植物学 简答题
大学植物学考试题及答案

大学植物学考试题及答案一、选择题(每题2分,共20分)1. 植物学是研究什么的科学?A. 植物的分类B. 植物的生理C. 植物的生态D. 植物的形态和结构答案:D2. 以下哪项不是植物的主要组织?A. 保护组织B. 营养组织C. 输导组织D. 神经组织答案:D3. 植物的光合作用主要发生在哪个部位?A. 根B. 茎C. 叶D. 花答案:C4. 植物的生殖方式包括有性和无性两种,以下哪种属于无性生殖?A. 种子繁殖B. 孢子繁殖C. 嫁接繁殖D. 扦插繁殖答案:D5. 以下哪种植物属于被子植物?A. 松树B. 蕨类C. 苔藓D. 银杏答案:A6. 植物细胞与动物细胞的主要区别在于植物细胞具有什么?A. 细胞核B. 线粒体C. 叶绿体D. 细胞壁答案:D7. 植物的蒸腾作用主要发生在哪个部位?A. 根B. 茎C. 叶D. 花答案:C8. 以下哪种植物属于单子叶植物?A. 玉米B. 豆科植物C. 百合D. 向日葵答案:A9. 植物的光周期现象是指什么?A. 植物对光的敏感性B. 植物对光周期的反应C. 植物对温度的反应D. 植物对湿度的反应答案:B10. 植物的休眠期通常发生在哪个季节?A. 春季B. 夏季C. 秋季D. 冬季答案:D二、填空题(每空1分,共20分)1. 植物的______系统包括根、茎、叶,主要负责植物的营养吸收和光合作用。
答案:营养2. 植物的______系统包括花、果实和种子,主要负责植物的繁殖。
答案:生殖3. 植物的______组织具有保护作用,如表皮细胞。
答案:保护4. 植物的______组织具有储存营养的功能,如淀粉。
答案:营养5. 植物的______组织负责水分和养分的运输,如导管和筛管。
答案:输导6. 植物的______是植物体内最小的结构和功能单位。
答案:细胞7. 植物的______是植物体内最大的细胞器,主要负责光合作用。
答案:叶绿体8. 植物的______是植物体内的一种特殊细胞,具有分裂和分化的能力。
植物学名词解释简答题

名词解释1 原丝体大多数苔藓植物的孢子萌发后首先产生一个有分枝含有叶绿体的丝状体或片状体,称为原丝体.2 原叶体蕨类植物的配子体又叫原叶体;原叶体上具精于器或颈卵器;3 核相交替在植物生活史中,具单倍体核相和二倍体核相的交替现象,称之为核相交替;4 世代交替具二倍体的孢子体世代和单倍体的配子体世代互相交替的观象,称之为世代交替;世代交替有同形世代交替与异形世代交替之分;生活史中具核相交替的不一定有世代交替,有世代交替的就一定有核相交替;5 个体发育植物种类的每一个体都有发生、生长、发育以至成热的过程,这一过程称为个体发育;6 系统发育某一类群的形成和发展过程,称之为系统发育;个体发育与系统发育是推动生物进化的两种不可分割的过程,系统发育建立在个体发育的基础之上,而个体发育又是系统发育的环节;7 无性世代在植物生活史中,从受精卵或合子开始,由合子或受精卵发育成长为孢子体,到孢子体产生孢子母细胞为止的时期,称为无性世代或孢子体世代,,从核相方面来看,是具二倍体染色体的时期8 有性世代从孢子体减数分裂产生孢子开始,由孢子发育成长为配子体,到配子体产生两性配子为止的时期,称为有性世代或配子体世代,从核相方面看,是具单倍体染色体的时期;在具世代交替生活史中.无性世代和有性世代交替出现;9 载色体植物细胞中含有色素的质体;主要指藻类植物细胞中含有叶绿素的大型和复杂的结构;10 蛋白核某些藻类植物载色体上的一种特殊结构,有一蛋白质的核心部分,外围以若干淀粉小块,这是藻类植物蛋白质和淀粉的一种贮藏形态;11 卵式生殖配子在形状、大小和结构上都不相同,大而无鞭毛不能运动的为卵,小而有鞭毛能运动的为精子,精子游动到卵相结合为卵式生殖;12 异形胞在一些蓝藻的藻丝上常含有特殊细胞,叫异形胞,由营养细胞形成的,一般比营养细胞大,具有营养繁殖和直接固定大气中游离氮等功能;13 球果球果由大孢子叶球发育而来的球状结构,球果由多数种鳞和苞鳞及种子组成,是裸子植物松柏纲特有的结构;14 种鳞在松柏纲植物中,经传粉受精后,珠鳞发育成为种鳞;球果成熟后:种鳞木质化或成肉质,展开或不展开;15 孑遗植物孑遗植物曾繁盛于某一地质时期.种类很多,分布很广,但到较新时代或现代,则大为衰退,只一、二种孤独地生存于个别地区,并有日趋绝灭之势的植物,被称为孑遗植物,如我国的银杏、水杉和仅产于美国的北美红杉;16 活化石活化石孑遗植物常有大量化石,故常把现存的孑遗植物称为“活化石”;17 双名法由林萘创立的植物命名方法,每一种植物的学名都由两个拉丁词或拉丁化形式的字构成,第一个词是属名,名词,第一个字母大写;第二个词是种加词,形容词,所有的字母均小写;一个完整学名还需加上最早给这个植物命名的命名人姓氏缩写,即学名=属名+种加词+命名人姓氏缩写;18 接合生殖绿藻门接合藻纲特有的有性生殖现象;成熟期的藻体相互靠近,对应部分细胞壁形成突起并接合,接合部分的壁融合后形成接合管,同时接合管两端原生质体浓缩形成配子,由一方流入另一方细胞融合为合子;在适宜条件下,壁消失放出合子,合子萌发产生新藻体;如水绵;19 复大孢子硅藻以细胞分裂为主,新形成的两个硅藻中,一个与母体等大,而另一个则较母体为小;如此分裂下去,多数个体将越来越小;当细胞分裂缩小到一定程度时,即可通过有性生殖产生复大孢子,将细胞的体积恢复到该种细胞的正常大小;20 果孢某些红藻的雌性配子囊,其膨大的基部含有具卵功能的核;21 颈卵器苔藓植物的雌性生殖器官,外形如瓶状,上部细狭,称颈部,下部膨大称腹部;颈部的外壁由一层不孕细胞构成,中间的颈沟内有一串颈沟细胞,腹部的外壁由多层不孕细胞构成,其内有1个腹沟细胞和1个大型的卵细胞;蕨类植物和裸子植物也有颈卵器;22 孢蒴苔藓植物孢子体顶端的孢子囊,其结构因植物种类不同而异;23 物种是生物分类的基本单位;是具有一定的形态和生理特性,个体间能进行自然交配并产生正常可育的后代;不同种的个体杂交,一般不能产生正常可育的后代,存在生殖隔离;一个物种是由1至无数个居群组成的,居群由数个到无数个个体组成,物种是生物进化与自然选择的产物;24 同型叶有些蕨类的营养叶和孢子叶是不分的,形状相同而且能进行光合作用的称为同型叶;25 异型叶有些蕨类的营养叶和孢子叶形状完全不同,称异型叶;26 孢子同型蕨类植物产生的孢子大小相同的,称为孢子同型;27 孢子异型蕨类植物产生的孢子大小不同的,即有大孢子和小孢子之分的为孢子异型;28 