2015年北京市海淀区中考一模数学试题及答案(word版)

合集下载

2015-2016年北京海淀区中考二模数学试题及答案图片版,一模试题及答案。共两套题

2015-2016年北京海淀区中考二模数学试题及答案图片版,一模试题及答案。共两套题

海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式31+42=--⨯……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,② 解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 (2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒, ∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分 ∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分 (2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24, ∴1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-(舍). ∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分F∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分 (2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=, ∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =. ∵点D 在直线1l 上,∴)213(-,的坐标为点D .………………4分 当点B 在线段DE 的延长线上时,如图2, 同理,由BE BD 2=,可得点D 的坐标为5(1)2--,.综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒, ∴90ODB C ∠=∠=︒. ∴OD ∥AC . ∴DAC ODA ∠=∠. ∵OD OA =, ∴OAD ODA ∠=∠. ∴DAC OAD ∠=∠.图1图2∴AD 平分BAC ∠.………………………2分(2)解:连接DE . ∵AE 为直径, ∴︒=∠90ADE .∵OAD DAC ∠=∠,sin DAC ∠=,∴sin OAD ∠=. ∵5OA =, ∴10AE =.∴AD =………………………3分 ∴4CD =,8AC =. ∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴OD BDAC BC =. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3)14000016.5%0.69.721000⨯⨯- 4.14=.答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分 第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称,∴AB BC BE ==.………………………2分 ∴C BEC ∠=∠, BAE BEA ∠=∠. ∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由AE =可求1AF EF ==;c .由1CE =,可求2AC =,AB BC ==ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分 (2)①∵函数22y x bx =-的不变长度为零, ∴方程22x bx x -=有两个相等的实数根. ∴1b =-. ………………4分②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤, ∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分(3)m 的取值范围为13m ≤≤或18m <-. ………………8分2016海淀一模一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107B.9.65×107 C.9.65×108 D.0.965×1092.如图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为A.14B.34C.15D.454.下列图形中,是轴对称图形但不是中心对称图形的是A.B.C.D.5.如图,在 ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5 B.4 C.3 D.2 6.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,1=35∠︒,则2∠的度数为A.35︒B.15︒C.10︒D.5︒7.初三(8)班体委用划记法统计本班40名同学投掷实心D球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口(,)表示图中承德的位置,和石家庄为中心的区域.若“数对”19043︒(,)表示图中保定的位置,则与图中张家口的位置对“数对”160238︒应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 000 10.小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l. 已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的运动时间为x,M'N'的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为A.A→B→C→D→A B.B→C→D→A→BC.B→C→A→D→B D.D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分)11. 分解因式:a2b-2ab+b=________________.12. 如图,AB为⊙O的弦,OC⊥AB于点C.若AB=8,OC=3,则⊙O的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x,可列方程为.14.在下列函数①21y x=+;②22y x x=+;③3yx=;④3y x=-中,与众不同的一个是_____(填序号),你的理由是________ .15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:在数学课上,老师提出如下问题:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:)2016tan3012π-⎛⎫--︒++⎪⎝⎭.18.解不等式组41)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩(并写出它的所有整数解....19.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.20.如图,在△ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,DE 为AC 边上的中线.求证:BAD EDC ∠=∠.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.D ABC23.在平面直角坐标系xOy 中,直线y x =-与双曲线ky x=(0k ≠)的一个交点为)P m . (1)求k 的值;(2)将直线y x =-向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x=(0k ≠)的一个交点记为Q .若2BQ AB =,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B 作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO .延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE .(1)求证:CD 是⊙O 的切线; (2)若3AE DE ==,求AF 的长.25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015(2)右图为2015年国产..动画电影票房金字塔,则B= ;(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数(1)(2)(3)=---的图象与性质.y x x x小东对函数(1)(2)(3)=---的图象与性质进行了探究.y x x x下面是小东的探究过程,请补充完成:(1)函数(1)(2)(3)=---的自变量x的取值范围是全体实数;y x x x(2)下表是y与x的几组对应值.①m = ;②若M (7-,720-),N (n ,720)为该函数图象上的 两点,则n = ;(3)在平面直角坐标系xOy 中, A (,A A x y ),B (,B A x y -)为该函数图象上的两点,且A 为23x ≤≤范围内的最低点,A 点的位置如图所示.①标出点B 的位置;②画出函数(1)(2)(3)y x x x =---(04x ≤≤)的图象.27.在平面直角坐标系xOy 中,抛物线224y mx mx m =-+-(0m ≠)的顶点为A ,与 x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线+(0)=≠与图象G有两个交点,结合函数的图象,求k的y kx b k取值范围.28.在△ABC中,AB=AC,∠BAC=90︒,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB 则GE的长为_______,并简述求GE长的思路.29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若P '为直线PC 与⊙C 的一个交点,满足2r PP r '≤≤,则称P '为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点P '的示意图.(1) 当⊙O 的半径为1时.① 分别判断点M (3,4),N 5(,0)2,T (1 关于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P在△DEF 的边上.若点P 关于⊙O 的限距点P '存在,求点P '的横坐标的取值范围;(2) 保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 19.解:原式=1-6×……………………4分=4-.………………………5分18.解:原不等式组为解不等式①,得x≤10.………………………2分解不等式②,得x>7.………………………3分∴原不等式组的解集为7<x≤10.………………………4分∴原不等式组的所有整数解为8,9,10. (5)分Array 19.解:原式=x2-2x+1-x2+3x+x2-4………………………3分=x2+x-3.………………………4分∵x2+x-5=0,∴x2+x=5.∴原式=5-3=2..………………………5分20.证明:∵∠BAC=90o,∴∠BAD+∠DAC=90o.∵AD⊥BC,∴∠ADC=90o.∴∠DAC+∠C=90o.∴∠BAD=∠C .………………………2分∵DE为AC边上的中线,∴DE=EC.∴∠EDC=∠C ..………………………4分∴∠BAD=∠EDC.………………………5分21.解:设小博每消耗1千卡能量需要行走x步.………………………1分由题意,得. ………………………3分解得x=30 . ………………………4分经检验,x=30是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC=BD ,AB ∥DC. ∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC=BE.∴ BD=BE. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==.同理,可得132CF DF CD ===.∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分23. 解:(1)∵P()在直线y= -x 上,∴m=-. ………………………1分∵P()在双曲线y=上,∴k=. ………………………2分A图1 图2(2) ∵y= -x 向上平移b (b >0)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴A (b ,0)B (0,b ). ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵BQ=2AB , ∴3===ABAQ OA HA OB HQ . ∵OA OB b ==,∴,2HO b =.∴Q 的坐标为(-2b,3b).由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2b,-b).由点Q 在双曲线6y x =-上,可得b=.综上所述,b=1或b=. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙的切线,∴∠CBO=90o .∵AO 平分BAD ∠,∴∠1=∠2.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴∠BOC=∠DOC .∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE=DE,∴.∴∠3=∠4. ………………………3分∵124∠=∠=∠,∴∠1=∠2=∠3.∵BE 为⊙O 的直径,∴∠BAE=90o .∴∠1=∠2=∠3=∠4=30o .………………………4分∴∠AFE=90o .在Rt △AFE 中,∵AE=3,︒=∠303,∴AF=. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4×(1+20%)=2.88 .2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分26. (2) ①m= -60;………………………1分②n=11;………………………2分(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)y=mx2-2mx+m-4=m(x2-2x+1)-4=m(x-1)2-4 .∴ 点A 的坐标为(1,-4). ………………………2分(2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与x 轴交于B ,C 两点(点B 在点C 左侧),BC =4,∴ 点B 的坐标为(-1,0) ,点C 的坐标为(3,0) .………………………3分∴ m+2m+m-4=0.∴ m=1.∴ 抛物线的解析式为y=x 2-2x-3.……4分② 由①可得点D 的坐标为(0,-3) .当直线过点A ,D 时,解得k=-1.………5分当直线过点A ,C 时,解得k=2. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. (7)分28. 解:(1) ①补全图形,如图1所示. ………………………1分②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………2分证明: 如图1.∵AB=AC ,∠BAC=90o∴∠B=∠ACB=45o , ∠1+∠2=90o ,.∵射线BA 、CF 的延长线相交于点G ,∴∠CAG=∠BAC=90o .∵四边形ADEF 为正方形,∴∠DAF=∠2+∠3=90o ,AD=AF .∴∠1=∠3.∴△ABD ≌△ACF .…………………3分∴∠B=∠ACF=45o .图1∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) GE=.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得AD =,即GE FE AD == ……7分29.解:(1)①点M ,点T 关于⊙的限距点不存在;点N 关于⊙的限距点存在,坐标为(1,0). (2)分②∵点D 的坐标为(2,0),⊙半径为1,DE ,DF 分别切⊙于点E ,点F ,∴切点坐标为1(2,1(2,.……………3分 如图所示,不妨设点E 的坐标为1(22,,点F 的坐标为1(22,,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则1'(2E -,,1'(2F -. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与的交点'P 满足2'1≤≤PP ,故点P关于⊙O 的限距点存在,其横坐标x 满足-1≤x≤ -.………5分Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P关于⊙的限距点存在,其横坐标=1.综上所述,点P 关于⊙O 的限距点的横坐标x 的范围为-1≤x≤ -或=1. ……………………6分(2)问题1: .………………8分 问题2:0 < r < 16.………………7分。

2015海淀初三数学一模试卷分析

2015海淀初三数学一模试卷分析
S/千米 a
剩余的路程 S与时间 t的函数 关系 中途因等候红灯停止了一分钟
又骑行了1.2千米到达了乙家 从出发开始计时, 骑行的速度始终不变
数形结 合
O
3
6 t/分钟
图中a等于
试题选 讲 ◇数与代数 10.
数形结 合
y
x O
什么变 量? 什么过 程? 怎么变
试题选 讲 ◇数与代数
27.A(0,2) ,D(4,6).
1
2
3
4
5
x
1 2 y x x 2t 2
1 y x 1 t 2
D
A(0, 2) E (0,1) D (4,6) F (4,3)
D
F
F A A E
E
试题选 讲 ◇数与代数
29 . 对 于 点 P(a, b) 和 点 Q (a, b) ,给出如下定义:
b, a≥1 若 b ,则称点 b, a 1
0.54;0.53; 0.52
试题选 ◇统计与概 讲 率
24. (3) 据某市统计数据显示, 2014 年末全市常住人口为 476.6 万人, 其中网民数约为 210 万人. 若 2014 年该市的网民学历结构与 2014 年 的中国网民学历结构基本相同, 请 你估算 2014 年末该市网民学历是 大专的约有 万人.
现场学习的迁移能力
F E
A G D
B C
逻辑推理能力
试题选 ◇图形与几 讲 何
28 . 在 菱 形 ABCD 中 , ADC 120 ,点 E 是对 角线 AC 上一点, 连接 DE , DEC 50 ,将线段 BC 绕点 B 逆时针旋转 50 并 延长得到射线 BF ,交 ED 的延长线于点 G .

