北师大版九年级上册数学 第六章综合优质练习 试题

合集下载

北师大版九年级数学上册利用一元二次方程解决几何问题及数字问题测试题

北师大版九年级数学上册利用一元二次方程解决几何问题及数字问题测试题

北师大版初中数学测试题2.6 应用一元二次方程第1课时利用一元二次方程解决几何问题及数字问题1. 在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x 满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=02.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,•则这个两位数为().A.25 B.36 C.25或36 D.-25或-363.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2 D.64cm24. 两个正方形面积的和为106,周长的差为16,则其中较大的正方形的边长是.5.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.6. 要用一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.若梯子的顶端下滑1m,如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是米.7.有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)8.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?9、一个两位数等于它的个位数字与十位数字的乘积的3倍,并且十位上的数字比个位数小2,求这个两位数。

10、一个三位数,十位数字比百位数字大3,个位数字等于百位数与十位数的和,已知这个三位数比个位数字平方的5倍大12,求这个三位数。

北师大版九年级数学上册综合与实践池塘里有多少条鱼

北师大版九年级数学上册综合与实践池塘里有多少条鱼

第7页 2017.9
如果口袋中只有若干个白球,没有其它颜色的球, 而且不允许将球倒出来数,那么你如何估计出其中 的白球数呢?与同伴进行交流. 可以向口袋中另放几个黑球,也可以从口袋中 抽出几个球并把它们染成黑色或做上标记
第8页 2017.9
八仙过海,尽显才能
(1)你能设计一个方案估计某鱼塘中鱼的总数吗? (2)利用这种方法还可以解决生活中的哪些问题?请 举一个实例,并提供一个相应的解决方案.
一个口袋中有8个黑球和若干个白球,如果不许将球倒出 来数,那么你能估计出其中的白球数吗? 从口袋中随机摸出一球,记下其颜色,再把它放回口袋 中.不断重复上述过程.我共摸了200次,其中有57次摸到 黑球,因此我估计口袋中大约有20个白球.
假设口袋中有 x 个白球,通过多 次试验 , 我们可以估计出从口 袋中随机摸出一球 , 它为黑球 的概率 ;另一方面 ,这个概率又
《数学》( 北师大.九年级 上册 )
综合实践
第1页 2017.9
要知道一个鱼缸里有多少条鱼? 只要知道自己的池塘中有多少条 鱼,该怎么办呢?
第2页 2017.9
先考虑一个比较简单的问题: 一个口袋中有8个黑球和若干个白球,如果不许将球倒 出来数,那么你能估计出其中的白球数吗? (1)分组设计摸球方案,估计口袋中所放的白球数. 有几种摸球方案? (2)交流各组的摸球方案,说说其中的道理. 可以一次摸 一个球,也 可以一次摸 多个球.
第4页 2017.9
袋中是何色球 一个口袋中有8个黑球和若干个白球,如果不许将 球倒出来数,那么你能估计出其中的白球数吗? 小明是这样做的:
从口袋中随机摸出一球,记 下其颜色,再把它放回口袋 中.不断重复上述过程.我共 摸了200次,其中有57次摸到 黑球,因此我估计口袋中大约 有20个白球.