大型叶大型叶有叶柄和叶隙,具多分枝的叶脉,是由多数顶枝经过扁化而形成的;29 小型叶蕨类植物的小型叶为原始类型,只有1个单一的不分枝的叶脉,无叶隙和叶柄,是由茎的表皮突出形成的;30 孢子叶穗在小型叶蕨类中孢子囊单生在孢子叶的近轴面的叶腋或叶的基部,孢子叶通常集生在枝的顶端,形成球状或穗状,称孢子叶穗或孢子叶球;31 孢子囊群较进化的真蕨类,孢子囊常生在孢子叶的背面、边缘或集生在一个特化的孢子叶上,往往由多数孢子囊聚集成群,称孢子囊群或孢子囊堆;33 花药瓣裂樟科植物的花药在成熟时,在花药上裂成4瓣来释放花粉,这样的开裂方式叫花药瓣裂;34 花药孔裂茄科等植物的花药在成熟时,在花药顶端裂成孔来释放花粉,这样的开裂方式叫花药孔裂;35 二体雄蕊一朵花中的雄蕊,九个花丝联合,一个单生,呈两束;如蝶形花亚科植物;36单体雄蕊雄蕊多数,花药分离,花丝彼此联合成一束或管状,这样的雄蕊称单体雄蕊;是锦葵科的主要特征之一;37 多体雄蕊一朵花中的雄蕊花丝联合为多束;如蓖麻;38 聚药雄蕊为雄蕊的连合方式之一;雄蕊的花丝分离而花药连合,称为聚药雄蕊,是菊科的一大进化特征,是菊科植物对虫媒传粉的一种适应;39 合蕊柱兰科植物的花中1或2枚雄蕊和花柱包括柱头完全愈合而成一柱体,称合蕊柱;合蕊柱通常半圆柱形,基部有时延伸为蕊柱脚,顶端常有药床;合蕊柱是兰科植物最突出的特征;40 蝶形花冠为不整齐离瓣花冠的一种;其花瓣5片,形状、大小不一,且呈下降覆瓦状排列,即最上方1片最大,为旗瓣,位于最外方;最下方两枚最小,为龙骨瓣,位于最内方,二龙骨瓣常上部合生;左右两侧的两瓣较小,称翼瓣;蝶形花冠由旗瓣、翼瓣、龙骨瓣按下降覆瓦状排列的两侧对称的离瓣花冠,是蝶形花科的主要特征之一;41 假蝶形花冠最上方1片最小,位于最内方,最下面两片离生而最大,位于最外方,花瓣呈上升覆瓦状排列,是苏木科的主要特征之一;42 十字形花冠十字花科植物花冠由4片花瓣组成,排列成十字形,称为十字形花冠,如白菜、萝卜等;43 唇形花冠玄参科、唇形科等科的植物,花冠常呈二唇形,裂片4-5,合生,叫唇形花冠,如地黄、金鱼草、薄荷;44 舌状花冠是菊科头状花序中一种花冠成舌状,两侧对称的小花;菊科舌状花亚科植物的头状花序全由舌状花组成;管状花亚科部分植物头状花序的边缘花也是舌状花;45 筒状花冠菊科管状花亚科植物中间的盘花是筒状花冠;是一种辐射对称,花瓣合生的小花;46 托叶鞘蓼科植物特征之一,变态后的托叶形成鞘状,抱茎,并且变态托叶为干膜质,即是膜质托叶鞘;47 托叶环痕木兰科植物托叶大,包被幼芽,脱落后在节上留下环状托叶痕;48 箨叶竹类杆上的变形叶,形小而无明显的中脉;49 壳斗壳斗科植物的总苞呈杯状或囊状,称为壳斗;壳斗半包或全包坚果,外有鳞片或刺,是壳斗科特有的结构;50穗状花序花轴直立,上面的两性花无花柄,直接生长在花轴上呈穗状;如车前、大麦;51 柔夷花序为无限花序的一种,由多数无柄或短柄的单性花着生于花轴上,花被有或无,花序下垂或直立,开花后一般整个花序一起脱落,如杨柳科,山毛举科植物的雄花序;52肉穗花序花轴肥厚粗短,肉质化,上着生单性的无柄花;如玉米雌花序;53 佛焰花序包围在肉穗花序外面或位于肉穗花序下的一片大型苞片,称佛焰苞;佛焰苞常呈漏斗状,颜色鲜艳;具佛焰苞的肉穗花序又称佛焰花序,如芋、半夏等天南星科植物的花序;54 荚果由单心皮发育的果实,成熟时沿腹缝线和背缝线同时开裂;如大豆、刺槐;55 角果由两心皮发育的果实,侧膜胎座,由心皮边缘子房室内生出一隔膜,叫假隔膜;成熟时果实沿两条腹缝线裂开,两片心皮脱落,种子附着在假隔膜上,分为短角果和长角果;如十字花科植物;56 柑果由复雌蕊发育形成,外果皮革质,有精油腔,中果皮疏松,分布有维管束,中间隔成瓣的内果皮,向内生许多肉质多浆的汁囊,是主要的食用部分;中轴胎座,每室种子多数;如柑橘;是浆果的一种,由多心皮具中轴胎座的子房发育而成;它的外果皮坚韧革质,有很多油囊分布;中果皮疏松髓质,有维管束分布其间,内果皮膜质,分成若干室,室内充满含汁的长形丝状细胞,这是果实的可食用的部分,如柑、柚的果实;57 瓠果为瓜类所特有,是下位子房发育形成的假果;花托与外果皮结合为坚硬的果壁;中果皮和内果皮肉质,胎座发达;58 双悬果由二心皮二室有棱或有翅的子房发育而来,成熟时沿两个心皮合生面分离成两个分果片,顶部悬挂于细长丝状的心皮柄上,称为双悬果,是伞形科的主要特征之一,为伞形科特有;59 颖果果实含一粒种子,成熟时果皮与种皮不易分离;如小麦等禾本科植物;60 真花说被子植物的花是1个简单的孢子叶球,它是由裸子植物中早已绝灭的本内苏铁的两性孢子叶的球穗花进化而来的,也就是说本内苏铁的两性球花,可以演化成被子植物的两性整齐花;这种理论称为真花学说;按照真花说,现代被子植物中多心皮类,尤其是木兰目植物是现代被子植物的较原始的类群;61 假花说被子植物的花和裸子植物的球穗花完全一致;每1个雄蕊和心皮分别相当于1个极端退化的雄花和雌花,因而设想被子植物来自于裸子植物的麻黄类中的弯柄麻黄;由于裸子植物,尤其是麻黄类和买麻藤等都是以单性花为主,所以原始的被子植物,也必须是单性花;这种理论称为假花说;62 聚花果若果实是由整个花序发育而来,花序也参与果实的组成部分,称为聚花果或复果,如桑、凤梨、无花果等植物的果实;63 聚合果花中有多枚离心皮雌蕊,每一雌蕊形成一个果,一朵花内形成由多枚小果聚合而成的果实,叫聚合果;如白玉兰,莲、草莓的果实;64 中轴胎座多心皮构成多室子房,心皮边缘于中央形成中轴,胚珠着生于中轴上;如柑橘、苹果的果实;65 侧膜胎座两个以上心皮构成一室或假数室子房,胚珠着生于心皮边缘;如油菜、黄瓜的果实;66 小穗小穗是一个穗状花序,含1至多数小花,花生于颖状苞片内;小花花被退化成鳞片状、刚毛状、鳞被状或缺;小穗再排成穗状、总状或圆锥花序;具有小穗是莎草目莎草科和禾本科的重要特征之一,也是分属的主要依据之一;67 蔷薇果蔷薇属植物的果由多数分离的小瘦果聚生于壶状的肉质花筒内所形成的聚合果,如金樱子的果实;68 瘦果由一心皮或多心皮雌蕊形成,常含一粒种子,种皮与果皮易分离;如向日葵、荞麦的果实;69 颖果果实含一粒种子,成熟时果皮与种皮不易分离;如小麦等禾本科植物的果实;70边缘胎座雌蕊由单心皮构成,子房1室,胚珠着生在腹缝线上,如蚕豆等的果实;71 特立中央胎座雌蕊由多心皮构成,子房1室,心皮基部向子房内伸突,成为特立于子房中央的中轴,胚珠着生在中轴上;如石竹等的果实;72 