2015年海淀一模数学分析

2015年海淀一模数学分析

2015海淀中考一模数学
分析
---题量增大,创新型题增多,竞争加大题量增大:
在时间不变,分值不变情况下,试题从25题增加到29题.且特别是试题计算量也增大. 2015北京中考将是速度的较量!创新性题型增大:
2015海淀中考一模,海淀此次出题,好多题型,换个角度去问和求解.一改10多年北京出题和答题套路.注重考察考生数学功底和创新应变能力.
此次出题符合中考出题要求, 符合选拔创新性学生要求. 也符合2015年教师节李克强总理,考问大学校长,报考数学专业研究生数量? 也符合中国作为数学
大国的国情.更符合国家培养尖端国际人才需求.
竞争激烈度增加
2015海淀一模数学,竞争度增加.让具有良好数学基础考生,能考出优秀成绩. 让临时抱佛脚的考生, 高分或者满分梦想破灭.。

2015.4.海淀一模.数学理试题答案

2015.4.海淀一模.数学理试题答案

海淀区高三年级第二学期期中练习数学(理)答案及评分参考标准 2015.4一、选择题(共8小题,每小题5分,共40分)(1)A (2)C (3)D (4)B (5)A (6)D (7)C (8)A 二、填空题(共6小题,每小题5分,共30分。

有两空的小题,第一空2分,第二空3分) (9)2 (10)4 (11)16,16 (12)π12或5π12(13)24 (14)(,0)(1,)-∞+∞ 三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)因为 1cos 2()4()2x f x π-+=………………2分 1sin 22x+=.所以 2ππ2T ==. ………………4分 令π2π()2x k k =+∈Z ,得:ππ()24k x k =+∈Z . ………………6分 所以 ()f x 的最小正周期为π,对称轴的方程为ππ()24k x k =+∈Z . (Ⅱ)sin 2()13()32x f x π-+π-= 12π1sin(2)232x =--+. ………………9分令π2ππ2π22π()232k x k k -≤-≤+∈Z , 得:π7πππ()1212k x k k +≤≤+∈Z . 所以 π()3f x -的单调递减区间为π7π[π,π]()1212k k k ++∈Z . ………………13分 (16)(共13分)解:(Ⅰ)0.015a =; ………………2分2212s s >. ………………4分 (Ⅱ)设事件A :在未来的某一天里,甲种酸奶的销售量不高于20箱;事件B :在未来的某一天里,乙种酸奶的销售量不高于20箱;事件C :在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于20箱且另一个不高于20箱. 则()0.200.100.3P A =+=,()0.100.200.3P B =+=. ………………6分所以 ()()()()()0.42P C P A P B P A P B =+=. ………………8分(Ⅲ)由题意可知,X 的可能取值为0,1,2,3. ………………9分033(0)0.30.70.343P X C ==⨯⨯=,1123(1)0.30.70.441P X C ==⨯⨯=, 2213(2)0.30.70.189P X C ==⨯⨯=,3303(3)0.30.70.027P X C ==⨯⨯=.所以X 的分布列为………………11分 所以 X 的数学期望00.34310.44120.18930.0270.9EX =⨯+⨯+⨯+⨯=.………………13分另解:由题意可知(303)X ~B ,..所以 X 的数学期望30.30.9EX =⨯=. ………………13分(17)(共14分)证明:(Ⅰ)证明:因为 四边形11ABE F 为正方形, 所以 AB BE ⊥1.因为 平面⊥ABCD 平面11F ABE ,平面 ABCD 平面AB F ABE =11,1BE ⊂平面11ABE F ,所以 ⊥1BE 平面ABCD . ………………2分 因为 ⊂DC 平面ABCD ,所以 DCBE ⊥1. ………………4分(Ⅱ)解:如图,以点B 为坐标原点,分别以1,BC BE 所在的直线为,x z 轴,建立如图所示的空间直角坐标系B xyz -.设1AD =,则z11(0,0,0),(2,0,0),(0,(1,1,)2B C E M . 所以BM =,1(CE =-,1(1,1,E M =. ………………6分 设平面1CE M 的一个法向量为(,,)n x y z =.由110,0,n CE n E M ⎧⋅=⎪⎨⋅=⎪⎩得20,0.2x x y z ⎧-+=⎪⎨+-=⎪⎩ 令1x =,得0z y ==,所以 (1,0,2)n =. ………………8分 设BM 与平面1CE M 所成角为θ,则1sin cos ,5BM n BM nBM nθ⋅+=<>===所以 BM 与平面1CE M ………………10分(Ⅲ)解:直线DM 与直线1CE 平行. 理由如下:………………11分 由题意得,(2,1,0),(1,0,2D DM =-1(CE =-. 所以 12CE DM =.所以 1//CE DM . ………………13分 因为 DM ,1CE 不重合,所以 //DM 1CE . ………………14分 另解:直线DM 与直线1CE 平行. 理由如下:取BC 的中点P ,1CE 的中点Q ,连接AP ,PQ ,QM . 所以 1//PQ BE 且112PQ BE =.因为 M 为1AF 的中点,四边形11ABE F 是正方形, 所以 1//AM BE 且112AM BE =. 所以 //PQ AM 且PQ AM =. 所以 APQM 为平行四边形. 所以 //MQ AP 且MQ AP =.因为 四边形ABCD 为梯形,2BC AD =, 所以 //AD PC 且AD PC =. 所以 四边形APCD 为平行四边形. 所以 //CD AP 且CD AP =. 所以 //CD MQ 且CD MQ =. 所以 CDMQ 是平行四边形.所以 //DM CQ ,即//DM 1CE . ………………14分 (18)(共13分) 解:(Ⅰ)2211'()(0)a ax f x x x x x-=-=>. ………………2分 (ⅰ)当0a <时,'()0f x <,则函数()f x 的单调递减区间是(0,)+∞.………………3分 (ⅱ)当0a >时,令'()0f x =,得1x a=.当x 变化时,'()f x ,()f x 的变化情况如下表所以 ()f x 的单调递减区间是(0,)a ,单调递增区间是(,)a+∞. ………………5分(Ⅱ)由(Ⅰ)知:当0a <时,函数()f x 在区间(0,)+∞内是减函数,所以,函数()f x 至多存在一个零点,不符合题意. ………………6分PQ ABCDE 1F 1M当0a >时,因为 ()f x 在1(0,)a 内是减函数,在1(,)a+∞内是增函数,所以 要使{()0}[,]x f x b c ≤=,必须1()0f a<,即1ln 0a a a +<.所以 e a >. ………………7分当e a >时,222211()ln()2ln (2ln )f a a a a a a a a a a=+=-+=⋅-.令()2ln (e)g x x x x =-≥,则22'()1(e)x g x x x x-=-=≥. 当e x >时,'()0g x >,所以,()g x 在[e,)+∞上是增函数. 所以 当e a >时,()2ln (e)e 20g a a a g =->=->.所以 21()0f a >. ………………9分 因为 2111a a <<,1()0f a<,(1)10f =>,所以 ()f x 在211(,)a a 内存在一个零点,不妨记为b ,在1(,1)a内存在一个零点,不妨记为c . ………………11分因为 ()f x 在1(0,)a 内是减函数,在1(,)a+∞内是增函数, 所以 {()0}[,]x f x b c ≤=.综上所述,a 的取值范围是(e,+)∞. ………………12分 因为 211(,)b a a ∈,1(,1)c a∈, 所以 [,](0,1)b c ⊆. ………………13分(19)(共13分)解:(Ⅰ)由题意得:2221,.b ca abc =⎧⎪⎪=⎨⎪⎪-=⎩………………3分 解得:223,1.a b ⎧=⎪⎨=⎪⎩所以 椭圆M 的方程为2213x y +=. ………………4分 (Ⅱ)不存在满足题意的菱形ABCD ,理由如下: ………………5分 假设存在满足题意的菱形ABCD .设直线BD 的方程为y x m =+,11(,)B x y ,22(,)D x y ,线段BD 的中点00(,)Q x y ,点(,2)A t . ………………6分由2233,x y y x m⎧+=⎨=+⎩得224230y my m -+-=. ………………8分 由()()2221630m m ∆=--> ,解得22m -<<. ………………9分因为 122my y +=, 所以 12024y y my +==. ………………11分 因为 四边形ABCD 为菱形, 所以 Q 是AC 的中点.所以 C 点的纵坐标022212C my y =-=-<-. ………………12分 因为 点C 在椭圆M 上,所以 1C y ≥-.这与1C y <-矛盾. ………………13分 所以 不存在满足题意的菱形ABCD . (20)(共14分)解:(Ⅰ)由①,得26a <<.由②,当2i =,3j =,4k =时. 2a ,6a ,12中至少有一个是数列1,2,a ,6中的项,但66a >,126>,故26a =,解得3a =.经检验,当3a =时,符合题意. ………………3分(Ⅱ)假设2,3,5是数列n A 中的项,由②可知:6,10,15中至少有一个是数列n A 中的项,则有限数列n A 的最后一项5n a >,且4n ≥.由①,1231n n n n a a a a --->>>>. ………………4分对于数21,,n n n a a a --,由②可知:21n n n a a a --=;对于数31,,n n n a a a --,由②可知:31n n n a a a --=. ………………6分所以 23n n a a --=,这与①矛盾.所以 2,3,5不可能是数列n A 中的项. ………………7分(Ⅲ)n 的最大值为9,证明如下: ………………8分(1)令9111:4,2,1,,,0,,1,2242A -----,则9A 符合①、②. ………………11分(2)设12:,,,(3)n n A a a a n ⋅⋅⋅≥符合①、②,则:(ⅰ)n A 中至多有三项,其绝对值大于1.假设n A 中至少有四项,其绝对值大于1,不妨设i a ,j a ,k a ,l a 是n A 中绝对值最大的四项,其中1||||||||i j k l a a a a <≤≤≤.则对i a ,k a ,l a 有||||i l l a a a >,||||k l l a a a >,故i l a a ,k l a a 均不是数列n A 中的项,即i k a a 是数列n A 中的项. 同理:j k a a 也是数列n A 中的项.但||||i k k a a a >,||||j k k a a a >. 所以 i k j k l a a a a a ==. 所以 i j a a =,这与①矛盾.(ⅱ)n A 中至多有三项,其绝对值大于0且小于1.假设n A 中至少有四项,其绝对值大于0且小于1,类似(ⅰ)得出矛盾. (ⅲ)n A 中至多有两项绝对值等于1. (ⅳ)n A 中至多有一项等于0.综合(ⅰ),(ⅱ),(ⅲ),(ⅳ)可知n A 中至多有9项.………………14分由(1),(2)可得,n 的最大值为9.。