北师大版九年级数学上册《1.3 正方形的性质与判定》 同步练习试题

北师大版九年级数学上册《1.3 正方形的性质与判定》 同步练习试题

1.3 正方形的性质与判定一.选择题1.下列说法错误的是()A.对角线互相垂直的平行四边形是矩形B.矩形的对角线相等C.对角线相等的菱形是正方形D.两组对边分别相等的四边形是平行四边形2.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=25°,则∠AED=()A.60°B.65°C.70°D.75°3.如图,两把完全一样的直尺叠放在﹣起,重合的部分构成一个四边形,给出以下四个论断:①这个四边形可能是正方形②这个四边形一定是菱形③这个四边形不可能是矩形④这个四边形一定是轴对称图形,其中正确的论断是()A.①②B.③④C.①②④D.①②③④4.如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若△ABC为任意三角形,则四边形ADEG是平行四边形B.若∠BAC=90°,则四边形ADEG是矩形C.若AC=AB,则四边形ADEG是菱形D.若∠BAC=135°且AC=AB,则四边形ADEG是正方形5.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE与BF相交于O;下列结论:(1)AE=BF;(2)AE⊥BF;(3)AD=OE;(4)S△AOB=S四边形DEOF.其中正确的有()A.4个B.3个C.2个D.1个二.填空题6.如图,平面内直线l1∥l2∥l3∥l4,且相邻两条平行线间隔均为1,正方形ABCD四个顶点分别在四条平行线上,则正方形的面积为.7.如图,正方形ABCD的边长为5,AG=CH=4,BG=DH=3,连接GH,则线段GH的长为.8.如图,在边长为2的正方形ABCD中,点E、F分别是边AB,BC的中点,连接EC,FD,点G、H分别是EC,FD的中点,连接GH,则GH的长度为.9.如图,已知正方形ABCD的边长为7,点E,F分别在AD、DC上,AE=DF=3,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.10.如图,四边形ABCD为正方形,AB为边向正方形外作等边三角形ABE、CE与DB相交于点F,则∠AFD=度.11.如图,在正方形ABCD的外侧,作等边三角形ABE,则∠DEB的度数为度.12.如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为.13.如图,四边形ABCD是一个正方形,E是BC延长线上的一点,且AC=EC,则∠DAE =.14.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.15.已知:正方形ABCD中,对角线AC、BD相交于点O,∠DBC的平分线BF交CD于点E,交AC于点F,OF=1,则AB=.三.解答题16.如图,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分线交AC于点D,E是AB上点,且BE=BC,CF∥ED交BD于点F,连接EF,ED.(1)求证:四边形CDEF是菱形;(2)当∠ACB=度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长.17.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.18.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.19.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.20.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.21.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?参考答案一.选择题1.解:对角线互相垂直的平行四边形是菱形,故选项A错误;矩形的对角线相等,故选项B正确;对角线相等的菱形是正方形,故选项C正确;两组对边分别相等的四边形是平行四边形,故选项D正确;故选:A.2.解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.3.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形直尺的宽度相等,∴DE=DF,又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.当∠DAB=90°时,这个四边形是正方形,∴这个四边形一定是轴对称图形,故选:C.4.解:A、∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等),正确,故本选项不符合题意;B、∵四边形ABDI和四边形ACHG是正方形,∴∠DAI=45°,∠GAC=90°,∵∠BAC=90°,∴∠DAG=360°﹣45°﹣90°﹣90°=135°,∵四边形ADEG是平行四边形,∴四边形ADEG不是矩形,错误,故本选项符合题意;C、∵四边形ADEG是平行四边形,∴若要四边形ADEG是菱形,则需AD=AG,即AD=AC.∵AD=AB,∴当AB=AD,即AB=AC时,四边形ADEG是菱形,正确,故本选项不符合题意;D、∵当∠BAC=135°时,∠DAG=360°﹣45°﹣90°﹣135°=90°,即平行四边形ADEG是平行四边形,∵当AB=AD,即AB=AC时,四边形ADEG是菱形,∴四边形ADEG是正方形,即当∠BAC=135°且AC=AB时,四边形ADEG是正方形,正确,故本选项不符合题意;故选:B.5.解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠ADE=90°.∵CE=DF,∴AF=DE.在△ABF和△DAE中,,∴△ABF≌△DAE.∴AE=BF,故(1)正确.∵△ABF≌△DAE,∴∠AFB=∠AED.∵∠AED+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF,故(2)正确.∵△ABF≌△DAE,∴S△ABF=S△ADE.∴S△AOB=S△ABF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,即∴S△AOB=S四边形DEOF.如图所示:过点E作EG⊥AB,则EG=AD.∵HE>OE,GE>HE,∴GE>OE.∴AD>OE,故(3)错误.故选:B.二.填空题6.解:过C点作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠CED=∠BFC=90°.∵ABCD为正方形,∴∠BCD=90°.∴∠DCE+∠BCF=90°.又∵∠DCE+∠CDE=90°,∴∠CDE=∠BCF.在△CDE和△BCF中,∴△CDE≌△BCF(AAS),∴BF=CE=2.∵CF=1,∴BC2=12+22=5,即正方形ABCD的面积为5.故答案为:5.7.解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∵AG=CH=4,BG=DH=3,AB=5,∴AG2+BG2=AB2,∴∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE﹣BG=4﹣3=1,同理可得HE=1,在Rt△GHE中,GH===,故答案为:.8.解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=1,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∴△PDH≌△CFH(AAS),∴PD=CF=1,∴AP=AD﹣PD=1,∴PE==,∵点G,H分别是EC,FD的中点,∴GH=EP=.9.解:∵四边形ABCD是正方形,∴AB=DA,∠BAE=∠ADF=90°,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=90°,∴∠BGF=90°,∵点H为BF的中点,∴GH=BF,又∵BC=CD=7,DF=3,∠C=90°,∴CF=4,∴BF===,∴GH=,故答案为:.10.解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形∴∠BEC=15°,∵∠FBE=∠DBA+∠ABE=105°,∴∠BFE=60°,在△CBF和△ABF中,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠F AB=15°+45°=60°.故答案为60.11.解:∵四边形ABCD是正方形∴AB=AD,∠BAD=90°∵△ABE是等边三角形∴AE=AB,∠BAE=∠BEA=60°∴AD=AE,∠DAE=150°∴∠AED=∠ADE=(180°﹣∠DAE)=15°∴∠DEB=∠BEA﹣∠AED=60°﹣15°=45°故答案为:45.12.解:∵∠ADE=∠BCE=90°+60°=150°,AD=BC,DE=CE,∴△ADE≌△BCE,∴AE=BE,∴∠EAB=∠EBA.∵正方形中AD=DC,等边三角形中DC=DE,∴AD=DE,∵∠ADE=90°+60°=150°,∴∠DEA==15°,同理∠CEB=15°,∴∠AEB=60°﹣15°﹣15°=30°,∴∠EAB==75°.故答案为75°.13.解:∵四边形ABCD是正方形,∴∠ACB=45°,AD∥BC,∵AC=EC,∴∠E=∠CAE,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=∠ACB=22.5°,∵AD∥BC,∴∠DAE=∠E=22.5°.故答案为:22.5°.14.解:过E作EF⊥DC于F,∵四边形ABCD是正方形,∴AC⊥BD,∵CE平分∠ACD交BD于点E,∴EO=EF,在Rt△COE和Rt△CFE中,∴Rt△COE≌Rt△CFE(HL),∴CO=FC,∵正方形ABCD的边长为1,∴AC=,∴CO=AC=,∴CF=CO=,∴EF=DF=DC﹣CF=1﹣,∴DE==﹣1,另法:因为四边形ABCD是正方形,∴∠ACB=45°=∠DBC=∠DAC,∵CE平分∠ACD交BD于点E,∴∠ACE=∠DCE=22.5°,∴∠BCE=45°+22.5°=67.5°,∵∠CBE=45°,∴∠BEC=67.5°,∴BE=BC,∵正方形ABCD的边长为1,∴BC=1,∴BE=1,∵正方形ABCD的边长为1,∴AC=,∴DE=﹣1,故答案为:﹣1.15.解:如图作FH∥BC交BD于点H.∵四边形ABCD是正方形,∴∠OBC=∠OCB=45°,OB=OC,∠BOC=90°∵FH∥BC,∴∠OHF=∠OBC,∠OFH=∠OCB,∴∠OHF=∠OFH,∴OH=OF=1,FH==,∵BF平分∠OBC,∴∠HBF=∠FBC=∠BFH,∴BH=FH=,∴OB=OC=1+,∴BC=OB=2+.故答案为2+.三.解答题16.证明:(1)如图,连接EC,交BD于点O∵BE=BC,BD平分∠ABC∴EO=CO,BD⊥CE∴EF=FC,DE=CD,∵CF∥DE∴∠DFC=∠FDE,且EO=CO,∠FOC=∠DOE ∴△DOE≌△FOC(AAS)∴DE=CF∴EF=FC=CD=DE∴四边形EFCD是菱形(2)当∠ACB=120度时,四边形CDEF是正方形,理由如下:∵∠ACB=120°,BC=AC∴∠ABC=∠BAC=30°∵BD平分∠ABC∴∠DBC=15°,且BD⊥EC∴∠BCO=75°∴∠ACE=45°,∵四边形EFCD是菱形∴∠FCD=2∠ACE=90°∴四边形CDEF是正方形,∴∠ADE=90°如图,过点C作CP⊥AB于点P,∵BC=AC=6,∠ABC=30°,CP⊥AB∴CP=3,BP=CP=3,AB=2BP=6,∴AE=AB﹣BE=6﹣6∵∠A=30°,∠ADE=90°∴DE=AE=3﹣317.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BD,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.18.解:(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF==2,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM==.19.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.20.证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.∵△ACE是等边三角形,∴AE=CE.∴BE⊥AC.∴四边形ABCD是菱形.(2)从上易得:△AOE是直角三角形,∴∠AEB+∠EAO=90°∵△ACE是等边三角形,∴∠EAO=60°,∴∠AEB=30°∵∠AEB=2∠EAB,∴∠EAB=15°,∴∠BAO=∠EAO﹣∠EAB=60°﹣15°=45°.又∵四边形ABCD是菱形.∴∠BAD=2∠BAO=90°∴四边形ABCD是正方形.21.解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。

九年级数学第六章 第3-4节 生日相同的概率;池塘里有多少鱼北师大版(精品)知识精讲

九年级数学第六章 第3-4节 生日相同的概率;池塘里有多少鱼北师大版(精品)知识精讲

初三数学第六章第3-4节生日相同的概率;池塘里有多少鱼北师大版【本讲教育信息】一、教学内容第六章第3~4节及本章的知识回顾二、教学目标1、能用实验的方法估计一些复杂的随机事件发生的概率2、进一步体会概率与统计之间的联系,用样本去估计总体的统一思想。

3、经历试验、统计等活动,在活动中进一步提高学生合作交流的意识和能力。

三、知识要点1、生日相同的概率的认识(1)此问题不能用树状图或列表法求解,只能通过试验的方法估计其概率。

(2)50个同学中有两个同学的生日相同,并不能说明50个同学中有两个同学生日相同的概率是1,而50个同学中没有两个同学生日相同,也不能说明其相应的概率为0。

2、模拟试验的两种方法:(1)用替代的实物模拟试验:替代物与被替代物形状、大小、质地可以差别很大,但是作为试验时考察的试验对象,其出现的概率应该是相同的,这样才不会影响试验结果;(2)用计算器产生随机数来模拟试验:当找不到合适的实物时,用实物替代比较麻烦,可以用计算器来模拟。