分子系统学利用生物体内的基因组上的DNA序列差异来探索生物的系统演化关系的科学.73 双受精作用花粉管到达胚囊后,其末端破裂,释放出的两个精子,一个与卵细胞融合,成为二倍体的受精卵合子,另一个与两个极核融合,形成三倍体的初生胚乳核;卵细胞,极核同时和二精子分别完成融合的过程叫做双受精;双受精是被子植物有性生殖的特有现象;74 无融合生殖在被子植物中,胚囊里的卵经受精发育成胚,这是一种正常现象,但也有胚囊里的卵不经受精,或者助细胞、反足细胞、甚至珠心细胞或珠被细胞直接发育成胚,这种现象叫做无融合生殖;无融合生殖可分为孤雌生殖、无配子生殖和无孢子生殖三种类型;75 四强雄蕊一朵花中具有六枚离生雄蕊,两轮着生;外轮两枚花丝较短,内轮四枚花丝较长;这种四长两短的雄蕊称为四强雄蕊;如十字花科植物的雄蕊;76 传递细胞传递细胞是一些特化的薄壁细胞,具有胞壁向内生长的特性,行驶物质短途运输的生理功能;77 细胞周期有丝分裂从一次分裂结束到另一次分裂结束之间的期限,叫做细胞周期;一个细胞周期包括G1期、S期、G2期和M期;78 内起源发生于器官内部组织的方式称为内起源;如侧根起源于母根的中柱鞘;79 凯氏带内皮层细胞的横向和径向壁上,有栓质化和木质化的带状增厚结构,成为凯氏带;80 外始式某结构从外方向内方逐渐发育成熟,这种方式成为外始式;如根的初生木质部和根、茎的初生韧皮部的发育顺序是外始式;81 侵填体木本植物多年生老茎中,早期的次生木质部导管和管胞失去输导租用;其原因之一,是由于它们附近的薄壁组织细胞从纹孔处侵入导管或管胞腔内,膨大和沉积树脂、单宁、油类等物质,形成部分地或完全阻塞导管或管胞腔的突起结构,这种突起物即侵填体;82 同功器官器官形态相似、机能相同,但其构造与来源不同,称为同功器官;如山楂的刺为茎刺,是茎的变态,刺槐的刺为叶刺,是托叶的变态,二者为同功器官;83 完全叶具叶片、叶柄和托叶三部分的叶,称完全叶;例如月季、豌豆等植物的叶;84 多胚现象一粒种子中具有一个以上的胚,称为多胚现象;多胚现象在裸子植物中普遍存在;在被子植物中也会因无融合生殖或受精卵发育成胚的过程中分裂成几个胚以及其他原因而出现多胚现象; 85无融合生殖在被子植物中,胚囊里的卵经受精发育成胚,着是一种正常现象;但也有胚囊里的卵不经受精,或者助细胞、反足细胞、甚至珠心细胞或珠被细胞直接发育成胚,这种现象叫做无融合生殖;无融合生殖可分为孤雌生殖、无配子生殖和无孢子生殖三种类型;86 花粉败育由于种种内在和外界因素的影响,有的植物散出的花粉或花粉不能正常地发育,起不到生殖的作用,这一现象称为花粉败育;87 花芽分化花或花序是由花芽发育而来的;当植物生长发育到一定阶段,在适宜的环境下,就转入生殖生长,茎尖的分生组织不再产生叶原基和腋芽原基,而分化形成花或花序,这一过程称为花芽分化;禾本科植物的花芽分化一般称为幼穗分化;88 心皮心皮是构成雌蕊的单位,是具生殖作用的变态叶;一个雌蕊由一个心皮构成,称单雌蕊,一个雌蕊由几个心皮联合而成,称复雌蕊合生雌蕊;89 泡状细胞禾本科植物和其它单子叶植物叶上的上表皮上具有一些特殊的大型含水细胞,有较大的液泡,无叶绿素或有少量的叶绿素,径向细胞壁薄,外壁较厚,称为泡状细胞;泡状细胞通常位于两个维管束之间的部位,在叶上排成若干纵行,在横切面上,泡状细胞排成扇形;90 子房子房是被子植物花中的雌蕊的主要组成部分,子房由子房壁和胚珠组成;当传粉受精后,子房发育成果实;91 变态植物体由于功能的改变所引起的器官的一般形态和结构的变化称为变态;如洋槐的托叶变为刺;92 根蘖植物洋槐、白杨等木本植物的根上常生出许多不定芽,这些不定芽可以长成幼枝条,进行繁殖;这类植物称根蘖植物;93 同源器官具有同一来源、而在形态上和功能上有显着区别的器官称为同源器官;例如马铃薯的块茎、毛竹的根状茎、葡萄的卷须等,它们形态和机能均不同,但都是来源于茎的变态;94同功器官器官形态相似、机能相同,但其构造与来源不同,称为同功器官;如山楂的刺为茎刺,是茎的变态,刺槐的刺为叶刺,是托叶的变态,二者为同功器官;95 繁殖植物体发育到一定阶段,就必然通过一定的方式,以它本身产生新的个体来延续后代,这种现象叫做繁殖;繁殖分为三大类型,即营养繁殖、无性繁殖又称无性繁殖和有性生殖;96 营养繁殖营养繁殖是植物体的营养器官------根、茎、叶的某一部分和母体分离有时不立即分离,而直接形成新个体的繁殖方式;如马铃薯的块茎发育成新的植物体即为营养繁殖;营养繁殖可分为自然营养繁殖和人工营养繁殖;97 无性繁殖无性繁殖是通过一类称为孢子的无性繁殖细胞,从母体分离后,直接发育成为新个体的繁殖方式;98 同功器官器官形态相似、机能相同,但其构造与来源不同,称为同功器官;如山楂的刺为茎刺,是茎的变态,刺槐的刺为叶刺,是托叶的变态,二者为同功器官;99 根蘖植物洋槐、白杨等木本植物的根上常生出许多不定芽,这些不定芽可以长成幼枝条,进行繁殖;这类植物称根蘖植物;100 单体雄蕊一朵花中雄蕊多数、花药分离,花丝彼此连合成一束或呈管状,这样的雄蕊称为单体雄蕊,如棉花的雄蕊;101 四强雄蕊一朵花中具六枚离生雄蕊,两轮着生;外轮两枚花丝较短,内轮四枚花丝较长;这种四长二短的雄蕊称为四强雄蕊;如十字花科植物的雄蕊;102 花程式用符号和数字表示花各部分的组成、排列位置和相互关系,称为花和式又称花公式;103 花图式花图式是指用图解表示一朵花的横切面简图,借以说明花的各部分的组成,排列和相互关系,也可以比较植物花的形态异同;花图式也就是花的各部在垂直于花轴的平面上的投影;104 无限花序与有限花序无限花序又称总状花序或向心花序,其开花的的顺序是花轴下部的花先开,渐及上部,或由边缘开向中心,如油菜的总状花序;有限花序又称聚伞花序或离心花序,它的特点与无限花序相反,花序中最顶点或最中心的花先开,渐及下边或周围,如番茄的聚伞花序;105 子房子房是被子植物花中的雌蕊的主要组成部分,子房由子房壁和胚珠组成;当传粉受精后,子房发育成果实;106 心皮心皮是构成雌蕊的单位,是具生殖作用的变态叶;一个雌蕊由一个心皮构成,称单雌蕊,一个雌蕊由几个心皮联合而成,称复雌蕊合生雌蕊;107 花芽分化花或花序是由花芽发育而来的;当植物生长发育到一定阶段,在适宜的环境下,就转入生殖生长,茎尖的分生组织不再产生叶原基和腋芽原基,而分化形成花或花序,这一过程称为花芽分化;禾本科植物的花芽分化一般称为幼穗分化;108 