2015年北京中考数学一模29题汇编(含答案)

2015年北京中考数学一模29题汇编(含答案)
(2)如图,作点P关于x轴的对称点P′,连接P′Q,P′Q与x轴的交点即为“等高点”M,此时“等高距离”最小,最小值为线段P′Q的长.………………………3分
∵P(1,2),
∴P′(1,-2).
设直线P′Q的表达式为 ,
根据题意,有
,解得 .
∴直线P′Q的表达式为 .……………4分
当 时,解得 .
即 .………………………………………………………………………5分
,即当 时, 取最大值2.
当 时, .
.………………………………………3分
当 时, 或 .
或 .………………………………4分

由图象可知, 的取值范围是 .
……………………………………………5分
(3) ,
顶点坐标为 .………………………6分
若 , 的取值范围是 或 ,与题意不符.
若 ,当 时, 的最小值为 ,即 ;
12.(石景山) 29.在平面直角坐标系 中,点 在直线 上,以 为圆心, 为半径的圆与 轴的另一个交点为 .给出如下定义:若线段 ,⊙ 和直线 上分别存在点 ,点 和点 ,使得四边形 是矩形(点 顺时针排列),则称矩形 为直线 的“理想矩形”.
例如,下图中的矩形 为直线 的“理想矩形”.
(1)若点 ,四边形 为直线 的“理想矩形”,则点 的坐标为;
∴ ..…….3分

∴ ,即 .∴ .
∴点 到直线 的距离为 ..…….4分
② ..…….6分
(3) 或 ..…….8分
6.(房山)29.
解:【探究】①1;5;……………2分
②=.…………………3分
【应用】(1)① ;……………………4分
②1.……………………5分

2015北京中考数学试卷及答案解析(word版)

2015北京中考数学试卷及答案解析(word版)