3、设计模拟试验估算概率需要注意以下几点:(1)清楚事件发生的可能性;(2)准备的替代物一定要完全相同;(3)要保证试验的随机性,摸牌或摸球放回时一定要注意摇匀;(4)要清楚地记录每一次试验(5)要重复多次试验4、已知袋中的一种颜色的球的数目,估算另一种颜色的球的数目,此问题有两种解法:(1)从袋中随意摸出一种球,记下颜色,然后将其放回袋中,重复这一过程,摸一定的次数,记录其中某颜色的球出现的次数,利用频率估算另一颜色的球的数目。

(2)利用抽样调查,从袋中一次摸出10个球,求出其中某一颜色的球数与10的比值,再把球放回袋中,重复上述过程,摸一定的次数,求出这一颜色的球数与10的比值的平均数,即平均概率,利用平均概率来估算另一颜色的球的数目。

5、估算袋中单一色球的数目向口袋中再放另一种颜色相同的球若干个,也可以从口袋中取出几个并将它们染成一样的其他颜色或作上标记,方法与4相同6、如何估计池塘有多少条鱼可设计如下方案:一次从鱼塘中捞出100条鱼,作上记号,然后放回去,待鱼完全混合于鱼群后,再一次从鱼塘中捕捞100条鱼,数出有记号的鱼的数目,利用,100100鱼的总数有记号的鱼的数目 即可得出鱼塘里鱼的数量。

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)一.选择题(共9小题,满分36分)1.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行另外一组对边相等的四边形是平行四边形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形2.已知四边形ABCD中,AC⊥BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.∠ABC=90°3.如图,平面直角坐标系中,菱形ABCD的顶点A(3,0),B(﹣2,0),顶点D在y轴正半轴上,则点C的坐标为()A.(﹣3,4)B.(﹣4,5)C.(﹣5,5)D.(﹣5,4)4.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH是()A.矩形B.菱形C.正方形D.平行四边形5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连接EF,则线段EF的最小值为()A.24B.3.6C.4.8D.56.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作CE⊥BD,垂足为E.已知∠BCE=4∠DCE,则∠COE的度数为()A.36°B.45°C.60°D.67.5°7.在正方形ABCD的外侧,作等边三角形ADE,则∠CBE的度数为()A.80°B.75°C.70°D.65°8.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30B.34C.36D.409.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S2二.填空题(共8小题,满分32分)10.如图,菱形ABCD中,若BD=24,AC=10,则AB的长等于.菱形ABCD的面积等于.11.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=度.12.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.13.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.14.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.15.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.16.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色.若每个小长方形的面积都是1,则红色的面积是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三.解答题(共7小题,满分52分)18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.19.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.20.如图,过△ABC的顶点A分别作∠ACB及其外角的平分线的垂线,垂直分布为E、F,连接EF交AB于点M,交AC于点N,求证:(1)四边形AECF是矩形;(2)MN=BC.21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB 于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.如图,平行四边形ABCD中,AD=9cm,CD=3cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.23.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F 作FG⊥AE交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.24.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A =PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一.选择题(共9小题,满分36分)1.解:A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选:B.2.解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.故选:C.3.解:∵菱形ABCD的顶点A(3,0),B(﹣2,0),∴CD=AD=AB=5,OA=3,∴OD===4∵AB∥CD,∴点C的坐标为(﹣5,4)故选:D.4.解:∵在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,∴EF∥AD,HG∥AD,∴EF∥HG,同理:HE∥GF,∴四边形EFGH是平行四边形,∵E、F、G、H分别是AB、BD、CD、AC的中点,∴GH=AD,GF=BC,∵AD=BC,∴GH=GF,∴平行四边形EFGH是菱形;故选:B.5.解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:C.6.解:∵四边形ABCD为矩形,∴∠BCD=90°,OC=OB,∵∠BCE=4∠DCE,∴5∠DCE=90°,∴∠DCE=18°,∴∠BCE=72°,∵CE⊥BD,∴∠EBC=90°﹣∠BCE=18°,∵OB=OC,∴∠OCB=18°,∴∠COE=36°,故选:A.7.解:∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=AD,∵△ADE是等边三角形,∴∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=15°,∴∠CBE=90°﹣15°=75°,故选:B.8.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选:B.9.解:∵矩形ABCD的面积S1=2S△ABD,S△ABD=S矩形BDEF,∴S1=S2.故选:A.二.填空题(共8小题,满分32分)10.解:∵菱形ABCD中,BD=24,AC=10,∴BO=12,AO=5,AC⊥BD,∴AB==13,∴菱形ABCD的面积==120故答案为:13,12011.解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.12.解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.13.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.14.解:连接ED,如图,∵点B关于OC的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().15.解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:.16.解:设每个小长方形长为a,宽为b,则ab=1.用大长方形的面积减去三个空白部分的三角形面积,就等于阴影部分的面积.4a×4b﹣a×4b﹣3a×3b﹣×3a×3b=5ab=5.故填5.17.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.三.解答题(共7小题,满分52分)18.(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CF A=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.19.(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∴∠PDE=∠PED=40°.20.证明:(1)∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠BCE=∠ACB,∠ACF=∠ACD,∵∠ACB+∠ACD=180°,∴∠ACE+∠ACF=90°,即∠ECF=90°,又∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形;(2)∵四边形AECF是矩形,∴EN=FN,AN=CN=AC,∴CN=EF=EN,∴∠NEC=∠ACE=∠BCE,∴EN∥BC,∴==,∴MN=BC.21.(1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE;(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.4.22.解:(1)∵四边形ABCD是平行四边形,∴AB=CD=3cm.在直角△ABE中,∵∠AEB=90°,∠B=45°,∴AE=AB•sin∠B=3×=3(cm);(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),∴AM=CN=t,∵AM∥CN,∴四边形AMCN为平行四边形,∴当AN=AM时,四边形AMCN为菱形.∵BE=AE=3,EN=6﹣t,∴AN2=32+(6﹣t)2,∴32+(6﹣t)2=t2,解得t=.故当t为时,四边形AMCN为菱形;(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,∴四边形MPNQ为矩形,∴当QM=QN时,四边形MPNQ为正方形.∵AM=CN=t,BE=3,∴AQ=EN=BC﹣BE﹣CN=9﹣3﹣t=6﹣t,∴QM=AM﹣AQ=|t﹣(6﹣t)|=|2t﹣6|(注:分点Q在点M的左右两种情况),∵QN=AE=3,∴|2t﹣6|=3,解得t=4.5或t=1.5.故当t为4.5或1.5秒时,四边形MPNQ为正方形.23.(1)证明:如图①,连接CF,在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵FG⊥AE,∴在四边形ABGF中,∠BAF+∠BGF=360°﹣90°﹣90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF,∴∠CGF=∠BCF,∴AF=FG;(2)如图②,把△ADE顺时针旋转90°得到△ABH,则AH=AE,BH=DE,∠BAH=∠DAE,∵AF=FG,FG⊥AE,∴△AFG是等腰直角三角形,∴∠EAG=45°,∴∠HAG=∠BAG+∠DAE=90°﹣45°=45°,∴∠EAG=∠HAG,在△AHG和△AEG中,,∴△AHG≌△AEG(SAS),∴HG=EG,∵HG=BH+BG=DE+BG=2+3=5,∴EG=5.24.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,。