花粉败育由于种种内在和外界因素的影响,有的植物散出的花粉或花粉不能正常地发育,起不到生殖的作用,这一现象称为花粉败育;109 雄性不育植物由于内在生理、遗传的原因,在正常的确自然条件下,也会产生花药或花粉不能正常地发育、成为畸形或完全退化的情况,这一现象称为雄性不育;雄性不育可有三联单种表现形式:一是花药退化;二是花药内无花粉;三是花粉败育;110 丝状器被子植物胚囊内的助细胞中,一些伸向细胞中间的不规则的片状或指状突起,称为丝状器;丝状器是通过细胞壁的内向生长而形成,它们的作用使助细胞犹如传递细胞;具丝状器是助细胞结构上最突出的特点;111 双受精花粉管到达胚囊后,其末端破裂,释放出的两个精子,一个与卵细胞融合,成为二倍体的受精卵,另一个与两个极核融合,形成三倍体的初生胚乳核;卵细胞、极核同时和二精子分别完成融合的过程叫做双受精;双受精是被子植物有性生殖的特有现象;112 无融合生殖在被子植物中,胚囊里的卵经受精发育成胚,着是一种正常现象;但也有胚囊里的卵不经受精,或者助细胞、反足细胞、甚至珠心细胞或珠被细胞直接发育成胚,这种现象叫做无融合生殖;无融合生殖可分为孤雌生殖、无配子生殖和无孢子生殖三种类型;113 多胚现象一粒种子中具有一个以上的胚,称为多胚现象;多胚现象在裸子植物中普遍存在;在被子植物中也会因无融合生殖或受精卵发育成胚的过程中分裂成几个胚以及其他原因而出现多胚现象; 114 细胞和细胞学说有机体除病毒外,都是由单个或多个细胞构成的;细胞是生命活动的基本结构与功能单位;植物细胞由原生质体和细胞壁两部分组成;细胞学说是德国植物学家和动物学家二人于1938-1939提出的;细胞学说认为,植物和动物的组织都是由细胞构成的;所有的细胞是由细胞分裂和融合而来;卵和精子都是细胞;一个细胞可分裂而形成组织;细胞学说第一次明确的指出了细胞是一切动物和植物结构单位的思想,从理论上确立了细胞在整个生物界的地位,把大自然中形形色色的有机体统一了起来;115 原生质和原生质体构成细胞的生活物质称为原生质;原生质细胞生命活动的物质基础;原生质体是生活细胞内全部具有生命的物质的总称,也即原生质体由由原生质构成;原生质体一般由细胞膜、细胞质和细胞核三部分组成;原生质体是细胞各类代谢活动进行的主要场所;原生质体一词有时指去了壁的植物细胞;116 细胞器散布在细胞质内具有一定结构和功能的亚细胞结构称细胞器;如各种质体、线粒体、内质网、核糖体、高尔基体、微管等;117 质体质体是一类与碳水化合物的合成与储藏密切相关的细胞器,它是植物除细菌、真菌和蓝藻以外细胞特有的结构;尚未分化成熟的质体称为前质体;分化成熟的质体根据其颜色和功能的不同,分为叶绿体、有色体和白色体三种类型;118 胞间连丝胞间连丝是穿过细胞壁的原生质细丝,它连接相邻细胞间的原生质体;它是细胞原生质体之间物质和信息直接联系的桥梁,是多细胞植物成为一个结构和功能上同意的有机体的重要保证; 119 细胞分化多细胞有机体的细胞在结构和功能上的特化,称为细胞分化;细胞分化表现在内部生理变化和形态外貌变化两个方面;细胞分化使多细胞植物中细胞功能趋向专门化,有利于提高各种生理功能和效率;因此,分化是进化的表现;120 染色质和染色体当细胞固定染色体后,核质中被碱性染料染成深色的部分,称为染色质;染色质是细胞中遗传物质存在的主要形式,其主要成分是DNA和蛋白质;在电子显微镜下染色质显出一些交织成网状的细丝;细胞有丝分裂和减数分裂时期,染色质高度螺旋化而变粗变短,成为易被碱性染料着色的粗线状或棒状体,此即染色体;121 分生组织种子植物中具分裂能力的细胞限制在植物体的某些部位,这些部位的细胞在植物体一生中持续地保持强烈的分裂能力,这种具有持续分裂能力的细胞群称为分生组织;分生组织根据所处位置不同可分为顶端分生组织、侧生分生组织和居间分生组织;根据来源不同可分为原分生组织、初分生组织和次分生组织;122 传递细胞传递细胞是一些特化的薄壁细胞,具有胞壁向内生长的特性,行使物质短途运输的生理功能;123细胞周期有丝分裂从一次分裂结束到另一次分裂结束之间的期限,叫做细胞周期;一个细胞周期包括G1期,S期,G2期,M期;124 器官器官是生物体由多种组织构成的、能行使一定功能的结构单位;植物体内,一营养生长为主要功能的器官称为营养器官,如根、茎和叶;与生殖有密切关系的器官称为生殖器官,如花、果实和种子;125 种子种子是种子植物的繁殖器官,是胚珠经过受精而发育形成的结构;种子一般由胚、胚乳和种皮三部分组成;在种子植物中,有的植物种子中的胚乳在发育过程中被子叶吸收,成熟后的种子没有胚乳,叫做无胚乳种子,如大豆、黄瓜的种子;成熟后种子内有胚乳的叫做有胚乳种子,如小麦、玉米、蓖麻的种子;126 幼苗种子萌发后有胚长成的独立生活的幼小植株,即为幼苗;不同植物种类的种子萌发时,由于胚体各部分,特别是胚轴部分的生长速度不同,长成幼苗在形态上也不一样,可分为两类:子叶出土的幼苗和子叶留土的幼苗;127 定根和不定根凡是有一定生长部位的根,称为定根,包括定根和侧根两种;在主根和主根所产生的侧根以外的部分,如茎叶老根或胚轴上生出才根,因此着生位置不固定,故称不定根;128 直根系和须根系。
大学植物学试题库及答案

大学植物学试题库及答案一、选择题(每题2分,共20分)1. 下列哪项不是植物细胞的特点?A. 细胞壁B. 叶绿体C. 液泡D. 核糖体答案:D2. 植物的光合作用主要发生在哪个部位?A. 根B. 茎C. 叶D. 花答案:C3. 植物的生殖方式包括有性和无性两种,下列哪项属于无性生殖?A. 种子繁殖B. 扦插繁殖C. 嫁接繁殖D. 孢子繁殖答案:B4. 植物的光周期反应是指植物对什么的反应?A. 光的强度B. 光的波长C. 光的持续时间D. 光的颜色答案:C5. 植物的蒸腾作用主要发生在哪个部位?A. 根B. 茎C. 叶D. 花答案:C6. 植物的呼吸作用主要发生在哪里?A. 细胞壁B. 细胞膜C. 线粒体D. 叶绿体答案:C7. 植物的木质部和韧皮部分别负责什么功能?A. 运输水分和无机盐,运输有机物B. 运输有机物,运输水分和无机盐C. 运输水分和无机盐,运输气体D. 运输气体,运输有机物答案:A8. 植物的光合作用过程中,CO2和H2O在叶绿体中的哪个部位发生反应?A. 叶绿体基质B. 类囊体C. 叶绿体膜D. 细胞质答案:B9. 植物的根吸收水分和无机盐的主要部位是?A. 根尖B. 根毛区C. 根的中段D. 根的基部答案:B10. 植物的花开放后,哪部分负责接收花粉?A. 花瓣B. 花柱C. 柱头D. 花药答案:C二、填空题(每空1分,共20分)1. 植物的细胞壁主要由________组成。