精心整理2015年北京市中考数学试卷一、选择题(本题共30 分,每题 3 分)下边各题均有四个选项,此中只有一.个.是切合题意的1 .(3 分)(2015? 北京)截止到 2015 年 6 月 1 日,北京市已建成34 个地下调蓄设备,蓄水能力达到 140000立方米,将140000用科学记数法表示应为()4 5 6 6A . 14×10 B. 1.4×10 C. 1.4×10 D. 14×10考科学记数法—表示较大的数.点:专计算题.题:分将 140000 用科学记数法表示即可.析:解解: 140000=1.4×105,答:应选 B.点本题考察了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记评:数法的表示形式为 a×10n的形式,此中1≤|a|<10,n 为整数,表示时重点要正确确立a的值以及n 的值.2 .(3 分)(2015? 北京)实数 a,b ,c,d 在数轴上的对应点的位置以下图,这四个数中,绝对值最大的是()A . a B. b C. c D. d考实数大小比较.点:分第一依据数轴的特点,以及绝对值的含义和性质,判断出实数a,b, c,d 的绝对值的析:取值范围,而后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.解解:依据图示,可得答:3< |a|< 4, 1< |b|< 2, 0< |c|< 1, 2< |d|< 3,因此这四个数中,绝对值最大的是a.应选: A.点本题主要考察了实数大小的比较方法,以及绝对值的非负性质的应用,要娴熟掌握,评:解答本题的重点是判断出实数a, b, c, d 的绝对值的取值范围.3 .( 3 分)(2015? 北京)一个不透明的盒子中装有 3 个红球, 2 个黄球和 1 个绿球,这些球除了颜色外无其余差异,从中随机摸出一个小球,恰巧是黄球的概率为()A .B.C.D.考概率公式.点:专计算题.题:分直接依据概率公式求解.析:解解:从中随机摸出一个小球,恰巧是黄球的概率== .答:应选 B.点本题考察了概率公式:随机事件 A 的概率 P(A )=事件 A 可能出现的结果数除以全部评:可能出现的结果数.4 .( 3 分)(2015? 北京)剪纸是我国传统的民间艺术,以下剪纸作品中,是轴对称图形的为()A.B.C.D.考轴对称图形.点:分依据轴对称图形的观点求解.析:解解: A 、不是轴对称图形,答: B .不是轴对称图形,C.不是轴对称图形,D.是轴对称图形,应选: D.点本题考察了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,假如评:图形的两部分能够重合,那么这个是轴对称图形.5.(3 分)(2015? 北京)如图,直线l 1,l 2,l3交于一点,直线l4∥l1,若∠1=124 °,∠2=88 °,则∠3的度数为()A.26°B. 36°C. 46°D. 56°考平行线的性质.点:AOB 的大小,而后借助平角的定义求出∠ 3 即可分如图,第一运用平行线的性质求出∠析:解决问题.解解:如图,∵直线l4∥ l 1,答:∴∠ 1+∠ AOB=180°,而∠ 1=124°,∴∠ AOB=56 °,∴∠ 3=180°﹣∠ 2﹣∠ AOB=180 °﹣ 88°﹣56°=36 °,应选 B.点该题主要考察了平行线的性质及其应用问题;应坚固掌握平行线的性质,这是灵巧运评:用、解题的基础和重点.6 .( 3 分)(2015? 北京)如图,公路AC ,BC 相互垂直,公路AB的中点M 与点 C 被湖分开.若测得AM 的长为1.2km ,则M ,C 两点间的距离为()A . 0.5km B. 0.6km C. 0.9km D. 1.2km考直角三角形斜边上的中线.点:专应用题.题:分依据直角三角形斜边上的中线等于斜边的一半,可得析:解解:∵在Rt△ ABC 中,∠ ACB=90 °,M 为 AB 答:∴ MC= AB=AM=1.2km .MC=AM=1.2km的中点,.应选 D.点本题考察了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜评:边的一半.理解题意,将实质问题转变为数学识题是解题的重点.7 .( 3 分)(2015? 北京)某市 6 月份日均匀气温统计以下图,则在日均匀气温这组数据中,众数和中位数分别是()A . 21,21B. 21, 21.5C. 21, 22D. 22,22考众数;条形统计图;中位数.点:专数形联合.题:分依据条形统计图获取各数据的权,而后依据众数和中位数的定义求解.析:解解:这组数据中,21 出现了 10 次,出现次数最多,因此众数为21,答:第 15 个数和第 16 个数都是 22,因此中位数是 22.应选 C.点本题考察了众数的定义:一组数据中出现次数最多的数据叫做众数.也考察了条形统评:计图和中位数.8 .( 3 分)(2015? 北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑散布图,若这个坐标系分别以正东、正北方向为 x 轴、y 轴的正方向,表示太和门的点的坐标为(0 ,﹣1 ),表示九龙壁的点的坐标为(4 ,1 ),则表示以下宫殿的点的坐标正确的选项是()A .景仁宫( 4,2)? B.养心殿(﹣ 2, 3)C.保和殿( 1, 0)D.武英殿(﹣ 3.5,﹣ 4)考点:坐标确立地点.剖析:依据平面直角坐标系,找出相应的地点,而后写出坐标即可.解答:解:依据表示太和门的点的坐标为(0,﹣ 1),表示九龙壁的点的坐标为(4, 1),可得:原点是中和殿,因此可得景仁宫( 2,4),养心殿(﹣ 2,3),保和殿( 0,1),武英殿(﹣ 3.5,﹣ 3),应选 B评论:本题考察坐标确立地点,本题解题的重点就是确立坐标原点和x,y 轴的地点及方向.9 .( 3 分)(2015? 北京)一家游泳馆的游泳收费标准为30 元/ 次,若购置会员年卡,可享受以下优惠:会员年卡种类办卡花费(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15比如,购置 A 类会员年卡,一年内游泳 20 次,花费 50+25 × 20=550 元,若一年内在该游泳馆游泳的次数介于45 ~55 次之间,则最省钱的方式为()A .购买 A 类会员年卡C.购置 C 类会员年卡考点:一次函数的应用.B.购置B 类会员年卡D.不购置会员年卡剖析:设一年内在该游泳馆游泳的次数为x 次,花费的钱数为y 元,依据题意得: y A =50+25x ,y B=200+20x , y C=400+15x ,当 45≤x≤50 时,确立y 的范围,进行比较即可解答.解答:解:设一年内在该游泳馆游泳的次数为x 次,花费的钱数为 y 元,依据题意得:y A =50+25x ,y B=200+20x ,y C=400+15x ,当 45≤x≤50 时,1175≤y A≤1300;1100≤y B≤1200;1075 ≤y C≤1150;因而可知, C 类会员年卡花费最低,因此最省钱的方式为购置 C 类会员年卡.应选: C.评论:本题考察了一次函数的应用,解决本题的重点是依据题意,列出函数关系式,并确立函数值的范围.10 .(3 分)(2015? 北京)一个寻宝游戏的寻宝通道如图 1 所示,通道由在同一平面内的AB ,BC ,CA,OA ,OB ,OC 构成.为记录寻宝者的前进路线,在BC 的中点M 处搁置了一台定位仪器.设寻宝者前进的时间为x ,寻宝者与定位仪器之间的距离为y,若寻宝者匀速前进,且表示y 与x 的函数关系的图象大概如图 2 所示,则寻宝者的前进路线可能为()A.A→O→B B.B→A→C C. B→O→C D. C→B→O考动点问题的函数图象.点:分依据函数的增减性:不一样的察看点获取的函数图象的增减性不一样,可得答案.析:解答:解: A 、从 A 点到 O 点 y 随 x 增大向来减小到0,故 A 不切合题意;B.从 B 到 A 点 y 随 x 的增大先减小再增大,从A到C点y随x的增大先减小再增大,但在 A 点距离最大,故 B 不切合题意;C.从 B 到 O 点 y 随 x 的增大先减小再增大,从O 到C 点y 随 x 的增大先减小再增大,在 B、 C 点距离最大,故 C 切合题意;D.从 C 到 M 点 y 随 x 的增大而减小,向来到而增大,显然与图象不符,故 D 不切合题意;应选: C.点本题考察了动点问题的函数图象,利用察看点与动点评:的增减性是解题重点.y 为0,从 M 点到 B 点 y 随 x 的增大P 之间距离的变化关系得出函数二、填填空题(本题共18 分,每题 3 分)11 .(3 分)(2015? 北京)分解因式: 5x 3﹣10x 2+5x=5x (x﹣1 )2.考点:提公因式法与公式法的综合运用.剖析:先提取公因式5x,再依据完好平方公式进行二次分解.3 22=5x ( x ﹣ 2x+1 )故答案为: 5x( x﹣1)2.评论:本题考察了提公因式法,公式法分解因式,提取公因式后利用完好平方公式进行二次分解,注意分解要完全.12 .(3 分)(2015? 北京)如图是由射线AB ,BC ,CD ,DE ,EA构成的平面图形,则∠1+∠ 2+∠ 3+∠ 4+∠ 3605= °.考点:多边形内角与外角.剖析:第一依据图示,可得∠1=180°﹣∠ BAE ,∠ 2=180 °﹣∠ ABC ,∠ 3=180 °﹣∠BCD ,∠ 4=180 °﹣∠ CDE ,∠ 5=180°﹣∠ DEA ,而后依据三角形的内角和定理,求出五边形 ABCDE 的内角和是多少,再用 180°×5 减去五边形 ABCDE 的内角和,求出∠1+∠ 2+∠ 3+ ∠ 4+∠ 5 等于多少即可.解答:解:∠ 1+∠ 2+ ∠ 3+∠ 4+∠ 5=(180°﹣∠ BAE ) +( 180°﹣∠ ABC )+( 180°﹣∠ BCD )+( 180°﹣∠ CDE )+( 180°﹣∠ DEA )=180 °×5﹣(∠ BAE+ ∠ABC+ ∠ BCD+ ∠CDE+ ∠ DEA )=900 °﹣( 5﹣2)×180°=900 °﹣ 540°=360 °.故答案为: 360°.评论:本题主要考察了多边形内角和定理,要娴熟掌握,解答本题的重点是要明确:(1)n 边形的内角和=( n﹣ 2)?180 (n≥3)且 n 为整数).(2)多边形的外角和指每个极点处取一个外角,则n 边形取 n 个外角,不论边数是几,其外角和永久为360°.13 .(3 分)(2015? 北京)《九章算术》是中国传统数学最重要的着作,确立了中国传统数学的基本框架.它的代数成就主要包含开方术、正负术和方程术.此中,方程术是《九章算术》最高的数学成就.《九章算术》中记录:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假定有 5 头牛、 2 只羊,值金 10 两; 2 头牛、 5 只羊,值金 8 两.问:每头牛、每只羊各值金多少两?”设每头牛值金 x 两,每只羊值金 y 两,可列方程组为.考点 :由实质问题抽象出二元一次方程组.剖析:依据 “假定有 5 头牛、 2 只羊,值金 10 两; 2 头牛、 5 只羊,值金 8 两 ”,获取等量关系,即可列出方程组.解答:解:依据题意得:,故答案为:.评论:本题考察了由实质问题抽象出二元一次方程组, 解决本题的重点是找到题目中所存在的等量关系.14 .(3 分)(2015? 北京)对于 x 的一元二次方程 ax 2 +bx+ =0 有 两个相等的实数根,写出一组知足条件的实数 a ,b 的值:a= 4 , b= 2.考点 :根的鉴别式.专题 :开放型. 剖析: 因为对于 x 的一元二次方程 2 2ax +bx+ =0 有两个相等的实数根,获取 a=b ,找一组满 足条件的数据即可.解答:对于 x 的一元二次方程ax 2+bx+ =0 有两个相等的实数根,∴△ =b 2﹣ 4× a=b 2﹣ a=0,∴ a=b 2,当 b=2 时, a=4,故 b=2 , a=4 时知足条件.故答案为: 4, 2.评论:本题主要考察了一元二次方程根的鉴别式,娴熟掌握鉴别式的意义是解题的重点.15 .(3 分)(2015? 北京)北京市 2009 ﹣2014 年轨道交通日均客运量统计以下图.依据统计图中供给的信息,预估2015 年北京市轨道交通日均客运量约980万人次,你的预估原因是依据 2009 ﹣2011 年呈直线上涨,故2013 ﹣2015 年也呈直线上涨.考点:用样本估计整体;折线统计图.剖析:依据统计图进行用样本估计整体来预估即可.解答:解:预估 2015 年北京市轨道交通日均客运量约980 万人次,依据 2009﹣ 2011 年呈直线上涨,故 2013﹣2015 年也呈直线上涨,故答案为: 980;依据 2009﹣ 2011 年呈直线上涨,故2013﹣ 2015 年也呈直线上涨.评论:本题考察用样本估计整体,重点是依据统计图剖析其上涨规律.16 .(3 分)(2015? 北京)阅读下边资料:在数学课上,老师提出以下问题:小芸的作法以下:老师说:“小芸的作法正确.”请回答:小芸的作图依照是到线段两个端点距离相等的点在线段的垂直均分线上.考点:作图—基本作图.专题:作图题.剖析:经过作图获取CA=CB , DA=DB ,则可依据线段垂直均分线定理的逆定理判断CD 为线段 AB 的垂直均分线.解答:解:∵ CA=CB , DA=DB ,∴CD 垂直均分 AB (到线段两个端点距离相等的点在线段的垂直均分线上)故答案为:到线段两个端点距离相等的点在线段的垂直均分线上.评论:本题考察了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直均分线;作已知角的角均分线;过一点作已知直线的垂线.三、解答题(本题共 72 分,第 17 -26 题,每题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分)解答应写出文字说明,演算步骤或证明过程.17 .(5 分)(2015? 北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.考点:实数的运算;零指数幂;负整数指数幂;特别角的三角函数值.剖析:原式第一项利用负整数指数幂法例计算,第二项利用零指数幂法例计算,第三项利用绝对值的代数意义化简,最后一项利用特别角的三角函数值计算即可获取结果.解答:解:原式 =4﹣ 1+2 ﹣+4×=5+.评论:本题考察了实数的运算,娴熟掌握运算法例是解本题的重点.18 .(5 分)(2015? 北京)已知 2a 2+3a ﹣6=0 .求代数式 3a(2a+1 )﹣( 2a+1 )(2a ﹣1 )的值.考点:整式的混淆运算—化简求值.专题:计算题.剖析:原式第一项利用单项式乘以多项式法例计算,第二项利用平方差公式化简,去括号归并获取最简结果,把已知等式变形后辈入计算即可求出值.2 2解答:解:∵ 2a +3a﹣ 6=0 ,即 2a +3a=6,2 2 2∴原式 =6a +3a﹣ 4a +1=2a +3a+1=6+1=7.评论:本题考察了整式的混淆运算﹣化简求值,娴熟掌握运算法例是解本题的重点.19 .(5 分)(2015? 北京)解不等式组,并写出它的全部非负整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.专题:计算题.剖析:分别求出不等式组中两不等式的解集,找出解集的公共部分确立出不等式组的解集,即可确立出全部非负整数解.解答:解:,由①得: x≥﹣ 2;由②得: x<,∴不等式组的解集为﹣2≤x<,则不等式组的全部非负整数解为:0,1, 2, 3.评论:本题考察认识一元一次不等式组,以及一元一次不等式组的整数解,娴熟掌握运算法则是解本题的重点.20 .(5 分)(2015? 北京)如图,在△ABC中,AB=AC,AD 是BC 边上的中线,BE⊥ AC于点E.求证:∠CBE=∠ BAD.考点:等腰三角形的性质.专题:证明题.剖析:依据三角形三线合一的性质可得∠CAD= ∠ BAD ,依据同角的余角相等可得:∠ CBE= ∠CAD ,再依据等量关系获取∠CBE= ∠BAD .解答:证明:∵ AB=AC , AD 是 BC 边上的中线,BE ⊥ AC,∴∠ CBE+ ∠ C=∠CAD+ ∠ C=90°,∠ CAD= ∠ BAD ,∴∠ CBE= ∠ BAD .评论:考察了余角的性质,等腰三角形的性质:等腰三角形的顶角均分线、底边上的中线、底边上的高相互重合.21 .