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合练习题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合练习题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合练习题(附答案)一.选择题1.正方形具有而菱形不具有的性质是()A.四边相等B.四角相等C.对角线互相平分D.对角线互相垂直2.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE =2.若∠EOF=45°,则F点的纵坐标是()A.1B.C.D.﹣13.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.184.关于平行四边形ABCD的叙述,正确的是()A.若AB⊥BC,则平行四边形ABCD是菱形B.若AC⊥BD,则平行四边形ABCD是正方形C.若AC=BD,则平行四边形ABCD是矩形D.若AB=AD,则平行四边形ABCD是正方形5.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.46.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A.96cm2B.48cm2C.24cm2D.12cm27.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长等于()A.5B.C.D.8.已知菱形的两条对角线的长分别是6和8,则菱形的周长是()A.36B.30C.24D.209.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192 C.20 D.以上答案都不对10.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD中点,若AB=6,BC=8,则△AEF的周长为()A.6B.8C.9D.1011.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3B.4C.5D.6二.填空题12.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.13.如图,四边形ABCD是平行四边形,补充一个条件使其成为菱形,你补充条件是(只需填一个即可).14.如图所示,四边形ABCD为矩形,AE⊥EG,已知∠1=25°,则∠2=15.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠BEC的度数是度.16.已知正方形的对角线长为2,则它的面积.17.如图,两个正方形边长分别为2、a(a>2),图中阴影部分的面积为.18.如图,P为菱形ABCD的对角线上一点,PF⊥AD于F,PF=3cm,点E为AB边上一动点,则PE的最小值为cm.三.解答题19.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD 的面积和BE的长.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.21.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.22.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?23.如图,已知正方形ABCD,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN.24.如图所示,四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是36,求DP的长.25.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)写出线段AE、DF的数量和位置关系,并说明理由.参考答案一.选择题1.解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选:B.2.解:如图,连接EF,延长BA,使得AM=CE,∵OA=OC,∠OCE=∠AOM,∴△OCE≌△OAM(SAS).∴OE=OM,∠COE=∠MOA,∵∠EOF=45°,∴∠COE+∠AOF=45°,∴∠MOA+∠AOF=45°,∴∠EOF=∠MOF,在△OFE和△OFM中,,∴△OFE≌△FOM(SAS),∴EF=FM=AF+AM=AF+CE,设AF=x,∵CE===2,∴EF=2+x,EB=2,FB=4﹣x,∴(2+x)2=22+(4﹣x)2,∴x=,∴点F的纵坐标为,故选:B.3.解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.4.解:A、错误.若AB⊥BC,则平行四边形ABCD是矩形;B、错误.若AC⊥BD,则平行四边形ABCD是菱形;C、正确.D、错误.若AB=AD,则平行四边形ABCD是菱形;故选:C.5.解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.6.解:设菱形的对角线分别为3a,4a,∵菱形的周长为40,∴菱形的边长为10,∴()2+(2a)2=102,∴a2=16,∴菱形的面积=×3a×4a=6a2=96.故选:A.7.解:∵四边形ABCD是菱形,BD=8,∴BO=DO=4,∠BOC=90°,在Rt△OBC中,OC===3,∴AC=2OC=6,∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.8.解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=20.故选:D.9.解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=4,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=192.故选:B.10.解:∵四边形ABCD是矩形,∴AD=BC=8,∠BAD=90°,OB=OD=OA=OC,在Rt△BAD中,∵BD===10,∴OD=OA=OB=5,∵E.F分别是AO.AD中点,∴EF=OD=,AE=,AF=4,∴△AEF的周长为9,故选:C.11.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,AB=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.二.填空题12.解:∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,∴S四边形ABCD=AB×3=BC×3,∴AB=BC,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,在△ABE中,AB2=BE2+AE2,即AB2=AB2+32,解得AB=2,∴S四边形ABCD=BC•AE=2×3=6.故答案是:6.13.解:∵AB=BC,且四边形ABCD为平行四边形∴四边形ABCD是菱形故答案为:AB=BC(答案不唯一)14.解:∵四边形ABCD是矩形∴AD∥BC∴∠DFE=∠2∵∠DFE=∠1+∠E=115°∴∠2=115°故答案为:115°15.解:在正方形ABCD中,AC平分∠BAD,∴∠BAE=45°而AB=AE∴∠ABE=∠AEB==67.5°又∵∠AEB+∠BEC=180°∴∠BEC=180°﹣67.5°=112.5°故答案为112.5.16.解:∵正方形的一条对角线的长2,∴这个正方形的面积==4,故答案为417.解:阴影部分的面积=18.解:∵四边形ABCD是菱形∴AC为∠DAB的角平分线∵PF⊥AD于点F,PF=3cm.∴PE最短时PE=PF=3cm.故答案为3.三.解答题19.解:菱形ABCD的面积S=×16×12=96,∵AC⊥BD,∴AB=10,∴CD=AB=10,∴×CD×BE=48,∴BE=cm,所以菱形ABCD的面积为96cm2,BE的长为cm.20.证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.21.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.∴在△ABD与△BEC中,,∴△ABD≌△BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.22.解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴∠BFE=90°,∠BGE=90°.又∵∠B=90°,∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.23.解:(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∵PM=PN,∴四边形PMAN是正方形;(2)证明:∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN.24.解:作DE⊥BC,交BC延长线于E,如图,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,,∴△ADP≌△CDE,∴DP=DE,S△ADP=S△CDE,∴四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,∴DP2=36,∴DP=6.25.解:(1)∵四边形ABCD是正方形,∴DA=AB,∠DAF=∠ABE=90°,∵AF=BE,∴△DAF≌△ABE(SAS);(2)AE=DF,AE⊥DF,理由如下:由(1)得:△DAF≌△ABE,∴DF=AE,∠ADF=∠BEA,∵∠DAO+∠EAB=∠DAF=90°,∴∠DAO+∠ADF=90°,∴∠DOA=90°,∴AE⊥DF.。