答案:纤维素2. 植物的光合作用的产物是________和________。
答案:葡萄糖,氧气3. 植物的蒸腾作用主要发生在________。
答案:叶片4. 植物的光周期反应对________的开花有重要影响。
答案:植物5. 植物的呼吸作用需要________作为电子受体。
答案:氧气6. 植物的木质部和韧皮部分别由________和________组成。
答案:导管,筛管7. 植物的光合作用过程中,光能被________捕获。
植物学练习题

植物细胞与组织作业一.简答题1植物细胞的初生壁和次生壁有什么区别?①初生壁的主要成分是纤维素、半纤维素和果胶,一般较薄,质地柔软,具较好的通透性和可塑性。
所有细胞都具有初生壁。
初生壁存在于所有活的植物细胞。
初生壁位于胞间层的内侧,中胶层和次生壁之间,是细胞生长过程中形成的壁层,一般较薄,具有弹性可随细胞的伸长而延长。
初生壁在生长中的细胞中形成,在不同细胞中分子组成并无很大差异,但是其超微结构仍有很大变化。
厚壁组织和表皮细胞的初生壁则厚得多且由多层组成。
②次生壁的主要成分是纤维素,含有少量半纤维素,常含有木质。
一般较厚,质地坚硬,有增强细胞壁机械强度的作用。
并不是所有细胞都具有次生壁。
次生壁是细胞停止生长后,在初生壁内侧继续积累的细胞壁层。
次生壁出现在初生壁之内,一般较厚,而且坚硬,常出现在起机械支持和输导作用的植物细胞中,如导管,管胞,厚壁细胞、纤维细胞等。
次生壁的主要成分除多糖外,还有木质素,木栓质,角质和蜡质等填充物,填充物的不同使壁的性质发生各种变化。
2什么是有丝分裂?分为哪几个时期?各时期有什么特点?有什么重要意义?①细胞分裂中最普遍的一种方式。
分裂时,染色体同时复制,所产生的2个子细胞都有与亲代相同数目的染色体。
由于在两颗中心粒之间出现丝样纺锤体,故称有丝分裂。
时期及特点:①间期:染色体复制,有关蛋白质合成前期:核仁解体,核膜消失;染色质逐渐变成染色体;纺锤体形成等中期:每条染色体的着丝粒排列在赤道板上,染色体形态稳定,可用于各种形态学的分析后期:着丝点一分为二,姐妹染色单体分开,形成两条子染色体;子染色体在纺锤丝的作用下移向两级末期:核膜核仁重新出现;染色体逐渐变成染色质:纺锤体消失③重要意义:保持细胞遗传的稳定性。
3厚角组织和厚壁组织有什么区别?①厚壁组织细胞的整个细胞壁都均匀增厚,而厚角组织细胞仅细胞壁角落部分加厚,细胞壁具有不均匀的增厚。
②厚角组织壁增厚的成分为纤维素、果胶质和半纤维素;厚壁组织有均匀增厚的次生壁,主要壁成分为纤维素、半纤维素和木质素。
植物学问答题题库及答案完整版

植物学问答题题库及答案1.试述根尖的分区及各区的细胞特点和功能。
2.棉花老根由外向内包括哪些部分?各有何功能? 3.绘双子叶植物根初生构造的理论图,并标注各部分。
4.比较根尖及茎尖的不同点?5.如何利用射线来判断木材三切面?6.绘简图说明双子叶植物茎的初生构造,并标注各个部分。
7.简述茎中维管形成层细胞的组成、形态及分裂活动。
8.简述禾本科植物茎的结构特点。
9.试述旱生植物叶的解剖特征。
10.简述裸子植物松针叶的结构,并指出哪些特征体现了其抗旱性?11.试述双子叶植物根与茎初生结构的异同点。
12.试述木本双子叶植物根次生分生组织的产生及活动。
答:次生分生组织(维管形成层和木栓形成层)细胞分裂,分化产生次生组织的过程:(1). 维管形成层的产生及其活动过程:根增粗生长前,初生木质部与初生韧皮部之间的薄壁组织恢复分生能力转为形成层,形成层开始是在每一韧皮部束内方产生,因此,形成层是成片断状的。
随后,各段形成层向两侧扩展至木质部辐射角,同时与木质部辐射角相对的部分中柱鞘细胞也恢复分裂能力形成部分形成层,并与初生木质部和初生韧皮部之间薄壁组织中产生的形成层连接,于是片段状的形成层就连接成一个波状的环。
由于初生韧皮部内方的形成层产生最早,分裂也较快,因此在初生韧皮部内侧形成的次生组织最多,而在初生木质部辐射角处的形成层开始活动较晚,所形成的次生组织较少。
这样初生韧皮部被新形成的次生组织(次生韧皮部和次生木质部)推向外方,波状的形成层也逐渐变成圆环状的,圆环状的形成层继续分裂活动,向内产生次生木质部,向外产生次生韧皮部,维管束也由辐射维管束变成了圆筒状的结构。
(2).木栓形成层的产生及其活动过程:1). 根中第一次木栓形成层的产生是由中柱鞘细胞恢复分生能力产生的,木栓形成层产生后,进行平周分裂向外产生多层木栓层细胞,向内产生少量的栓内层细胞,由木栓层、木栓形成层和栓内层共同组成周皮。
由于根的不断加粗,先形成的周皮会被撑破,于是在周皮内侧再形成新的周皮。
国家开放大学电大《植物学》期末简答题题库及答案

最新国家开放大学电大《植物学》期末简答题题库及答案(试卷号2021)简答题1.矿化作用的主要意义有哪些?答:1)将有机物分解简单的无机物。
2)使大气中的碳素、氮素得到平衡。
3)植物体内的磷、钾、铁、镁、钙及各种微量元素通过矿化作用,在植物体和土壤之间循环。
2.何为直根系和须根系?答:有明显主根和侧根区别的根系,叫直根系。
无明显主根和侧根区别,或根系全部由不定根和它的分枝组成,这样的根系叫须根系。
3.简述髓射线与维管射线的区别。
答:髓射线为初生结构,位于维管束之间,有一定数目,维管射线为次生结构,位于维管束之内,数目随次生结构的形成而增加。
4.以油菜花为例,说明被子植物花的组成;以小麦为例,说明禾本科植物花的组成。
答:被子植物的花由花柄、花托、花萼、花冠、雄蕊群和雌蕊群组成。
禾本科植物的花序上着生许多小穗,每一小穗由两个颖片和若干朵花组成,每朵花由外群、内秽、桨片、雄蕊和雌蕊组成。
5.简述花粉粒的萌发过程。
答:花粉粒的萌发,成熟的花粉粒传送到柱头上以后,被柱头分泌的粘液所粘住,然后,花粉粒的内壁在萌发孔处向外突出,并继续生长,形成花粉管,这一过程叫做花粉粒的萌发。
6.说明种子的胚、胚乳和种皮的作用。
(说明种子的胚、胚乳和种皮在形成种子过程中的作用。
)答:胚是新生植物体的雏体,是种子最重要的部分。
胚乳是种子集中贮藏养料的地方(有些植物在种子发育过程中,胚乳贮藏的养料转移到子叶内,因而在成熟的种子中胚乳消失)。
种皮是种子的保护结构。
7.说明薄壁组织与保护组织的区别。
(说明薄壁组织和保护组织的概念。