(5 分)(2015? 北京)为解决“最后一公里”的交通接驳问题,北京市投放了大批公租自行车供市民使用.到2013 年末,全市已有公租自行车25 000辆,租借点600个.估计到2015年末,全市将有公租自行车50 000辆,而且均匀每个租借点的公租自行车数目是2013 年末均匀每个租借点的公租自行车数目的 1.2 倍.估计到2015 年末,全市将有租借点多少个?考点:分式方程的应用.剖析:依据租借点的公租自行车数目变化表示出行车数目,从而得出等式求出即可.解答:解:设到 2015 年末,全市将有租借点2013 年和 2015 年均匀每个租借点的公租自x 个,依据题意可得:×1.2= ,解得: x=1000,经查验得: x=1000 是原方程的根,答:到 2015 年末,全市将有租借点1000 个.评论:本题主要考察了分式的方程的应用,依据题意得出正确等量关系是解题重点.22 .(5 分)(2015? 北京)在 ?ABCD 中,过点 D 作 DE⊥ AB 于点E,点 F 在边 CD 上, DF=BE ,连结 AF ,BF .(1 )求证:四边形BFDE 是矩形;(2 )若 CF=3 ,BF=4 ,DF=5 ,求证: AF 均分∠DAB.考点:平行四边形的性质;角均分线的性质;勾股定理的逆定理;矩形的判断.专题:证明题.剖析:( 1)依据平行四边形的性质,可得AB与CD的关系,依据平行四边形的判断,可得BFDE 是平行四边形,再依据矩形的判断,可得答案;(2)依据平行线的性质,可得∠DFA= ∠FAB ,依据等腰三角形的判断与性质,可得∠DAF= ∠ DFA ,依据角均分线的判断,可得答案.解答:( 1)证明:∵四边形 ABCD 是平行四边形,∴AB∥CD.∵BE∥ DF , BE=DF ,∴四边形 BFDE 是平行四边形.∵DE⊥ AB ,∴∠ DEB=90 °,∴四边形BFDE 是矩形;(2)解:∵四边形ABCD 是平行四边形,∴AB ∥DC,∴∠ DFA= ∠ FAB .在 Rt△ BCF 中,由勾股定理,得BC===5,∴AD=BC=DF=5 ,∴∠ DAF= ∠ DFA ,∴∠ DAF= ∠ FAB ,即 AF 均分∠ DAB .评论:本题考察了平行四边形的性质,利用了平行四边形的性质,矩形的判断,等腰三角形的判断与性质,利用等腰三角形的判断与性质得出∠DAF= ∠ DFA 是解题重点.23 .(5 分)(2015? 北京)在平面直角坐标系 xOy 中,直线 y=kx+b( k ≠ 0)与双曲线 y= 的一个交点为 P(2 ,m ),与 x 轴、y 轴分别交于点 A,B .(1 )求 m 的值;(2 )若 PA=2AB ,求 k 的值.考点:反比率函数与一次函数的交点问题.剖析:( 1)将点 P 的坐标代入反比率函数的分析式即可求得m 的值;(2)作 PC⊥ x 轴于点 C,设点 A 的坐标为( a,0),则 AO= ﹣ a,AC=2 ﹣ a,依据 PA=2AB 获取 AB :AP=AO : AC=1 :2,求得 a 值后辈入求得k 值即可.解答:解:∵ y= 经过 P( 2,m),∴2m=8,解得: m=4;(2)点 P( 2, 4)在 y=kx+b 上,∴4=2k+b ,∴b=4﹣ 2k,∵直线 y=kx+b ( k≠0)与 x 轴、 y 轴分别交于点 A ,B ,∴ A( 2﹣,0),B(0,4﹣2k),如图,∵PA=2AB ,∴AB=PB ,则 OA=OC ,∴﹣ 2=2,解得 k=1;评论:本题考察了反比率函数与一次函数的交点问题,解题的重点是表示出 A 的坐标,而后利用线段之间的倍数关系确立k 的值,难度不大.24 .(5 分)(2015? 北京)如图, AB 是⊙O 的直径,过点 B 作⊙O的切线 BM ,弦 CD∥ BM,交AB 于点 F,且=,连结AC,AD ,延伸 AD 交 BM 于点 E.(1 )求证:△ACD是等边三角形;(2 )连结 OE ,若 DE=2 ,求 OE 的长.考点:切线的性质;等边三角形的判断与性质.剖析:( 1)由 AB 是⊙ O 的直径, BM 是⊙ O 的切线,获取AB ⊥ BE,因为 CD ∥ BE,获取CD ⊥ AB ,依据垂径定理获取,于是获取,问题即可得证;(2)连结 OE,过 O 作 ON⊥ AD 于 N ,由( 1)知,△ ACD 是等边三角形,获取∠ DAC=60 °又直角三角形的性质获取BE= AE , ON= AO ,设⊙ O 的半径为: r 则 ON= r,AN=DN=r,因为获取EN=2+,BE=AE=,在R t△DEF与R t△ BEO中,由勾股定理列方程即可获取结论.解答:( 1)证明:∵ AB 是⊙ O 的直径, BM 是⊙ O 的切线,∴AB ⊥BE,∵ CD∥BE,∴CD⊥ AB ,∴,∵=,∴,∴AD=AC=CD ,∴△ ACD 是等边三角形;(2)解:连结OE,过 O 作 ON⊥ AD 于 N ,由( 1)知,△ ACD 是等边三角形,∴∠ DAC=60 °∵AD=AC ,CD⊥ AB ,∴∠ DAB=30 °,∴BE= AE , ON= AO ,设⊙ O 的半径为: r,∴ON= r, AN=DN=r,∴ EN=2+,BE=AE=,在 R t△ DEF 与 R t△ BEO 中,2 2 2 2 2OE =ON +NE =OB +BE ,即=r 2,+∴ r=2 ,∴ OE 2= +25=28,∴ OE=2 .评论:本题考察了切线的性质,垂径定理,等边三角形的判断,直角三角形的性质,勾股定理,过 O 作 ON⊥ AD 于 N ,结构直角三角形是解题的重点.25 .(5 分)(2015? 北京)阅读以下资料:2015 年清明小长假,北京市属公园展开以“清明踏青,春光满园”为主题的游园活动,固然气温小幅走低,但旅客踏青赏花的热忱很高,市属公园旅客招待量约为190 万人次.此中,玉渊潭公园的樱花、北京植物园的桃花遇到了旅客的热捧,两公园的旅客招待量分别为38 万人次、 21.75 万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春光成为旅客的重要目的地,旅客招待量分别为 26 万人次、 20 万人次、 17.6 万人次;北京动物园旅客招待量为 18 万人次,熊猫馆的旅客密集度较高.2014 年清明小长假,天气晴好,北京市属公园旅客招待量约为200 万人次,此中,玉渊潭公园旅客招待量比2013年清明小长假增添了 25% ;颐和园旅客招待量为 26.2 万人次,2013 年清明小长假增添了 4.6 万人次;北京动物园旅客招待量为 22 万人次.2013 年清明小长假,玉渊潭公园、陶然亭公园、北京动物园旅客接待量分别为 32 万人次、 13 万人次、 14.9万人次.依据以上资料解答以下问题:(1 )2014 年清明小长假,玉渊潭公园旅客招待量为40万人次;(2 )选择统计表或统计图,将2013 ﹣2015 年清明小长假玉渊潭公园、颐和园和北京动物园的旅客招待量表示出来.考点:条形统计图;统计表.剖析:( 1) 2013 年的人数乘以( 1+25%)即可求解;(2)求出 2014 年颐和园的旅客招待量,而后利用统计表即可表示.解答:解:( 1)2014 年,玉渊潭公园的旅客招待量是:32×(1+25% ) =40(万人).故答案是:40;(2) 2013 年颐和园的旅客招待量是:26.4﹣ 4.6=21.8(万元).玉渊潭公园颐和园北京动物园2013 年32 21.8 14.92014 年40 26.2 222015 年38 26 18评论:本题考察了数据的剖析与整理,正确读懂题意,从所列的数据中整理出2013﹣ 2015年三年中,三个公园的旅客数是重点.26 .(5 分)(2015? 北京)有这样一个问题:研究函数y= x2 + 的图象与性质.小东依据学习函数的经验,对函数y= x 2+ 的图象与性质进行了探究.下边是小东的研究过程,请增补完好:(1 )函数 y= x 2 + 的自变量 x 的取值范围是x ≠0;(2 )下表是 y 与 x 的几组对应值.x ﹣3 ﹣2 ﹣1 ﹣﹣123y ﹣﹣﹣m求 m 的值;(3 )如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.依据描出的点,画出该函数的图象;(4 )进一步研究发现,该函数图象在第一象限内的最低点的坐标是(1,),联合函数的图象,写出该函数的其余性质(一条即可)该函数没有最大值.考点:二次函数的图象;反比率函数的图象;反比率函数的性质;二次函数的性质.剖析:( 1)由图表可知x≠0;(2)依据图表可知当 x=3 时的函数值为 m,把 x=3 代入分析式即可求得;(3)依据坐标系中的点,用光滑的直线连结即可;(4)察看图象即可得出该函数的其余性质.解答:解:( 1)x≠0,(2)令 x=3 ,2∴ y=×3 += + =;∴ m=;(3)如图(4)该函数的其余性质:① 该函数没有最大值;②该函数在x=0 处断开;③ 该函数没有最小值;④ 该函数图象没有经过第四象限.故答案为该函数没有最大值.评论:本题考察了二次函数的图象和性质,反比率函数的图象和性质,依据图表画出函数的图象是解题的重点.27 .(7分)(2015?北京)在平面直角坐标系xOy中,过点( 0 ,2 )且平行于 x 轴的直线,与直线 y=x ﹣1 交于点 A ,点 A 对于直线x=1 的对称点为 B ,抛物线 C 1 :y=x 2 +bx+c 经过点 A ,B .(2 )求抛物线 C 1 的表达式及极点坐标;(3 )若抛物线 C 2:y=ax 2( a ≠ 0)与线段 AB 恰有一个公共点,联合函数的图象,求 a 的取值范围.考点 :二次函数的性质;待定系数法求二次函数分析式.剖析:( 1)当 y=2 时,则 2=x ﹣ 1,解得 x=3,确立 A (3,2),依据 AB 对于 x=1 对称,所以 B (﹣ 1,2).(2)把( 3, 2),(﹣ 2, 2)代入抛物线 C 1: y=x 2+bx+c 得,求出 b , c 的值,即可解答;2,求出 a 的值,即可解答.(3)画出函数图象,把 A ,B 代入 y=ax解答:解:( 1)当 y=2 时,则 2=x ﹣1,解得: x=3, ∴ A ( 3, 2),∵点 A 对于直线 x=1 的对称点为 B ,∴ B (﹣ 1, 2).C 1: y=x 2(2)把( 3, 2),(﹣ 2, 2)代入抛物线 +bx+c 得:解得:∴ y=x 2﹣ 2x ﹣ 1.极点坐标为( 1,﹣ 2).(3)如图,当 C 2 过 A 点, B 点时为临界,代入 A ( 3, 2)则 9a=2, 解得: a= ,代入 B (﹣ 1,2),则 a (﹣ 1) 2=2, 解得: a=2,∴评论:本题考察了二次函数的性质,解集本题的重点是求出二次函数的分析式,并联合图形解决问题.28 .(7 分)(2015? 北京)在正方形ABCD 中,BD 是一条对角线,点P 在射线 CD 上(与点 C、D 不重合),连结 AP,平移△ ADP,使点D 挪动到点 C,获取△ BCQ,过点Q 作 QH⊥ BD 于 H ,连接 AH ,PH.(1 )若点 P 在线段 CD 上,如图 1 .①依题意补全图 1 ;②判断 AH 与 PH 的数目关系与地点关系并加以证明;(2 )若点 P 在线段 CD 的延伸线上,且∠ AHQ=152°,正方形 ABCD 的边长为 1 ,请写出求 DP 长的思路.(能够不写出计算结果)考点:四边形综合题.剖析:( 1)①依据题意画出图形即可;②连结 CH,先依据正方形的性质得出△DHQ 是等腰直角三角形,再由 SSS 定理得出△HDP≌△ HQC ,故 PH=CH ,∠ HPC= ∠HCP ,由正方形的性质即可得出结论;(2)依据四边形 ABCD 是正方形, QH⊥ BD 可知△ DHQ 是等腰直角三角形,再由平移的性质得出 PD=CQ .作 HR⊥PC 于点 R,由∠ AHQ=152 °,可得出∠ AHB 及∠ DAH 的度数,设 DP=x ,则 DR=HR=RQ ,由锐角三角函数的定义即可得出结论.解答:解:( 1)① 如图 1;②如图 1,连结 CH ,∵四边形ABCD 是正方形, QH⊥ BD ,∴∠ HDQ=45 °,∴△ DHQ 是等腰直角三角形.∵DP=CQ ,在△HDP 与△HQC 中.∵,∴△ HDP≌△ HQC ( SSS),∴PH=CH ,∠ HPC= ∠ HCP.∵BD 是正方形 ABCD 的对称轴,∴ AH=CH ,∠ DAH= ∠ HCP,∴∠ AHP=180 °﹣∠ ADP=90 °,∴ AH=PH , AH ⊥PH.(2)如图 2,∵四边形ABCD 是正方形, QH⊥ BD ,∴∠ HDQ=45 °,∴△ DHQ 是等腰直角三角形.∵△ BCQ 由△ ADP 平移而成,∴PD=CQ .作 HR⊥PC 于点 R,∵∠ AHQ=152 °,∴∠ AHB=62 °,∴∠ DAH=17 °.设 DP=x ,则 DR=HR=RQ=.∵ tan17°=,即tan17°=,∴ x=.评论:本题考察的是四边形综合题,波及到正方形的性质、图形平移的性质、全等三角形的判断与性质等知识,难度适中.29 .(8 分)(2015? 北京)在平面直角坐标系xOy 中,⊙C 的半径为 r ,P 是与圆心 C 不重合的点,点 P 对于⊙C 的反称点的定义以下:若在射线 CP 上存在一点 P′,知足 CP+CP′ =2r ,则称 P′为点 P 对于⊙C 的反称点,如图为点 P 及其对于⊙C 的反称点 P′的表示图.特别地,当点 P′与圆心 C 重合时,规定 CP′ =0.(1 )当⊙O 的半径为 1 时.①分别判断点 M(2,1),N(, 0),T(1,)对于⊙O 的反称点能否存在?若存在,求其坐标;②点 P 在直线 y= ﹣x+2 上,若点 P 对于⊙O 的反称点 P′存在,且点 P′不在 x 轴上,求点 P 的横坐标的取值范围;(2 )⊙C 的圆心在 x 轴上,半径为 1 ,直线 y= ﹣ x+2 与 x 轴、y轴分别交于点 A,B ,若线段 AB 上存在点 P,使得点 P 对于⊙C 的反称点P′在⊙C的内部,求圆心 C 的横坐标的取值范围.精心整理考点 :圆的综合题.剖析:( 1)① 依据反称点的定义,可适当⊙ O 的半径为 1 时,点 M (2, 1)对于⊙ O 的反称点不存在; N ( , 0)对于⊙ O 的反称点存在,反称点 N ′( , 0); T (1,)对于⊙ O 的反称点存在,反称点T ′(0, 0);② 由 OP ≤2r=2 ,得出 22 2OP ≤4,设 P ( x ,﹣ x+2),由勾股定理得出 OP =x +(﹣ x+2 )2 =2x 2﹣ 4x+4 ≤4,解不等式得出 0≤x ≤2.再分别将 x=2 与 0 代入查验即可;(2)先由 y=﹣x+2,求出 A (6,0),B (0,2),则 =,∠ OBA=60 °,∠ OAB=30 °.再设 C ( x ,0),分两种状况进行议论: ① C 在OA 上;② C 在A 点右侧.解答:解:( 1)当⊙ O 的半径为 1 时.① 点 M ( 2,1)对于⊙ O 的反称点不存在;N ( , 0)对于⊙ O 的反称点存在,反称点 N ′( ,0); T (1,)对于⊙ O 的反称点存在,反称点T ′( 0, 0);2② ∵ OP ≤2r=2 , OP ≤4,设 P ( x ,﹣ x+2 ),2 2 2 2 ﹣ 4x+4 ≤4,∴ OP =x +(﹣ x+2 ) =2x2∴ 2x ﹣ 4x ≤0,∴ 0≤x ≤2.当 x=2 时, P ( 2,0), P ′( 0, 0)不切合题意;当 x=0 时, P ( 0,2), P ′( 0, 0)不切合题意; ∴ 0< x <2;(2)∵直线 y= ﹣x+2 与 x 轴、 y 轴分别交于点A ,B ,∴ A ( 6, 0),B ( 0,2),∴=,∴∠ OBA=60 °,∠ OAB=30 °. 设 C (x , 0).① 当 C 在 OA 上时,作 CH ⊥AB 于 H ,则 CH ≤CP ≤2r=2 ,因此 AC ≤4,C 点横坐标 x ≥2(当 x=2 时, C 点坐标( 2, 0), H 点的反称点 H ′( 2, 0)在圆的内部);② 当 C 在 A 点右边时, C 到线段 AB 的距离为 AC 长, AC 最大值为 2,因此 C 点横坐标 x ≤8. 综上所述,圆心C 的横坐标的取值范围是2≤x ≤8.评论:本题是圆的综合题, 此中波及到一次函数图象上点的坐标特点, 特别角的三角函数值,勾股定理,一元二次不等式的解法,利用数形联合、正确理解反称点的意义是解决本题的重点.。