北师大版九年级数学上册单元测试题全套及答案

最新北师大版九年级数学上册单元测试题全套及答案(最新北师大版,2017年秋配套试题)第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.菱形对称轴条数为( )A .1B .2C .3D .4 2.下列说法中,正确是( )A .相等角一定是对顶角B .四个角都相等四边形一定是正方形C .平行四边形对角线互相平分D .矩形对角线一定垂直3.平面直角坐标系中,四边形ABCD 顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形 4.下列命题是假命题是( )A .四个角相等四边形是矩形B .对角线相等平行四边形是矩形C .对角线垂直四边形是菱形D .对角线垂直平行四边形是菱形5.如图,矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿AE 对折,使得点B 落在边AD 上点B 1处,折痕与边BC 交于点E ,则CE 长为( )A .6 cmB .4 cmC .2 cmD .1 cm6.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( A ) A.245 B.125C .5D .4 ,第6题图) ,第7题图) 7.如图,每个小正方形边长为1,A ,B ,C 是小正方形顶点,则∠ABC 度数为( ) A .90° B .60° C .45° D .30°8.已知四边形ABCD 两条对角线AC 与BD 互相垂直,则下列结论正确是( ) A .当AC =BD 时,四边形ABCD 是矩形B .当AB =AD ,CB =CD 时,四边形ABCD 是菱形C .当AB =AD =BC 时,四边形ABCD 是菱形D .当AC =BD ,AD =AB 时,四边形ABCD 是正方形9.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 长是( )A.5B.136 C .1 D.56,第9题图) ,第10题图)10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确是( )A .①②B .②③C .①③D .①④ 二、填空题(每小题3分,共18分)11.已知菱形两条对角线长分别为2 cm ,3 cm ,则它面积是___cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 度数是___度. 13.如图所示,将△ABC 绕AC 中点O 顺时针旋转180°得到△CDA ,添加一个条件__ __,使四边形ABCD 为矩形.,第12题图),第13题图),第14题图),第15题图)14.已知矩形ABCD,AB=3 cm,AD=4 cm,过对角线BD中点O作BD垂直平分线EF,分别交AD,BC于点E,F,则AE长为_ cm.15.如图,菱形ABCD边长为4,过点A,C作对角线AC垂线,分别交CB和AD延长线于点E,F,AE=3,则四边形AECF周长为____.16.矩形OABC在平面直角坐标系中位置如图所示,点B坐标为(3,4),D是OA中点,点E在AB上,当△CDE周长最小时,则点E坐标为__(_)_.三、解答题(共72分)17.(10分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长和是86 cm,对角线长是13 cm,那么矩形周长是多少?18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.19.(10分)如图,已知菱形ABCD对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO大小.20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD中点,BD是对角线,AG∥BD交CB延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你结论.21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形面积.22.(10分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至G,使OG=OD,连接EG,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12分)如图,在矩形ABCD中,点M,N分别是AD,BC中点,点P,Q分别是BM,DN中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么特殊四边形?请说明理由.第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,关于x 一元二次方程是( )A .3(x +1)2=2(x +1) B.1x2+1x-2=0C .ax 2+bx +c =0D .x 2+2x =x 2-1 2.方程(x -2)(x +3)=0解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-33.若x =-2是关于x 一元二次方程x 2+32ax -a 2=0一个根,则a 值为( )A .-1或4B .-1或-4C .1或-4D .1或44.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确是( ) A .(x -1)2=2 B .(x -1)2=4 C .(x -1)2=1 D .(x -1)2=7 5.下列一元二次方程中,没有实数根是( )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=0 6.解方程(x +1)(x +3)=5较为合适方法是( ) A .直接开平方法 B .配方法C .公式法或配方法D .分解因式法7.已知一元二次方程x 2-2x -1=0两个根分别是x 1,x 2,则x 12-x 1+x 2值为( ) A .-1 B .0 C .2 D .38.关于x 方程x 2-ax +2a =0两根平方和是5,则a 值是( ) A .-1或5 B .1 C .5 D .-1 9.某县政府2015年投资0.5亿元用于保障性住房建设,计划到2017年投资保障性住房建设资金为0.98亿元,如果从2015年到2017年投资此项目资金年增长率相同,那么年增长率是( )A .30%B .40%C .50%D .10%10.有一块长32 cm ,宽24 cm 长方形纸片,在每个角上截去相同正方形,再折起来做一个无盖盒子,已知盒子底面积是原纸片面积一半,则盒子高是( )A .2 cmB .3 cmC .4 cmD .5 cm 二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9二次项系数、一次项系数、常数项和为___. 12.方程(x +2)2=x +2解是____.13.若代数式4x 2-2x -5与2x 2+1值互为相反数,则x 值是__.14.写一个你喜欢实数k 值__ _,使关于x 一元二次方程(k +1)x 2+2x -1=0有两个不相等实数根. 15.某制药厂两年前生产1吨某种药品成本是100万元,随着生产技术进步,现在生产1吨这种药品成本为81万元.则这种药品成本年平均下降率为___.16.设m ,n 分别为一元二次方程x 2+2x -2018=0两个实数根,则m 2+3m +n =__. 三、解答题(共72分) 17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;(3)3x 2-7x +4=0.18.(10分)如图,已知A ,B ,C 是数轴上异于原点O 三个点,且点O 为AB 中点,点B 为AC 中点.若点B 对应数是x ,点C 对应数是x 2-3x ,求x 值.19.(8分)一元二次方程x 2-2x -54=0某个根,也是一元二次方程x 2-(k +2)x +94=0根,求k 值.20.(10分)某种商品标价为400元/件,经过两次降价后要价为324元/件,并且两次降价百分率相同. (1)求该种商品每次降价百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?21.(10分)小林准备进行如下操作试验:把一根长为40 cm 铁丝剪成两段,并把每一段各围成一个正方形. (1)要使这两个正方形面积之和等于58 cm 2,小林该怎么剪? (2)小峰对小林说:“这两个正方形面积之和不可能等于48 cm 2,”他说法对吗?请说明理由.22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x 月利润月平均值W(万元)满足W =10 x +90.请问多少个月后利润和为1620万元?23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊资金不少于购买书桌、书架等设施资金3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与户数在200户基础上增加了a%(其中a>0).则每户平均集资资金在150元基础上减少了109a%,求a 值.第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀骰子,朝上点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)大小关系正确是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B ) C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数概率是( ) A.15 B.25 C.35 D.453.如图,在2×2正方形网格中有9个格点,已经取定点A 和B ,在余下7个点中任取一点C ,使△ABC 为直角三角形概率是( )A.12B.25C.37D.474.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取两个球数字之和大于6概率是( )A.12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11概率为( ) A.118 B.136 C.112 D.1156.用图中两个可自由转动转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色概率是( )A.14B.34C.13D.12,第6题图) ,第7题图) 7.如图所示两个转盘中,指针落在每一个数上机会均等,那么两个指针同时落在偶数上概率是( ) A.1925 B.1025 C.625 D.525 8.有三张正面分别写有数字-1,1,2卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 值,然后再从剩余两张卡片中随机抽取一张,以其正面数字作为b 值,则点(a ,b)在第二象限概率是( )A.16B.13C.12D.239.从长为10 cm ,7 cm ,5 cm ,3 cm 四条线段中任选三条能够组成三角形概率是( ) A.14 B.13 C.12 D.3410.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中任意两点与点O 为顶点作三角形,所作三角形是等腰三角形概率是( )A.34B.13C.23D.12二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球概率为___.12.在一个不透明袋子中有10个除颜色外均相同小球,通过多次摸球试验后,发现摸到白球频率约为40%,估计袋中白球有____个.13.