09第2章基本放大电路--场效应管放大电路解读
第二章基本放大电路

Rc Cb1
T
Cb2 VCC
Rc Cb2
Rb VBB
(a)
(b)
(c)
工作原理 放大电路的静态分析
静态 Ui=0时,放大电路的工作状态,也称直流工作状态。
静态分析 确定放大电路的静态值IBQ、ICQ、UCEQ,即静 态工作点Q。静态工作点的位置直接影响放 大电路的质量。
静态分析方法 1. 计算法 计算法 图解分析法
根据所用放大管的类型设置合适的静态工作点Q 。对 于晶体管应使发射结正偏,集电结反偏,以使晶体管工 作于线性放大区; 必须保证从输入到输出信号的正常流通途径。输入信 号能有效地作用于放大电路的输入回路;输出信号能有 效地加到负载上。 对实用放大电路的要求:共地、直流电源种类尽可能 少、负载上无直流分量。
-
动态信号作用时:uI ib ic uRc uCE (uo ) 输入电压ui为零时,晶体管各极的电流、b-e间的电 压、管压降称为静态工作点Q,记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。
Back
Next
Home
由于(IB,UBE) 和( IC,UCE )分别对应于输入、输出 特性曲线上的一个点,所以称为静态工作点。
Back
Next
Home
两种实用放大电路:(1)直接耦合放大电路
- + UBEQ
有交流损失 有直流分量 将两个电源 问题: 合二为一 静态时,U BEQ U Rb1 1. 两种电源 2. 信号源与放大电路不“共地” 动态时,VCC和uI同时作用 于晶体管的输入回路。 共地,且要使信号 驮载在静态之上
大倍数为源增益us、Ais、Ars 和Ags。 A
4
(2)输入电阻: 从输入端看进去的等效电阻
场效应晶体管放大电路的分析方法

VDD
R g1
Rd
VT + C2
C1 +
U i Rg2
R
RL
+
Uo
CS
VDD
Rd
VT
+ C2
C1 +
U i RG2
R
RL
+
Uo
CS
图02.05.02 分压偏置
图02.05.03 自给偏压
HIT基础电子技术电子教案----场效应晶体管放大电路的分析方法
2006.06
图02.05.04是N沟道FET的转移特性曲线,对于图(a)耗尽
对图02.05.07的放大电路可根据下列方程式进行图解
iD f (uGS)
uGS iDR
ID
Q
UGS (off)
O
UGSQ
I DSS
IDQ
UGS
直线方程 uGS =- iDR 与输入特性曲线的交点即 是工作点Q。
由工作点Q,即可确 定UGSQ 和IDQ。
图02.05.07 在输入特性曲线上图解
HIT基础电子技术电子教案----场效应晶体管放大电路的分析方法
型FET应偏置在负栅区,对于图(b)增强型FET应偏置在正栅
区。N沟道耗尽型FET放大电路,可采用分压偏置外,也可采
用自给偏压。采用自给偏压时,Rg2中无电流,所以UG=0。在 负栅区因IDSS>0,故US>0,于是UGS=UG-US = - ID R,可满 足负偏压的要求。对于增强型管,因UGS=0时,ID=0 ,故不能 采用自给偏压。
Rs Us
U i
如果放大电路采用增强型场效应管,则栅源电压
VDD
R g1
Rd
场效应管放大电路

这种偏置电路的特点是: 栅极直流偏压直接由电源UGG经电阻Rg供给,因为3DO1是耗 尽型MOS管,故 UGS = - UGG。由于场效应管输入电阻很大, 所以 Ig = 0 。栅偏压是由固定的外加电源供给的,故称为固 定偏置电路。此电路是共源极放大电路。
⑵ 自给栅偏压偏置电路
这种偏置电路的特点是: 在源极上接一个电阻RS,外加电压UDD产生的ID就会在RS 上产 生压降URS ,由于Ig = 0,所以可以得 :UGS = - URS = - ID RS 。 这种电路栅 偏压是由漏极电流流过源极电阻产生的,故称为 自给偏压电路。增强型MOS管不采用此种这种方式。
(mA) ID UGS = 0 V
6
击穿区
rN小
可变电阻区
5
4 3 2
UGS = -1V 放 大 区 UGS = -2V UGS = -3V UGS = -4V
4 8 12 16 20 24
rN大
1 0
截止区
BUDSS
UDS(V)
⑶ 截止区 当|UGS|≥|UP|时,导电沟道完全夹断,电阻rn最大, 漏极电流 ID = 0,管子截止。
id
T2 T1 Id0
T3
Q0
ugso
ugs