2015中考海淀区初三一模数学试卷及答案


CE 为⊙O 的直径,且点 F 在 ⊙O 上, ∴ ∠EFC=90° . CE⊥AB, ∴ ∠BEC=90° .
E O A
∴ ∠BEF +∠FEC = ∠FEC + ∠ECF =90° . ∴ ∠BEF = ∠ECF . ∴ tan ∠BEF = tan ∠ECF . ∴ BF = EF .
∠CBE , ∠GEB = BE = EB, ∠EBG = ∠BEC ,
∴ △GEB ≌ △CBE . ∴ EG = BC . ………………………………………………………………………………5 分 方法二: 证明:连接 BE,设 BG 与 EC 交于点 H,如图 3. ∵四边形 ABCD 是菱形, F ∴AD∥BC. G ∠ADC = 120° , D ∴∠DCB = 60° . AC 是菱形 ABCD 的对角线, ∴ ∠DCA = 30 . ………………………2 分 ∠DCB =°
19. (本小题满分 5 分) 解: ( x − 2 y ) 2 − ( x − y )( x + y ) − 2 y 2
400—650—7766
=x 2 − 4 xy + 4 y 2 − ( x 2 − y 2 ) − 2 y 2 ………………………………………………2 分 = −4 xy + 3 y 2 ……………………………………………………………………3 分
二、填空题(本题共 18 分,每小题 3 分) 题号 11 12 13 0.6 14 15 小明(1 分) ; 一组对边平行且 相等的四边形是 平行四边形 (2 分) 16 30° 或 150° (只答对 一个 2 分, 全对 3 分)
= y kx ( k > 0 )
答案 a(a+b)(a-b) 如, y = x