)答:薄壁组织是进行各种代谢活动的主要组织,常分为同化组织、贮藏组织、通气组织、贮水组织等。
保护组织是覆盖于植物体表而起保护作用的组织,包括表皮和周皮。
8.说明葫芦科的基本特征。
答:草质藤本,具卷须,单性花,雄蕊常结合,子房下位,侧膜胎座,瓠果。
9.导管分子和导管的主要区别。
答:(1)导管分子是一个死细胞,成熟时没有生活的原生质,次生壁具有各种式样的木质化增厚,端壁消失形成穿孔。
植物生理学简答题整理
1. 简述水分在植物生命活动中的作用。
(1)水是植物细胞的主要组成成分;(2)水分是植物体内代谢过程的反应物质。
水是光合作用的直接原料, 水参与呼吸作用、有机物质的合成与分解过程。
(3)细胞分裂和伸长都需要水分。
(4)水分是植物对物质吸收和运输及生化反应的溶剂。
(5)水分能使植物保持固有姿态。
(6)可以通过水的理化特性以调节植物周围的大气温度、湿度等。
对维持植物体温稳定和降低体温也有重要作用。
2.简述影响根系吸水的土壤条件1.土壤中可用水量: 当土壤中可用水分含量降低时, 土壤溶液与根部细胞间的水势差减小, 根系吸水缓慢2.土壤通气状况: 土壤通气状况不好, 土壤缺氧和二氧化碳浓度过高, 使根系细胞呼吸速率下降, 引起根系吸水困难。
3.土壤温度:低温不利于根系吸水, 因为低温下细胞原生质黏度增加, 水分扩散阻力加大;同时根呼吸速率下降, 影响根压产生, 主动吸水减弱。
高温也不利于根系吸水, 土温过高加速根的老化进程, 根细胞中的各种酶蛋白高温变形失活。
4.土壤溶液浓度: 土壤溶液浓度过高引起水势降低, 当土壤溶液水势与根部细胞的水势时, 还会造成根系失水。
3、导管中水分的运输何以能连续不断?由于植物体叶片的蒸腾失水产生很大的负净水压, 将导管中的水柱向上拉动, 形成水分的向上运输;水分子间有相互吸引的内聚力, 该力很大, 可达20 MPa以上;同时, 水柱本身有重量, 受向下的重力影响, 这样, 上拉的力量与下拖的力量共同作用于导管水柱, 水柱上就会产生张力, 但水分子内聚力远大于水柱张力。
此外, 水分子与导管或管胞细胞壁纤维素分子间还具有很大的附着力, 因而维持了导管中水柱的连续性, 使得导管水柱连续不断, 这就是内聚力-张力学说。
4. 试述蒸腾作用的生理意义。
答: (1)是植物对水分吸收和运输的主要动力。
(2)促进植物对矿物质和有机物的吸收及其在植物体内的转运。
(3)能够降低叶片的温度, 以免灼伤。
植物学考研真题及答案
植物学考研真题及答案[文章正文]一、选择题1. 下列属于开花植物的是:A. 蕨类植物B. 苔藓植物C. 裸子植物D. 藻类植物答案:C. 裸子植物2. 植物细胞的基本结构单位是:A. 叶绿体B. 核糖体C. 核膜D. 细胞壁答案:D. 细胞壁3. 植物细胞的产生是通过下列哪个过程完成的?A. 胞翻板B. 有丝分裂C. 纤维分裂D. 同源染色体分裂答案:B. 有丝分裂二、判断题1. 植物细胞的细胞质内含有DNA。
答案:正确2. 叶绿体是细胞的能量中心,负责光合作用。
答案:正确3. 植物细胞的细胞膜和动物细胞的细胞膜结构完全相同。
答案:错误三、简答题1. 什么是光合作用?简要说明其在植物生物体中的作用和重要性。
答:光合作用是植物利用光能将二氧化碳和水转化为有机物质(如葡萄糖)和氧气的过程。
在植物生物体中,光合作用是植物生长、发育和生存的重要途径。
通过光合作用,植物可以合成有机物质,提供能量和营养物质,维持生命活动的正常进行。
同时,光合作用还产生的氧气对维护大气的氧含量、促进氧气的循环和供应地球上其他生物的呼吸是至关重要的。
2. 请简要描述植物生长发育的关键过程。
答:植物生长发育过程包括种子萌发、幼苗生长和成熟植株的形成。
种子萌发是种子在适宜环境条件下发芽、生根和生长的过程,关键因素包括温度、水分和光照等。
幼苗生长阶段是植物在萌发后通过细胞分裂、伸长和分化等过程快速增长,形成根、茎和叶等器官。
成熟植株的形成是幼苗生长后发生的,包括形成花和果实、种子的产生和传播等过程。
四、问答题1. 请结合植物学的研究对象和主要内容,简要介绍植物学的研究领域。
答:植物学是研究植物的结构、功能和分类等科学的一门学科。
其主要研究范围包括植物的种类、形态结构、生态特性、生活方式、生理生化过程、遗传变异、进化关系以及植物在生态系统中的作用等方面。
植物学的研究领域涵盖了植物的分类学、形态学、解剖学、生理学、生态学、遗传学、系统学等多个方面,旨在全面了解和揭示植物的多样性、适应性和生活规律,为保护植物资源、改良农作物和解决生态环境问题提供科学依据。
植物学简答题汇总
植物学1.简述细胞壁的构造和功能。
构造:细胞壁的结构大体可分为3层:胞间层、初生壁和次生壁。
作用:使细胞保持一定的形态,对细胞起着支持和防止细胞吸水而被胀破的作用。
2.简述细胞壁的特化类型及各自的作用。
木质化:细胞壁内填充和附加了木质素,可使细胞壁内硬度增加,细胞群的机械力增强。
木栓化:细胞壁中增加的木栓质,木栓化细胞壁有保护作用。
角质化:细胞壁角质化或形成角质层,可防止水分过度蒸发和微生物的侵害。
黏液化:起连接作用矿质化:使植物的茎和叶变硬,增强其机械支持能力3.花瓣和花冠、花萼和萼片的关系?答:花冠是花瓣的总称,花萼是所有花片的总称。
4.自花传粉和异花传粉的条件?答:自花传粉:1、同一朵花两性花雄雌蕊靠近2、花粉粒和胚囊同时成熟3、无生理阻碍。
异花传粉:1、单性花2、雌雄配子成熟时间不同3、对本花花粉粒有生理阻碍4、雌雄蕊异常。
5.秋天树叶为什么大多会变成黄色?秋季,天气转冷时,叶绿素解体,叶黄素和花青素合成,树叶便会变成黄色或红色了。
6.叶镶嵌现象和意义?答:同一枝上的叶不论哪一种叶序,叶总是不相重叠而成镶嵌状态进行排列的现象叫做叶镶嵌现象。
其意义是增加光合作用、保持平衡。
7.举例回答捕虫植物叶的各种变态?答:比如说:囊状—狸藻,瓶装—猪笼草8.液泡的功能有哪些?决定细胞渗透压的大小,贮藏,保存和排泄各种物质的场所,是细胞质和其他细胞的水分源泉。
8.韭菜割了又长是什么分生组织的活动引起的,枝条加粗是茎的什么分生组织活动引起的?答:居间分生组织/次生分生组织。
9.简答植物在环境保护。
答:保护水土,调节湿度,缓冲环境剧烈变化。
10.简答植物在园林造景中的作用。
答:植物在园林造景中运用在城市绿地,行道树,屋顶花园,景观花园,美化大自然。
11.植物组织有那些类型?答:分生组织、成熟组织、保护组织、营养组织、机械组织、输导组织、分泌组织。