从图可以看出当 UGS选在零工作 点,则温度变化时,漏极电流 ID 不变。T1,T2,T3为不同的温度 曲线。
4. 场效应管结构对称,应用灵活 ,方便。有时漏极和源极 可以互换使用,但是当衬底与源极相连在一起是不能互换使 用的。
5. 场效应管的制造工艺简单,有利于大规模集成。 6. 由于MOS场效应管输入电阻高达10¹² KΩ,故受外界静电 场感应产生的电荷不容易泄露,会在栅极上产生很高的电场 强度会引起 SiO2绝缘层击穿损坏管子。焊接时,应将电烙铁 外壳可靠接地。 7. 由于场效应管的跨导小,组成放大电路时,在相同负载 电阻的情况下,其电压放大倍数比三极管放大电路低。
场效应管放大电路原理

场效应管放大电路原理场效应管(Field Effect Transistor,简称FET)是一种重要的电子元器件,广泛应用于各种电子设备中。
它具有高输入阻抗、低输出阻抗、低噪声、高增益等优点,因此在放大电路中得到了广泛的应用。
场效应管放大电路是一种利用场效应管进行信号放大的电路。
它通过控制场效应管的栅极电压来控制电流的流动,从而实现信号的放大。
下面将详细介绍场效应管放大电路的原理。
场效应管放大电路主要由场效应管、负载电阻、输入电容、输出电容等组成。
其中,场效应管是核心部件,起到放大信号的作用。
负载电阻用于提供输出端的负载,使得输出信号能够正常传递。
输入电容和输出电容则用于对输入信号和输出信号进行耦合。
在场效应管放大电路中,输入信号首先经过输入电容进入场效应管的栅极。
当栅极电压发生变化时,场效应管内部的通道将打开或关闭,从而控制电流的流动。
当栅极电压较低时,场效应管处于截止状态,电流无法通过。
当栅极电压较高时,场效应管处于导通状态,电流可以通过。
当输入信号经过场效应管后,会在负载电阻上产生一个较小的输出电压。
为了放大这个输出电压,需要通过负反馈来增加放大倍数。
具体来说,可以将输出信号通过输出电容耦合到放大器的输入端,然后再将输出信号与输入信号进行比较,从而调整栅极电压,使得输出信号得到放大。
在场效应管放大电路中,需要注意一些问题。
首先是输入阻抗和输出阻抗的匹配问题。
为了使得信号能够正常传递,输入阻抗和输出阻抗需要相互匹配。
其次是稳定性问题。
由于场效应管的工作点受到温度和其他因素的影响,因此需要采取一些措施来保持工作点的稳定性。
最后是频率响应问题。
由于场效应管本身具有一定的频率响应特性,因此在设计放大电路时需要考虑频率响应的影响。
总结起来,场效应管放大电路是一种利用场效应管进行信号放大的电路。
它通过控制场效应管的栅极电压来控制电流的流动,从而实现信号的放大。
在实际应用中,需要注意输入阻抗和输出阻抗的匹配、工作点的稳定性以及频率响应等问题。
第2章 基本放大电路(7)2.6场效应管放大电路

308
Ri Rb // rbe rbe 1.3k RO RC 5k
2-4-7
RL=3kΩ时, UCEQ 、电压放大倍数、输入电阻 和输出电阻分别为:
U CEQ RL VCC I CQ ( RC // RL ) 2.3V Rc RL
' RL Au 115 rbe
带载时:根据电路的输入回路得到IBQ=20µ A, 根据电路的输出回路电压方程uCE= VCC'–iCRL'画出输出 负载线A-C, 确定 ICQ=2mA,UCEQ=3V; A
0.6V
C
VCC'
VCC
最大不失真输出电压幅值约为2.4V,有效值约为1.70V。
2-4-5
2.7电路如图所示,晶体管的=80, rbb′=100Ω。分 别计算RL=∞和RL=3kΩ时的Q和Au、Ri 和RO。 解: 在空载和带负载情况下, 电路的静态电流、rbe均相等, 它们分别为: VCC U BEQ U BEQ I BQ 22 μ A Rb RS
3 –1– 21
iD
综上所述:
当uGD < uGS(off)时, iD几乎仅仅决定于 uGS ,而与uDS无
iiD D
关。可以把iD近
似看成uGS控制 的电流源。
3 –1– 22
三、绝缘栅型场效应管( MOS 管)
源极 栅极 漏极
S G D
G
D
B S
P型衬底
N 沟道增强型场 效应管
3 –1– 23
U GS th PMOS 管为电压
控制器件,当 uGS <UGS(th) P ,MOS 管导通。
类型 N沟道 耗尽型 绝缘栅 型场效 应管 P沟道 耗尽型 绝缘栅 型场效 应管
第二章 基本放大电路 2.1 放大的概念和放大电路的主要性能指标2.2 基本共射放大电路的工作原理2.3 放大电

RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
VBB iE
+ uo –
共发射极基本电路
晶体管T--放大元
件, iC= iB。要保
+ 证集电结反偏,发 VCC射结正偏,使晶体 – 管工作在放大区 。
基极电源VBB与基极 电阻RB--使发射结 处于正偏,并提供 大小适当的基极电 流。
直接耦合共射放大电路 直 流 通 路
视为短路
直接耦合共射放大电路
直 流 通 路
直接耦合共射放大电路
视为 接地
交 流 通 路
直接耦合共射放大电路 交 流 通 路
阻容耦合共射放大电路
1、直流通路 对直流信号电容 C 可看作开路(即将电容断开)
断开 RB
C1 +
RS +
+ ui
es –
–
+UCC
RC +C2 断开
iB iC + + TuCE + uB–E – RL uo
iE
–
+UCC
RB
RC IB IC
+
U+B–ETU–CE
直流通路
IE
直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )
2、对交流信号(有输入信号ui时的交流分量)
+UCC
RB
RC
+C2
XC 0,C 可看作 对地短路 短路。忽略电源的
ib:IBQIBQ IB
第2章 基本放大电路(1)2.1放大的概念和放大电路的主要性能指标 2.2基本放大电路的工作原理
2 - 1 - 26
2.2.2 设置静态工作点的必要性
时 一、静态的概念 : 当ui=0时,电路的工作状态称为 放大电路静态。
ui=0
2 - 1 - 27
二、静态工作点 :
电路处于静态 时,晶体管的 基极电流I 基极电流 B、 集电极电流I 集电极电流 C、 b-e间电压 BE、 间电压U 间电压 管压降U 管压降 CE , 称为放大电路 的 静态工作点 Q。 。
& I
& U
& U Ro = & I
2 - 1 - 20
方法二: 方法二:测量法 步骤: 测量开路电压。 1. 步骤: 测量开路电压。 2. 测量接入负载后的输出 电压。 电压。 3. 计算。 计算。 Us' ~
ro Uo '
ro Us' ~
RL Uo = ⋅U o' Ro + RL
RL
Uo
U o' Ro = ( − 1) R L Uo
2-1-3
§ 1.4 场效应管(FET) 场效应管(FET)
场效应管与三极管的区别与联系 1、区别:场效应管是电压控制元件, 、区别:场效应管是电压控制元件, 即栅源极电压(uGS)控制漏极电流(iD); 而三极管是电流控制元件, 而三极管是电流控制元件, 即基极电流(iB)控制集电极电流(iC)。 2、联系:两种元件在电路中起的作用类似 、联系: 放大作用; 在模拟电路中具有放大作用 在模拟电路中具有放大作用; 在数字电路中起开关作用。 在数字电路中起开关作用。 开关作用
uGS=0时iD = 0。 时 。
2-1-5
场效应管的符号及特性曲线
类型 N沟道 结型 场效 应管 P沟道 结型 场效 应管
第2章放大电路.ppt
18
§2.3 放大电路的分析方法
估算法
放大 电路 分析
静态分析
图解法
动态分析
微变等效电 路法
图解法
计算机仿真
19
2.3.1 直流通道和交流通道
放大电路中各点的电压或电流都是在静态直 流上附加了小的交流信号。但是,电容对交、直 流的作用不同。如果电容容量足够大,可以认为 它对交流不起作用,即对交流短路。而对直流可 以看成开路,这样,交直流所走的通道是不同的。
C1
RC C2 电压。
T
RB
+EC
EB
C1
RC
C2
T 使发射结正
基极电源与基 极电阻(防止 信号被EB短路)
RB EB
偏,并提供 适当的静态 工作点。
12
耦合电容
RC C1
RB EB
+EC C2
T
电路改进:采用单电源供电
隔离输入输出与电 路直流的联系,同 时能使信号顺利输 入输出。
RB
C1
+mV ) IE (mA )
rbe的量级从几百欧到几千欧。
31
2. 输出回路 iC近似平行
iC IC ic (I B ib ) IB ib
所以:ic ib
iC
(1)
输出端相当于一个受ib 控制 的电流源。
uCE (2) 考虑 uCE对 iC的影响,输出
常采用分压式偏置电路来稳定静态工作点。 电路见下页。
45
分压式偏置电路:
一、静态分析
+EC
+EC
RB1
RC
C1
ui RB2
基本放大电路
如何判断一个电路是否能实现放大?