2015北京中考一模数学分类——一次函数与反比例函数小综合

2015北京中考一模数学分类—一次函数与反比例函数1.(2015海淀一模12)写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x =的图象有公共点,这个函数的解析式为___________.2.(2015西城一模8)在平面直角坐标系xOy 中,第一象限内的点P 在反比例函数的图象上,如果点P 的纵坐 标是3,OP=5,那么该函数的表达式为 A. 12y x = B. 12y x =- C. 15y x = D. 15y x =-3.(2015东城一模22)在平面直角坐标系xOy 中,过点()4,2A -向x 轴作垂线,垂足为B ,连接AO .双曲线 k y x =经过斜边AO 的中点C ,与边AB 交于点D .(1)求反比例函数的解析式;(2)求△BOD 的面积.4.(2015朝阳一模14)请写出一个图象从左向右上升且经过点(-,2)的函数,所写的函数表达式是 .5(2015丰台一模21).如图,一次函数122y x =+的图象与x 轴交于点B ,与反比例函数k y x =的图象的一个交点为A (2,m ).(1)求反比例函数的表达式;(2)过点A 作AC ⊥x 轴,垂足为点C ,如果点P 在反比例函数图象上,且△PBC 的面积等于6,请直接写出点P 的坐标.6.计算:(2015石景山一模13)已知点(4,6)A 与(3,)B n 都在反比例函数()0k y k x=≠的图象上,则=n . x A y O B C参考答案 1.()0y kx k =>如,y x = 2.A3.解:(1)过点C 向x 轴作垂线,垂足为E . ∵CE x ⊥轴,AB x ⊥轴,()4,2A -,∴CE AB ∥,()4,0B -.∴12OE OC CE OB OA AB ===. ∵4OB =,2AB =,∴2OE =,1CE =.∴()2,1C -. …………2分 ∵双曲线k y x =经过点C , ∴2k =-.∴反比例函数的解析式为2y x =-. …………3分 (2)∵点D 在AB 上,∴点D 的横坐标为4-.∵点D 在双曲线2y x =-上, ∴点D 的纵坐标为12. …………4分 ∴BOD S △11141222OB BD =⋅⋅=⨯⨯=.…………5分 4.3+=x y (答案不惟一)5(1)一次函数122y x =+的图象经过点A (2,m ), ∴3m =.∴点A 的坐标为(2,3). ………1分 反比例函数k y x=的图象经过点A (2,3), ∴6k =………2分∴反比例函数的表达式为6.y x=……3分 (2)(3,2)(3,2).P P --,………………5分 6.8。