12.什么是周皮,植物根的周皮最早在那里形成?答:是取代表皮的次生保护组织,存在于次生增粗器官,它由侧生分生组织—木栓形成层形成。
植物学 简答题
植物细胞与动物细胞最大的区别是什么?答:与动物细胞相比,植物细胞具有许多显著的特征。
1.绝大多数的植物细胞都具有细胞壁。
植物的许多基本生理过程,如生长,发育,形态建成,物质运输,信号传递等都与细胞壁有关。
2.植物的绿色细胞中含有叶绿体,能进行光合作用,又具有细胞壁,可能是植物祖先最早产生的有别于其他生物的重要特征。
3.许多植物细胞都有一个相当大的中央大叶泡,这也是植物细胞的重要特征之一。
中央大叶泡在细胞的水分运输,细胞生长,细胞代谢等许多方面都具有至关重要的作用。
4.再多细胞的高等植物组织中,相邻细胞之间还有胞间连丝相连,使细胞间独特的通信连接结构,有利于细胞间的物质和信息传递。
5.植物分生组织的细胞通常具有无限生长的能力,可以永久保持分裂能力。
但对于植物细胞而言,细胞通常有一定的“寿命”,细胞在若干代后会失去分裂能力。
6.此外,植物细胞在有丝分裂后,普遍有一个体积增大与成熟的过程,这一点比动物细胞表现更明显。
如细胞壁的初生壁与次生壁形成,液泡的形成与增大,质体发育等。
受精作用的生物学意义。
答:1.保证了物种遗传的相对稳定性2.丰富了植物的遗传变异性3.具有双亲遗传性的胚乳,可使子代生活力更强4.外界环境条件对传粉,受惊的影响叙述双受精过程和意义。
意义(1)产生二倍体的合子,具有父母本的双重遗传特性,恢复了各种植物原有的染色体数,保持了物种遗传的稳定性。
(2)后代出现新的遗传性状,利于选择优良变异的后代,培育成新的品种。
(3)三倍体的初生胚乳核结合了父母本的遗传性,更适合作为胚发育的养料,使后代变异性得以充分体现,生活力、适应性更强。
叙述有丝分裂的过程和特点。
有丝分裂的过程:一般分为核分裂和胞质分裂,根据核的分裂过程可将有丝分裂过程分为前、中、后、末四个时期。
前期:染色体出现,每个染色体包含两个染色单体,随后核仁、核膜消失,同时纺锤丝出现。
中期:染色体的着丝点排列在细胞中央的赤道面上,纺锤丝非常明显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物细胞与动物细胞最大的区别是什么?答:与动物细胞相比,植物细胞具有许多显著的特征。
1.绝大多数的植物细胞都具有细胞壁。
植物的许多基本生理过程,如生长,发育,形态建成,物质运输,信号传递等都与细胞壁有关。
2.植物的绿色细胞中含有叶绿体,能进行光合作用,又具有细胞壁,可能是植物祖先最早产生的有别于其他生物的重要特征。
3.许多植物细胞都有一个相当大的中央大叶泡,这也是植物细胞的重要特征之一。
中央大叶泡在细胞的水分运输,细胞生长,细胞代谢等许多方面都具有至关重要的作用。
4.再多细胞的高等植物组织中,相邻细胞之间还有胞间连丝相连,使细胞间独特的通信连接结构,有利于细胞间的物质和信息传递。
5.植物分生组织的细胞通常具有无限生长的能力,可以永久保持分裂能力。
但对于植物细胞而言,细胞通常有一定的“寿命”,细胞在若干代后会失去分裂能力。
6.此外,植物细胞在有丝分裂后,普遍有一个体积增大与成熟的过程,这一点比动物细胞表现更明显。
如细胞壁的初生壁与次生壁形成,液泡的形成与增大,质体发育等。
受精作用的生物学意义。
答:1.保证了物种遗传的相对稳定性2.丰富了植物的遗传变异性3.具有双亲遗传性的胚乳,可使子代生活力更强4.外界环境条件对传粉,受惊的影响叙述双受精过程和意义。
意义(1)产生二倍体的合子,具有父母本的双重遗传特性,恢复了各种植物原有的染色体数,保持了物种遗传的稳定性。
(2)后代出现新的遗传性状,利于选择优良变异的后代,培育成新的品种。
(3)三倍体的初生胚乳核结合了父母本的遗传性,更适合作为胚发育的养料,使后代变异性得以充分体现,生活力、适应性更强。
叙述有丝分裂的过程和特点。
有丝分裂的过程:一般分为核分裂和胞质分裂,根据核的分裂过程可将有丝分裂过程分为前、中、后、末四个时期。
前期:染色体出现,每个染色体包含两个染色单体,随后核仁、核膜消失,同时纺锤丝出现。
中期:染色体的着丝点排列在细胞中央的赤道面上,纺锤丝非常明显。
后期:染色体分裂成二组子染色体,二组子染色体分别朝相反的两极移动,直至到达两极,同时,赤道面上出现由成膜体。
末期:到达两极后的染色体逐渐解旋成染色质,核仁、核膜重新出现,形成新的子核。
同时,成膜体形成细胞板,细胞板向四周扩展,直到把细胞质彻底分开,形成两个子细胞。
有丝分裂的特点:产生纺锤丝和染色体。
比较禾本科植物茎与双子叶植物茎初生结构的主要区别。
表皮:双子叶植物茎的表皮由2种细胞构成,禾本科植物茎的表皮由5种细胞构成。
基本组织:有皮层、髓、髓射线之分,表皮下的机械组织为厚角组织;禾本科植物无三者之分,表皮下机械组织为厚壁组织。
维管束:双子叶植物茎的维管束分束环状排列或连成筒状,为无限维管束或双韧维管束,无厚壁的维管束鞘;禾本科植物茎的维管束散生,为有限外韧维管束,有厚壁细胞组成的维管束鞘。
双子叶植物根的维管形成层是怎样产生的?如何使根增粗在根毛区内,当次生生长开始时,位于初生木质部和初生韧皮部之间的薄壁细胞首先恢复分裂能力,形成形成层弧,每个形成层弧继续扩展,直至与中柱鞘相连,此时,正对着初生木质部放射角的中柱鞘细胞也恢复分裂能力,变成维管形成层的一部分,与形成层弧相连接,形成一波状的形成层环。
波状形成层环的活动是不等速的,初生韧皮部里面的部分出现早,分裂快,正对着初生木质部放射角的则出现的晚,分裂慢,波状形成层环渐渐变成了圆环状的维管形成层环。
(6分)形成层的活动主要是切向分裂,向内产生大量的次生木质部,向外产生少量的次生韧皮部,结果根明显增粗,形成层也不断外移,初生韧皮部被挤压,组织破坏,功能失去,由次生韧皮部代替之,而初生木质部仍位于根中心。
由于根的增粗,外面的表皮和皮层要被胀破,于是中柱鞘细胞产生木栓形成层,木栓形成层产生周皮最终代替表皮起到保护作用。
(4分)叙述双子叶植物茎的次生增粗过程。
维管形成层的发生和活动:当次生生长开始时,位于初生韧皮部和木质部之间的束中形成层细胞开始分裂活动(3分)。
相邻维管束之间正对束中形成层的髓射线细胞也恢复分裂能力形成束间形成层,束中形成层和束间形成层互相连接,形成一个完整的维管形成层环(2分)。
维管形成层主要进行切向分裂,向外产生次生韧皮部,向内产生次生木质部,使茎的直径逐渐加粗(2分)。