有两把不同锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁概率是___.14.一个不透明袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出小球都是白球概率是__.15.若同时抛掷两枚质地均匀骰子,则事件“两枚骰子朝上点数互不相同”概率是__.16.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比统计图.在这包糖果中任取一粒糖果,则取出糖果颜色为绿色或棕色概率是__.三、解答题(共72分) 17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表方法列出所有可能出现结果,并求小明穿上衣和裤子恰好都是蓝色概率.18.(10分)在一个不透明口袋中装有4张相同纸牌,它们分别标有数字1,2,3,4.随机地摸取一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5概率; (2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同卡片,甲袋中三张卡片上所标有三个数值为-7,-1, 3.乙袋中三张卡片所标数值为-2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出卡片上数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上数值,把x ,y 分别作为点A 横坐标和纵坐标.(1)用适当方法写出点A(x ,y)所有情况; (2)求点A 落在第三象限概率. (1)列表:20.(10分)分别把带有指针圆形转盘A,B分成4等份、3等份扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域数字之积为奇数,则欢欢胜;若指针所指两区域数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图方法,求欢欢获胜概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是________事件;(可能,必然,不可能)(2)请用列表或画树状图方法,求出小张同学该天早餐刚好得到猪肉包和油饼概率.22.(10分)某景区7月1日~7月7日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续两天,恰好天气预报都是晴.23.(12分)有四张正面分别标有数字2,1,-3,-4不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上数字记为m,再随机地摸取一张,将卡片上数字记为n.(1)请画出树状图并写出(m,n)所有可能结果;(2)求所选出m,n能使一次函数y=mx+n图象经过第二、三、四象限概率.(1)①画树状图得:第四章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法正确是( )A .对应边都成比例多边形相似B .对应角都相等多边形相似C .边数相同正多边形相似D .矩形都相似2.已知△ABC ∽△DEF ,相似比为3∶1,且△ABC 周长为18,则△DEF 周长为( ) A .2 B .3 C .6 D .54 3.如图,已知BC ∥DE ,则下列说法不正确是( C )A .两个三角形是位似图形B .点A 是两个三角形位似中心C .AE ∶AD 是相似比 D .点B 与点E ,点C 与点D 是对应位似点 4.如图,身高为1.6 m 小红想测量学校旗杆高度,当她站在C 处时,她头顶端影子正好与旗杆顶端影子重合,并测得AC =2.0 m ,BC =8.0 m ,则旗杆高度是( C )A .6.4 mB .7.0 mC .8.0 mD .9.0 m,第3题图) ,第4题图) ,第5题图),第6题图)5.如图,为估算某河宽度,在河对岸选定一个目标点,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,CE =10 m ,CD =20 m ,则河宽度AB 等于( B )A .60 mB .40 mC .30 mD .20 m6.如图,矩形ABCD 面积是72,AE =12DC ,BF =12AD ,那么矩形EBFG 面积是( B )A .24B .18C .12D .9 7.如图,点A ,B ,C ,D 坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点三角形与△ABC 相似,则点E 坐标不可能是( B )A .(6,0)B .(6,3)C .(6,5)D .(4,2),第7题图) ,第8题图) ,第9题图),第10题图)8.如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③ADAB=OE OB ;④S △ODE S △ADC =13.其中正确个数有( B ) A .1个 B .2个 C .3个 D .4个9.如图,在△ABC 中,∠A =36°,AB =AC ,AB 垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD.下列结论错误是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 黄金分割点 10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△PAD 与△PBC 是相似三角形,则满足条件点P 个数是( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共18分)11.若x y =m n =45(y ≠n),则x -m y -n =__45__.12.如图是两个形状相同红绿灯图案,则根据图中给出部分数值,得到x 值是__16__.13.如图,在△ABC 中,点P 是AC 上一点,连接BP.要使△ABP ∽△ACB,则必须有∠ABP =__∠C __或∠APB =__∠ABC __或AB AP =__ACAB__.,第12题图) ,第13题图) ,第14题图) ,第15题图)14.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 中点,CF ⊥BE 于点F ,则CF =__125__. 15.如图,一条河两岸有一段是平行,在河南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米点P 处看北岸,发现北岸相邻两根电线杆恰好被南岸两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.如图,以点O 为位似中心,将△ABC 缩小后得△A′B′C′,已知OB =3OB′,则△A′B′C′与△ABC 面积之比为__1∶9__.三、解答题(共72分) 17.(10分)如图,点D 是△ABC 边AC 上一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 长.在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC =ADAB,∵AB =6,AD =4,∴AC =AB2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似钢筋三角架,而只有长为30厘米和50厘米两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同截法有多少种?写出你设计方案,并说明理由.两种截法:①30厘米与60厘米两根钢筋为对应边,把50厘米钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米两根钢筋为对应边,把50厘米钢筋截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两个三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到△A 1B 1C 1;(2)在网格内以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来2倍后△A 2B 2C 2.20.(10分)如图,矩形ABCD 为台球桌面.AD =260 cm ,AB =130 cm .球目前在E 点位置,AE =60 cm .如果小丁瞄准了BC 边上点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ; (2)求CF 长.(1)∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF ∽△CDF(2)设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得,△BEF ∽△CDF ,∴BE CD =BFCF,即70130=260-x x ,∴x =169,即CF =169 cm21.(10分)如图,在△ABC 中,AD 是中线,且CD 2=BE·BA.求证:ED·AB =AD·BD.∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BDAB,又∠B =∠B ,∴△BED ∽△BDA ,∴ED AD =BDAB,∴ED ·AB =AD·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE =∠B.(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 长.(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD ,∴DE =AD·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE2-AD2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°),点D 为AB 中点,DE 交AC 于点P ,DF 经过点C. (1)求∠ADE 度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时等腰直角三角尺记为△DE′F′,DE′交AC 于点M ,DF′交BC 于点N ,试判断PM CN 值是否随着α变化而变化?如果不变,请求出PMCN值;反之,请说明理由.(1)由题意知,CD 是Rt △ABC 斜边AB 上中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30° (2)PMCN值不会随着α变化而变化,理由如下:∵△APD 外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD =∠NCD =60°,∠PDM =∠CDN =α,∴△MPD ∽△NCD ,PM CN =PDCD,∵∠ACB =90°,∠BCD =60°,∴∠PCD =30°.在Rt △PCD中,∠PCD =30°,∴PD CD =13=33,∴PM CN =PD CD =33第五章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.将一包卷筒卫生纸按如图所示方式摆放在桌面上,它俯视图是( D )2.如图是由4个相同正方体组成几何体,则这个几何体俯视图是( A )3.如图是一个几何体实物图,则其主视图是( C )4.如图是一支架(一种小零件),支架两个台阶高度和宽度都是同一长度,则它三视图是( A )5.木棒长为1.2 m ,则它正投影长一定( D )A .大于1.2 mB .小于1.2 mC .等于1.2 mD .小于或等于1.2 m 6.下列四个几何体中,俯视图为四边形是( D )。