与实现放大的条件相对应,判断的过程如下: 1. 信号能否输入到放大电路中。 2. 信号能否输出。 3. 晶体管必须偏置在放大区。发射结正偏,集电结 反偏。
4. 正确设置静态工作点,使整个波形处于放大区。
如果已给定电路的参数,则计算静态工作点来 判断;如果未给定电路的参数,则假定参数设 置正确。
+VCC
Rb C1 + UI _ T RC C2 + U0
_
1.静态电路的画法 电容在直流通路中相当于开路
电容c1左边的部分相当于断开、c2右边的部分也相当于断 开,去掉断开的部分则直流通路如图
+VCC Rb RC ICQ T IBQ VCEQ
-
+
2. 静态分析通常有两种方法 1). 估算法
U CC U BE IB RB
发射极之间的电压uCE变化。
极和
(4) uCE中的交流分量uce经过C2畅通地传送给负载RL, 成为输出交流电压uo,,实现了电压放大作用。
放大电路的分析方法 估算法 静态分析
图解法
放大 电路 分析 微变等效 电路法 动态分析 图解法 计算机仿真
2.3
一、静态分析
放大电路的图解分析法
静态分析就是要找出一个合适的静态工作点,通常 由放大电路的直流通路来确定。
[例2. 3]的图
解:10 由[例7. 1]可知 IE≈1.5mA 故
26 mV 26 mV rbe 300 (1 ) 300 (1 37.5) IE 1.5mA
= 967Ω
/ RL 37 .5 (4 // 4) Au 78 rbe 0.967
ui
RB
场效应管及放大电路
场效应管是利用电场效应来控制电流 大小,与双极型晶体管不同,它是多子导 电,输入阻抗高,温度稳定性好、噪声低。 场效应管有两种: 绝缘栅型场效应管MOS 结型场效应管JFET
分类:
JFET 结型 MOSFET (IGFET) 绝缘栅型
N沟道
P沟道
(耗尽型) N沟道
FET 场效应管
ID=f(VDS)VGS=const
输出特性曲线
vGS 在恒流区,iD I D 0 ( - 1) 2 VT
I D 0是vGS 2VT时的iD值
输出特性曲线
(1) 截止区(夹断区) VGS< VT以下区域就是截止区 VGS VT ID=0
iD
(2) 放大区(恒流区) 产生夹断后,VDS增大,ID不变的 区域,VGS -VDS VP VDSID不变 处于恒流区的场效应管相当于一 个压控电流源 (3)饱和区(可变电阻区) 未产生夹断时,VDS增大,ID随着增大的区域 VGS -VDS VP VDSID 处于饱和区的场效应管相当于一个压控可变电阻
夹断 电压
在恒流区时 uGS 2 iD I DSS (1 ) Up
uGD=UGS(off)时称为 预夹断
3. 主要参数
① 夹断电压VP (或VGS(off)): 漏极电流约为零时的VGS值 。 ② 饱和漏极电流IDSS: VGS=0时对应的漏极电流。 ③ 低频跨导gm: 低频跨导反映了vGS对iD的控制作用。gm 可以在转移特性曲线上求得,单位是mS(毫西门子)。
2. 静态工作点
Q点: VGS 、 ID 、 VDS 已知VP ,由
vGS = - iDR
VDS = VDD - ID (Rd + R )