木栓形成层的发生和活动:木栓形成层第一次发生的位置,因植物种类不同有所差异,有表皮、厚角组织、皮层、初生韧皮部,这些细胞恢复分裂能力形成木栓形成层。
木栓形成层进行切向分裂,向外产生木栓层向内产生栓内层。
木栓层、木栓形成层和栓内层共同组成周皮(3分)。
被子植物胚囊的形成过程。
答案:被子植物的胚囊是由胚珠内的大孢子母细胞发育而成的(2分)。
大孢子母细胞经过减数分裂,形成4个大孢子(1分)。
这4个细胞排成一纵行,其中靠近珠孔(1分)的3个细胞退化,里面的1个细胞发育成为早期的胚囊(1分)。
早期的胚囊不断地从周围的组织中吸收养料,体积增大,细胞核连续进行3次有丝分裂(1分),但是每次核分裂以后,并不接着就进行细胞质分裂,因此,就形成了具有8个细胞核的胚囊(1分)。
开始时,这8个细胞核分别位于胚囊的两端,每端各4个。
接着,每端各有1个细胞核移到胚囊的中央,这就是极核(1分)。
靠近珠孔端(1分)的3个细胞核发育成3个细胞,即1个卵细胞(1分)和2个助细胞(1分)。
另一端的3个细胞核则发育成3反足细胞(1分)。
双受精及其双受精的生物学意义是什么?答案:双受精:卵细胞和极核同时和2个精子分别完成融合的过程。
意义:(1)2个单倍体的雌雄配子融合在一起,成为为1个二倍体的合子,回复了植物原有的染色体数目,保持了物种的相对稳定性;(2)父母本具有差异性的遗传物质重组,形成具有双重遗传性的合子,加强了后代个体的生活力和适应性,为后代中可能出现新性状和新变异提供了基础;(3)中央细胞受精后形成的三倍体性质的初生胚乳及其发育成的胚乳,同时兼有双亲的遗传性,合子及胚在这样的胚乳哺育下发育,可使子代生活力更强。
因此,双受精作用是植物界有性生殖的最进化、最高级的形式,是被子植物在植物界占优势的重要原因之一。
简述根的主要生理功能。
1.吸收土壤中的养分(吸收功能)2.支持和固着植株3.兼有合成、繁殖、贮藏等生理功能4.根系与其他生物的关系—分泌物质根尖及其分区。
根尖从顶端起,可依次分为根冠、分生区、伸长区和根毛区(2分)。
根冠位于根尖的顶端,是由许多薄壁细胞组成的冠状结构。
根冠的外层细胞排列疏松,外壁有粘液(2分)。
分生区大部分被根冠包围着,分生区的顶端分生组织,其细胞形状为多面体,排列紧凑,胞间隙不明显,细胞壁很薄,细胞核很大,细胞质浓密,液泡很小,外观不透明(3分)。
试述花粉粒的发育过程(自孢原细胞开始)。
发育初期的花药,其外为一层表皮细胞,在花药四周的表皮内方,出现1至几列孢原细胞(1分)。
孢原细胞进行一次平周分裂,形成内外两层细胞,外层为周缘细胞(也称壁细胞)(1分),内层为造孢细胞(1分)。
周缘细胞经过平周分裂和垂周分裂,自外而内,逐渐形成药室内壁、中层和绒毡层(1分),它们与表皮共同组成花粉囊壁。
药室内壁当花药接近成熟时,发育成纤维层(1分)。
在其内侧,有一层或几层较小的细胞,即为中层,在花药发育过程中,被挤压逐渐解体并被吸收消化(1分)。
花粉囊壁的最内一层细胞称绒毡层,常有双核或多核。
绒毡层的细胞质浓,富含营养物质,随着花粉粒的发育,其中的营养物质逐渐被花粉粒吸收利用,最后消失(1分)。
在周缘细胞分裂、分化形成花粉囊壁的同时,造孢细胞也进行分裂,形成花粉母细胞。
但也有些植物(如瓜类、棉花)的造孢细胞不经过分裂而直接发育为花粉母细胞(1分)。
花粉母细胞为多边形或椭圆形,体积较大,细胞质浓,细胞核也较大。
以后,每个花粉母细胞经过减数分裂(1分),形成4个子细胞,每个子细胞发育成为1个花粉粒(1分)。
举例说明同源器官和同功器官的概念。
凡外形相似、功能相同、但形态学上来源不同的变态器官称为同功器官(1.5分),如茎刺和叶刺,茎卷须和叶卷须,块根和块茎(1分)。
外形与功能都有差别,而形态学上来源却相同的变态器官称为同源器官(1.5分)。
如茎刺、茎卷须、鳞茎和块茎(1分)。
双子叶植物根与茎的初生结构有什么异同?1.相同之处:均由表皮、皮层和维管柱3部分组成,各部分的细胞类型在根、茎中也基本上相同,根、茎中初生韧皮部发育顺序均为外始式。
2.不同之处是:(l)根表皮具根毛、无气孔,茎表皮无根毛而往往具气孔。
(2)根中有内皮层,内皮层细胞具凯氏带,维管柱有中柱鞘;而大多数双子叶植物茎中无显著的内皮层,虽谈不上具凯氏带,茎维管柱也无中柱鞘。
(3)根中初生木质部和初生韧皮部相间排列,各自成束,而茎中初生木质部与初生韧皮部内外并列排列,共同组成束状结构。
(4)根初生木质部发育顺序是外始式,而茎中初生木质部发育顺序是内始式。
(5)根中无髓射线,有些双子叶植物根无髓,茎中央为髓,维管束间具髓射线。
根和茎的这些差异是由二者所执行的功能和所处的环境条件不同决定的。
有丝分裂与减数分裂有何区别?(5分)答:有丝分裂:DNA复制1次,细胞分裂1次,产生2个色体数目与母细胞一样的子细胞。
减数分裂:DNA复制1次,细胞分裂2次,产生4个染色体数目减半的子细胞。
高等植物与低等植物有何区别(5分)答:高等植物低等植物:生境:陆生湿生、水生营养体结构特征:有根、茎、叶分化无根、茎、叶分化雌性生殖器官:多细胞单细胞孢子体发育: 合子-胚-植株合子直接萌发简述单子叶植物叶片的结构。
(5分)答:表皮(3分):一层气孔器保卫细胞、副卫细胞、长细胞、硅细胞、栓细胞、泡状细胞(上表皮)、表皮毛叶肉(1分):等面叶,无栅栏组织与海绵组织的分化叶脉(1.5分):维管束鞘、木质部、韧皮部说明双子叶植物叶的结构特点。
答:表皮(1分):保卫细胞肾脏形,表皮细胞不规则叶肉(2分):有栅栏组织和海绵组织之分(背腹叶)叶脉(2分):网状脉,大叶脉有形成层根尖可分哪几个区,各区有何特点?(5分)答:根冠、分生区、伸长区、成熟区(1分);根冠:色浅、分泌粘液(0.5分)分生区:产生新细胞的主要区域(1分);细胞体积小、色深、核大、壁薄、排列密.伸长区:有丝分裂逐渐减弱、细胞迅速伸长(1分)成熟区:有丝分裂停止、细胞分化成熟.说明双子叶植物根的初生结构特点。
答:表皮:有根毛,无角质层和气孔器。
(1分)皮层:有内皮层和凯氏带。
(2分)中柱:有中柱鞘,木质部外始式,木质部、韧皮部间隔排列(辐射状排列),多数无髓。
说明植物界的进化规律。
答:由水生到陆生,由低等到高等,由简单到复杂,配子体逐渐退化,孢子体逐渐发达。
为什么说胚是种子最重要的部分.答:胚由受精卵(合子)发育而成的新一代植物体的雏型(即原始体)。
是种子的最重要的组成部分。