2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合优生辅导练习题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合优生辅导练习题(附答案)一.选择题(共11小题,满分44分)1.在四边形ABCD中,对角线AC,BD相交于点O,下列说法正确的是()A.如果AB=CD,AD∥BC,那么四边形ABCD是平行四边形B.如果AC=BD,AC⊥BD,那么四边形ABCD是矩形C.如果AB=BC,AC⊥BD,那么四边形ABCD是菱形D.如果AO=CO,BO=DO,BC=CD,∠ABC=90°,那么四边形ABCD是正方形2.如图,正方形纸片ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0),若h1=5,h2=2,则正方形ABCD的面积S等于()A.34B.89C.74D.1093.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥DC于点F,连接EF,给出下列四个结论:①AP=EF;②AP⊥EF;③∠PFE=∠BAP;④PD=EC,其中正确的是()A.1个B.2个C.3个D.4个4.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E(2,3),则点F 的坐标为()A.(﹣1,5)B.(﹣2,3)C.(5,﹣1)D.(﹣3,2)5.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3B.4C.5D.66.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A.(3,1)B.(3,﹣1)C.(1,﹣3)D.(1,3)7.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.8.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5B.C.D.29.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.10.如图,∠ABC=∠ADC=90°,∠BAD=70°,点E是AC的中点.则∠EBD的度数为()A.20°B.35°C.40°D.55°11.如图,点E为矩形ABCD的边BC上的点,作DF⊥AE于点F,且满足DF=AB.下面结论:①DE平分∠AEC;②△ADE为等腰三角形;③AF=AB;④AE=BE+EF.其中正确的结论有多少个()A.1个B.2个C.3个D.4个二.填空题(共5小题,满分20分)12.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF的最小值是.13.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.14.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=6.点P在正方形的边上,则满足PE+PF=5的点P的个数是个.15.如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=°.16.如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作EF⊥AD,垂足为点F.若AF=3,EC=5,则正方形ABCD的面积为.三.解答题(共8小题,满分56分)17.如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.18.如图,▱ABCD中,点E,F分别在边BC,AD上,BE=DF,∠AEC=90°.(1)求证:四边形AECF是矩形;(2)连接BF,若AB=4,∠ABC=60°,BF平分∠ABC,求AD的长.19.在平行四边形ABCD中,AC、BD相交于点O,E,F分别是OA,OC中点,连接BE,BF,DE,DF.(1)如图1,求证:四边形DEBF是平行四边形;(2)如图2,若AC=2BD,求证:四边形DEBF是矩形.20.如图,在Rt△ABC中,CA⊥AB,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=4,∠F AC=30°,求AB的长.21.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.22.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.求证:(1)BG=DE;(2)BG⊥DE.23.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.24.(1)如图1的正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连接EF,AG.求证:EF=FG;(2)如图2,等腰Rt△ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,求MN的长.参考答案一.选择题(共11小题,满分44分)1.解:如果AB=CD,AD∥BC,那么四边形ABCD是不一定是平行四边形,如等腰梯形,故选项A不符合题意;如果AC=BD,AC⊥BD,那么四边形ABCD不一定是矩形,如等腰梯形中的对角线可能相等且垂直,故选项B不符合题意;如果AB=BC,AC⊥BD,那么四边形ABCD不一定是菱形,如直角梯形,故选项C不符合题意;如果AO=CO,BO=DO,BC=CD,∠ABC=90°,那么四边形ABCD是正方形,故选项D符合题意;故选:D.2.证明:如图,过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,∵四边形ABCD是正方形,l1∥l2∥l3∥l4,∴AB=CD,∠ABE+∠HBC=90°,∵CH⊥l2,∴∠BCH+∠HBC=90°,∴∠BCH=∠ABE,同理可得,∠BCH=∠CDG,∴∠ABE=∠CDG,∵∠AEB=∠CGD=90°,在△ABE和△CDG中,,∴△ABE≌△CDG(AAS),∴AE=CG,即h1=h3,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∵∠AEB=∠DF A=∠BHC=∠CGD=90°,∠ABE=∠F AD=∠BCH=∠CDG,∴△AEB≌△DAF≌△BCH≌△CGD,且两直角边长分别为h1、h1+h2,∴四边形EFGH是边长为h2的正方形,∴正方形ABCD的面积S=4××h1(h1+h2)+h22=2h12+2h1h2+h22=(h1+h2)2+h12,∵h1=5,h2=2,∴S=(h1+h2)2+h12=49+25=74.故选:C.3.解:过P作PG⊥AB于点G,如图,∵点P是正方形ABCD的对角线BD上一点,∴GP=EP,在△GPB中,∠GBP=45°,∴∠GPB=45°,∴GB=GP,同理,得PE=BE,∵AB=BC=GF,∴AG=AB﹣GB,FP=GF﹣GP=AB﹣GB,∴AG=PF,∴△AGP≌△FPE(SAS),∴AP=EF,∴结论①正确;∵△AGP≌△FPE,∴∠PFE=∠GAP∴∠PFE=∠BAP,∴结论③正确;②延长AP到EF上于一点H,∴∠P AG=∠PFH,∵∠APG=∠FPH,∴∠PHF=∠PGA=90°,即AP⊥EF;∴结论②正确;∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴PD=EC,∴结论④正确;故选:D.4.解:过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′,∵点E(2,3),∴OH=2,EH=3,∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,,∴△OGM≌△EOH(ASA),∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故选:A.5.解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选:B.6.解:连接AB交OC于点D,∵四边形OACB是菱形,∴AB⊥OC,AD=BD=1,OD=CD=3,∴点B的坐标是(3,﹣1).故选:B.7.解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,由折叠知,BF⊥AE(对应点的连线必垂直于对称轴)∴BH==,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.8.解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.9.解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴S矩形ABCD=AB•BC=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△AOD=S矩形ABCD=15,OA=OD=AC=,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=××(PE+PF)=15,∴PE+PF=,故选:A.10.解:连接DE,∵∠ABC=∠ADC=90°,点E是AC的中点,∴点A,B,C,D在以E为圆心,AC为直径的同一个圆上,∵∠BAD=70°,∴∠DEB=2∠BAD=140°,∵DE=BE=AC,∴∠EBD=∠EDB==20°,故选:A.11.解:∵四边形ABCD是矩形,∴∠C=∠ABE=90°,AD∥BC,AB=CD,∵DF=AB,∴DF=CD,∵DF⊥AE,∴∠DF A=∠DFE=90°,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DEC(HL),∴∠FED=∠CED,∴DE平分∠AEC;故①正确;∵AD∥BC,∴∠AEB=∠DAF,在△ABE和△DF A中,,∴△ABE≌△DF A(AAS),∴AE=AD,∴△ADE为等腰三角形;故②正确;∵△ABE≌△DF A,∴不存在AF=AB,故③错误;∵△ABE≌△DF A,∴BE=F A,∴AE=AF+EF=BE+EF.故④正确.故正确的结论有①②④,三个.故选:C.二.填空题(共5小题,满分20分)12.解:连接CP,如图所示:∵∠C=90°,PF⊥AC于F,PE⊥BC于E,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF是矩形,∴EF=CP,要使EF最小,只要CP最小即可,当CP⊥AB时,CP最小,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:×4×3=×5×CP,∴CP=2.4,即EF=2.4,故答案为:2.4.13.解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.14.解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,∵点E,F将对角线AC三等分,且AC=6,∴EC=4,FC=2=AE,∵点M与点F关于BC对称,∴CF=CM=2,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=,则在线段BC存在点H到点E和点F的距离之和最小为2<5,在点H右侧,当点P与点C重合时,则PE+PF=4+2=6,∴点P在CH上时,2<PE+PF≤6,在点H左侧,当点P与点B重合时,∵FN⊥BC,∠ABC=90°,∴FN∥AB,∴,∵AB=BC=,∴FN=AB=,CN=,∴BN=BC﹣CN=2,BF=,∵AB=BC,CF=AE,∠BAE=∠BCF,∴△ABE≌△CBF(SAS),∴BE=BF=,∴PE+PF=2,∴点P在BH上时,2<PE+PF<2,∴在线段BC上点H的左右两边各有一个点P使PE+PF=5,同理在线段AB,AD,CD上都存在两个点使PE+PF=5.即共有8个点P满足PE+PF=5,故答案为8.15.解:∵MN是AC的垂直平分线,∴EC=EA,∴∠ECA=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∠D=90°,∴∠DCA=∠EAC=90°﹣70°=20°,∴∠DCE=∠DCA+∠ECA=20°+20°=40°,故答案为:40.16.解:连接AE,∵正方形ABCD,∴AB=BC,∠ABD=∠CBD=45°,∵BE=BE,∴△ABE≌△CBE,∴AE=EC=5,∵EF⊥AD,若AF=3,∴EF==4,∴DF=4,AD=4+3=7,∴正方形ABCD的面积为49,故答案为:49.三.解答题(共8小题,满分56分)17.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.18.(1)证明:∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD,又∵BE=DF,∴BC﹣BE=AD﹣DF,即EC=AF,∴EC=AF,∴四边形AECF为平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)解:在Rt△ABE中,∠AEB=90°,∠ABE=60°,AB=4,∴BE=2,AE=,∵四边形AECF是矩形,∴FC⊥BC,FC=AE=.∵BF平分∠ABC,∴∠FBC=∠ABC=30°,在Rt△BCF中,∠FCB=90°,∠FBC=30°,FC=,∴BC=6,∴AD=BC=6.19.证明:(1)∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,又∵E,F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形DEBF是平行四边形;(2)∵OA=OC,OE=OA=AC,OF=OC=,AC=2BD,∴EF=BD,又∵四边形DEBF是平行四边形,∴四边形DEBF是矩形.20.(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠F AD=∠ECD,∠AFD=∠CED,在△AFD和△CED中,,∴△AFD≌△CED(AAS),∴AF=EC,∵AF∥BC,∴四边形AECF是平行四边形,又∵EF⊥AC,∴平行四边形AECF是菱形.(2)解:由(1)得:四边形AECF是菱形,∴AE=CF=4,AE∥CF,∠ECF=∠F AE=2∠F AC=60°,∴∠AEB=∠ECF=60°,∵AF∥BC,∴∠ACB=∠F AC=30°,∵CA⊥AB,∴∠BAC=90°,∴∠B=90°﹣∠ACB=60°,∴△ABE是等边三角形,∴AB=AE=4.21.(1)证明:∵四边形ABCD中,E、F、G、H分别是AD、BC、BD、AC的中点,∴FG=CD,HE=CD,FH=AB,GE=AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解:∵四边形ABCD中,G、F、H分别是BD、BC、AC的中点,∴GF∥DC,HF∥AB.∴∠GFB=∠DCB,∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG=AB=.∴正方形EGFH的面积=()2=.22.证明:(1)∵四边形ABCD和CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCD+∠DCG=∠GCE+∠DCG,即:∠BCG=∠DCE,在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),∴BG=DE,(2)∵△BCG≌△DCE,∴∠GBC=∠EDC,∵∠GBC+∠BOC=90°,∠BOC=∠DOG,∴∠DOG+∠EDC=90°,∴BG⊥DE.23.①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD∴∠BCD=90°,∠ECN=45°∴∠EMC=∠ENC=∠BCD=90°且NE=NC,∴四边形EMCN为正方形∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,②解:CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG∴AC=AE+CE=AB=×2=4,∴CE+CG=4 是定值.24.(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△F AE和△GAF中,,∴△F AE≌△F AG(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=.。

