………………………7分 平移后直线表达式(2)31y x x =+-=-……………8分 ③4x <-或20x -<<……………………………10分 (3)函数62yx 可以看做是由数6y x的图像向右平移2个单位得到的…11分 ∴点C 坐标为(2,0),相等的面积为36-21=⨯……………13分。