北师大版-数学-九年级上册-6.2投针试验 课下作业

《九年级上第六章第一节投针试验》课下作业第1课时积累●整合1. 李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻,有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是A. 51B. 92C. 41D. 185答案B2. 袋中有大小完全一样的10个球,其中红球1个,白球2个,黄球3个,蓝球4个,则下列事件中发生概率为51的是( )A. 摸出1个红球B. 摸出1个白球C. 摸出1个黄球D. 摸出1个蓝球3. 从口袋中随机摸出一球,再放回袋中,不断重复上述过程,共摸150次,其中有50次摸到黑球,已知口袋中有10个黑球和若干个白球,则估计口袋中白球个数有( ) A. 10个 B. 20个 C. 30个 D. 无法确定4. 在1到10的10张扑克牌中,如果第一次摸了一张是9点(不放回),第二次任意摸取,摸到奇数点的机会是( )A. 25B. 35C. 12D. 495. 对于下列几件事情:①袋子中放了9个红球,1个白球,任抽一个球为红球;②任意买一张电影票,座位号奇数;③天上有两个太阳;④守株待免。

按发生的概率的大小从大到小的顺序排列是( ) A. ①②③④ B. ①②④③ C. ③①②④ D. ③④②①6. 有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是( )A. 21B. 41C. 31D. 517. 一个袋中装有两个红球、一个白球。

第一次摸出一个球,放回搅匀,再任意摸出一个,则两次都摸到白球的概率为________。

拓展●应用8. 小明和小颖按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜。

如果小明获胜的概率为1,那么小明第一次应该取走________支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 反比例函数
一、填空题
1.函数y=-x,y=x1,y=-x2,y=12x,y=-x21中________表示y是x的反比例函数.

2.反比例函数y=32x中k=_________.
3.已知y=(m-1)x432mm是反比例函数,则m=_________.
4.反比例函数的图象是_________.
5.函数y=-x2的图象的两个分支分布在第_________象限,在每个象限内,y随x的增大而_________,

函数y=x2的图象的两个分支分布在第_________象限,在每一个象限内,y随x的减小而_________.
6.如果反比例函数y=(m-3)x462mm的图象在第二、四象限,那么m=_________.
7.反比例函数y=xk的图象上有一点A(x, y),且x, y是方程a2-a-1=0的两个根,则k=_________.
8.y与x+1成反比例,当x=2时,y=1,则当y=-1时,x=_________.
9.函数y=xk (k>0)的图象上两点A(x1, y1)和B(x2, y2),且x1>x2>0,分别过A、B向x轴作AA1⊥x轴于

A1,BB1⊥x轴于B1,则OAAS1_________OBBS1 (填“>”“=”或“<”),若OAAS1=2,则函数解析式为
_________.
10.反比例函数y=xk,在x=1处自变量减少21,函数值相应增加1,则k=_________.

11.反比例函数y=xk的图象既是_________图形又是_________图形,它有_________条对称轴,且对称
轴互相_________,对称中心是_________.
12.如果点(a,-3a)在双曲线y=xk上,那么k_________0.

二、选择题
13.若反比例函数y=xk的图象经过点(-2, 4),那么这个函数是( )

A.y=x8 B.y=8x C.y=-x8 D.y=-8x
14.如图1为反比例函数y=xk的图象,则k等于( )
图1
A.25 B.52 C.10 D.-10

15.正比例函数y=2x与反比例函数y=x1在同一坐标系的大致图象为( )

三、解答题
16.如图2,第一象限的角平分线OM与反比例函数的图象相交于点A,已知OA=22.

图2
(1)求点A的坐标;
(2)求此反比例函数的解析式.

17.反比例函数y=-x6与直线y=-x+2的图象交于A、B两点,点A、B分别在第四、二象限,求:(1)A、
B两点的坐标; (2)△ABO的面积.
*18.如图3,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于C、D两点,
如果A点的坐标为(2,0),点C、D分别在第一、三象限,且OA=OB=AC=BD,试求一次函数和反比例函
数的解析式.

图3
参考答案
一、1.y=x1,y=-x21 2.32 3.2 4.双曲线 5.二、四 增大 一、三 增大 6.1 7.-1 8.

-4 9.= y=x4 10.1 11.轴对称 中心对称 2 互相垂直 原点 12.<
二、13.C 14.C 15.D
三、16.(1)A(2, 2)(2)函数解析式为y=x4

17.(1)A(1+7,1-7) B(1-7,1+7)(2)S=27
18.y=x-2 y=x222

相关文档
最新文档