北京各区2015初中数学一模27题汇编及答案

北京各区2015初中数学一模27题汇编及答案27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.27. 在平面直角坐标系中,抛物线32++=bx ax y 与x 轴的两个交点分别为A (-3,0), B (1,0),顶点为C .(1) 求抛物线的表达式和顶点坐标;(2) 过点C 作CH ⊥x 轴于点H ,若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.27.已知抛物线y =ax 2+x +c (a ≠0)经过A (1-,0),B (2,0)两点,与y 轴相交于点C ,点D 为该抛物线的顶点.(1)求该抛物线的解析式及点D 的坐标; (2)点E 是该抛物线上一动点,且位于第一象限,当点E 到直线BC时,求点E 的坐标;(3)在(2)的条件下,在x 轴上有一点P ,且∠EAO +∠EPO =∠α,当tanα=2时,求点P 的坐标.27. 二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0),12y x b =-+经过点B,且与二次函数2y x mx n =-++交于点D .过点D 作DC ⊥x 轴,垂足为点C . (1)求二次函数的表达式;(2)点N 是二次函数图象上一点(点N 在BD 上方),过N 作NP ⊥x 轴,垂足为点P ,交BD 于点M ,求MN 的最大值.27.抛物线c bx x y C ++=2121:与y 轴交于点C (0,3),其对称轴与x 轴交于点A (2,0). (1)求抛物线1C 的解析式;(2)将抛物线1C 适当平移,使平移后的抛物线2C 的顶点为D (0,k ).已知点B (2,2),若抛物线2C 与△OAB 的边界总有两个公共点,请结合函数图象,求k 的取值范围.27.在平面直角坐标系中,抛物线经过点(-1,a ),(3,a ),且最低点的纵坐标为-4. (1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,xOy 22y x mx n =++A B O yxB 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.27.在平面直角坐标系xOy 中,二次函数y=(a-1)x 2+2x+1与x 轴有交点,a 为正整数. (1)求a 的值.(2)将二次函数y=(a-1)x 2+2x+1的图象向右平移m 个单位,向下平移m 2+1个单位,当 -2≤x ≤1时,二次函数有最小值-3,求实数m 的值.27题图Oyx27.已知:关于x 的一元二次方程-x 2+(m +1)x +(m +2)=0(m >0).(1)求证:该方程有两个不相等的实数根; (2)当抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),求该抛物线的表达式;(3)在(2)的条件下,记抛物线y =-x 2+(m +1)x +(m +2)在第一象限之间的部分为图象G ,如果直线 y =k (x +1)+4与图象G 有公共点,请结合函数的图象,求直线y =k (x +1)+4与y 轴交点的纵坐标t 的取值范围.27.在平面直角坐标系xOy 中,抛物线223(0)y mx mx m =--≠与x 轴交于(3,0)A ,B两点.(1)求抛物线的表达式及点B 的坐标;(2)当23x -<<时的函数图象记为G ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象G 在x 轴上方的部分沿x 轴翻折,图象G 的其余部分保持不变,得到一个新图象M .若经过点(4,2)C 的直线(0)y kx b k =+≠与图象M 在第三象限内有两个公共点,结合图象求b 的取值范围.27.二次函数2(0)y ax bx c a =++≠的图象与一次函数k 的图象交于、两点,(1,0)C 为二次函数图象的顶点.(1)求二次函数2(0)y ax bx c a =++≠的表达式;(2)在所给的平面直角坐标系中画出二次函数2(0)y ax bx c a =++≠的图象和一次函数k 的图象;(3)把(1)中的二次函数2(0)y ax bx c a =++≠的图象平移后得到新的二次函数22(0,)y ax bx c m a m =+++≠为常数的图象,.定义新函数f :“当自变量x 任取一值时,x 对应的函数值分别为1y 或2y ,如果1y ≠2y ,函数f 的函数值等于1y 、2y 中的较小值;如果1y =2y ,函数f 的函数值等于1y (或2y ).” 当新函数f 的图象与x 轴有三个交点时,直接写出m 的取值范围.1y x b =+)10(,A B 1y x b =+答案27已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位,得到抛物线2C ,将2C 对应的函数表达式记为22y x mx n =++,求2C 对应的函数表达式;(3)设323y x =+,在(2)的条件下,如果在2-≤x ≤a 内存在..某一个x 的值,使得2y ≤3y 成立,利用函数图象直接写出a 的取值范围.27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分 ∴M 1 : x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分∵直线n x y +=经过点F , ∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分 (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+.当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. …………4分 (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P .∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒. ∵()0,1C ,()1,0A -, ∴1OA OC ==. ∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒. ∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标,则1110,1.k b b -+=⎧⎨=-⎩解得111,1.k b =-⎧⎨=-⎩所以,直线AM 的函数表达式为1y x =--.令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形, ∴1OC ON ==.∴点N 的坐标为()1,0.∵2CP AC ⊥,1AP AC ⊥, ∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫⎪⎝⎭. …………6分 综上,在对称轴上存在点1P 13,22⎛⎫- ⎪⎝⎭,2P 11,22⎛⎫⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分27. (1)由题意,得9-33030a b a b +=⎧⎨++=⎩解得,⎩⎨⎧-=-=21b a抛物线的解析式为y=-x 2-2x+3 ………………………2分顶点C 的坐标为(-1,4) ………………………3分 (2)①若点P 在对称轴右侧(如图①),只能是△PCQ ∽△CAH ,得∠QCP =∠CAH . 延长CP 交x 轴于M ,∴AM =CM ,∴AM 2=CM 2. 设M (m ,0),则( m +3)2=42+(m +1)2,∴m =2,即M (2,0). 设直线CM 的解析式为y=k 1x+b 1, 则⎩⎨⎧=+=+-0241111b k b k , 解之得341-=k ,381=b .∴直线CM 的解析式3834+-=x y .…………………………………4分 3238342+--=+-x x x , 解得311=x ,12-=x (舍去).9201=y .∴)92031(,P . ………………………………………………5分②若点P 在对称轴左侧(如图②),只能是△PCQ ∽△ACH ,得∠PCQ =∠ACH . 过A 作CA 的垂线交PC 于点F ,作FN ⊥x 轴于点N . 由△CFA ∽△CAH 得2==AHCHAF CA ,由△FNA ∽△AHC 得21===CA AF HC NA AH FN . ∴12==FN AN ,, 点F 坐标为(-5,1).设直线CF 的解析式为y=k 2x+b 2,则⎩⎨⎧=+-=+-1542222b k b k ,解之得419,4322==b k .∴直线CF 的解析式41943+=x y .……………………………………6分 32419432+--=+x x x , 解得471-=x ,12-=x (舍去).∴)165547(,-P . …………………………………7分 ∴满足条件的点P 坐标为)201(,或)557(,-27.解:(1)∵抛物线y=ax 2+x+c (a ≠0)经过A(﹣1,0),B (2,0)两点,∴10420a c a c -+=⎧⎨++=⎩,解得12a c =-⎧⎨=⎩.∴抛物线为y =﹣x 2+x +2①;………………………………………………………1 ∴顶点D (12,94).………………………………………………………………2 (2)如图,作EN ∥BC ,交y 轴于N ,过C 作CM ⊥EN 于M ,令x =0,得y =2, ∴OC =OB =2. ∴∠OCB =45°. ∵EN ∥BC ,∴∠CNM =∠OCB =45°. ∵CM ⊥EN 于M , ∴∠CNM =∠CMN =45°. ∴MN =CM =2.∴CN =1.∴直线NE 的解析式为:把②代入①,解得1x y =⎧⎨=⎩(图①) (图②)∴E (1,2).………………………………4 (3)过E 作EF ⊥AB 于F∴tan ∠EOF =2, 又∵tan ∠α=2, ∴∠EOF =∠α,∵∠EOF =∠EAO +∠AEO =∠α, ∠EAO +∠EPO =∠α, ∴∠EPO =∠AEO ,∵∠EAO =∠P AE ,∴△AEP ∽△AOE , (5)∴AP AEAE AO=, ∵AEAO∴AP =8,∴OP =7,∴()7,0P ,由对称性可得,()'5,0P -∴()7,0P 或()5,0-.27. 解:(1)∵二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0) ∴4101m nm n=--+⎧⎨=-++⎩∴m=-2,n=3∴二次函数的表达式为223y x x =--+ (2)12y x b =-+经过点B ∴12b = 画出图形()211(,),2322M m m m m m -+--+设,则N ∴21123()22MN m m m =--+--+设 ∴23522MN m m =--+∴2349()416MN m =-++ ∴MN 的最大值为491627.解:(1)∵抛物线c bx x y ++=221与y 轴交于点C (0,3),∴3=c ; ………………………1分∵抛物线c bx x y ++=221的对称轴为2=x ,-----------7分 -----------2分 -----------6分 -----------5分-----------3分 -----------4分y =2∴2212=⨯-b, 解得2-=b , ………………………2分∴抛物线1C 的解析式为32212+-=x x y . ………………………3分(2)由题意,抛物线2C 的解析式为k x y +=221. ………………………4分当抛物线经过点A (2,0)时,02212=k +⨯,解得2-=k . ………………………5分∵O (0,0),B (2,2),∴直线OB 的解析式为x y =.由⎪⎩⎪⎨⎧+==k x y x y 221,, 得0222=+-k x x ,(*)当Δ=k 214)2(2⨯⨯--=0,即21=k 时, ………………………6分 抛物线2C 与直线OB 只有一个公共点,此时方程(*)化为0122=+-x x ,解得1=x ,即公共点P 的横坐标为1,点P 在线段OB 上. ∴k 的取值范围是212<<-k . (7)27 . 解:(1)∵抛物线过点 (-1,a ),(3,a ), 22y x mx n =++A B∴抛物线的对称轴x =1..……. 1分 ∵抛物线最低点的纵坐标为-4 ,∴抛物线的顶点是(1,-4)..……. 2分 ∴抛物线的表达式是22(1)4y x =--, 即2242y x x =--..…3分把(-1,a )代入抛物线表达式,求出4a =..……. 4分(2)∵抛物线顶点(1,4)C -关于y 轴的对称点为点D ,∴(1,4)D --.求出直线CD 的表达式为4y =-. .……. 5分求出直线BD 的表达式为22y x =-,当1x =时,0y =..……. 6分 所以40t -<≤..……. 7分27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2).…………………………………………1分 ∵2211(232)212y x x x -+==+-, ∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32).…………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上. 设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分(2)∵抛物线2212y x x =-+中,A当4x=时,6y=,∴点D的坐标为(4,6).………………4分∵直线112y x=+中,当0x=时,1y=,当4x=时,3y=,∴如图,点E的坐标为(0,1),点F的坐标为(4,3).设点A平移后的对应点为点'A,点D平移后的对应点为点'D.当图象G向下平移至点'A与点E重合时,点'D在直线BC上方,此时t=1;…………………………………………………………5分当图象G向下平移至点'D与点F重合时,点'A在直线BC下方,此时t=3.……………………………………………………………………………………6分结合图象可知,符合题意的t的取值范围是13t<≤.……………………7分27.解:(1)∵二次函数y=(a-1)x2+2x+1与x轴有交点,令y=0,则(a-1)x2+2x+1=0,∴=4-4(a-1)0∆≥,解得a≤2.…………………………………1分.∵a为正整数.∴a=1、2又∵y=(a-1)x2+2x+1是二次函数,∴a-1≠0,∴a≠1,∴a的值为2.………………………………………2分(2)∵a=2,∴二次函数表达式为y=x2+2x+1,将二次函数y=x2+2x+1化成顶点式y=(x+1)2二次函数图象向右平移m个单位,向下平移m2+1个单位后的表达式为y=(x+1-m)2-(m2+1).此时函数的顶点坐标为(m-1, -m2-1).…………………………………4分当m-1<-2,即m<-1时,x=-2时,二次函数有最小值-3,∴-3=(-1-m)2-(m2+1),解得32m=-且符合题目要求.………………………………5分当 -2≤m-1≤1,即-1≤m≤2,时,当x= m-1时,二次函数有最小值-m2-1=-3,解得m=.∵m=-1≤m≤2的条件,舍去.∴m=.……………………………………6分当m-1>1,即m>2时,当x=1时,二次函数有最小值-3,∴-3=(2-m)2-(m2+1),解得32m=,不符合m>2的条件舍去.综上所述,m 的值为32-……………………………………7分 27.(本小题满分7分)(1)证明:∵ △= (m +1)2-4×(-1)×(m +2)=(m +3)2. ……………………………………………………………1分∵ m >0, ∴ (m +3)2>0, 即 △>0,∴ 原方程有两个不相等的实数根. (2)分 (2)解:∵ 抛物线抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),∴ -32+3(m +1)+(m +2)=0,………………………………………………3分 ∴ m =1.∴ y =-x 2+2x +3. (4)分(3)解:∵ y =-x 2+2x +3=-(x -1)2+4,∴ 该抛物线的顶点为(1,4).∴ 当直线y =k (x +1)+4经过顶点(1,4)时, ∴ 4=k (1+1)+4, ∴ k =0, ∴ y =4.∴ 此时直线y =k (x +1)+4与y 轴交点的纵坐标为 4. ………………………5分∵ y =-x 2+2x +3, ∴ 当x =0时,y =3,∴ 该抛物线与y 轴的交点为(0,3).∴ 此时直线y =k (x +1)+4与y 轴交点的纵坐标为 3. ………………………6分∴ 3<t ≤4. …………………………………………………………………7分27.解:(1)将()3,0A 代入,得1m =.∴抛物线的表达式为223y x x =--. …1分B 点的坐标()1,0-. ………………2分(2)()222314y x x x =--=--.∵当21x -<<时,y 随x 增大而减小;当13x ≤<时,y 随x 增大而增大,∴当1x =,min 4y =-; ………………3分 当2x =-,5y =.∴y 的取值范围是45y -≤<.…………4分(3)当直线y kx b =+经过()1,0B -和点()4,2时,解析式为2255y x =+.…….…………… …5分 当直线y kx b =+经过()2,5--和点 ()4,2时,解析式为7863y x =-.………. ……………6分 结合图象可得,b 的取值范围是8235b -<<. ………….7分27. 解:(1)设抛物线解析式为,由抛物线过点,可得 ………..(2分) (2)如图:………………………………………..(5分)(3)-4<m <0 ………………………………………..(7分)27.解:(1)∵ 二次函数21y x bx c =++的图象1C 经过(1,0)-, ∴10,3.b c c -+=⎧⎨=-⎩ ………………………………1分解得2,3.b c =-⎧⎨=-⎩………………………………… 2分∴ 抛物线1C 的函数表达式为3221--=x x y . …………………………………… 3分 (2)∵ 22123=(1)4y x x x =----,∴ 抛物线1C 的顶点为(1,4)-2)1(-=x a y )10(,A 122+-=x x y1∴ 平移后抛物线2C 的顶点为(0,0),它对应的函数表达式为22y x =.… 5分 (3)a ≥1-(见图7).………………………………………………………………7分。

【初中数学】北京市各区县2015年中考一模数学试题集(共15套) 通用4

东城区2014—2015学年第二学期初三综合练习(一) 数学试题 2015.5学校 班级 姓名 考号一律填涂或书写在答题卡上一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.与2-的和为0的数是 A .2- B .12-C .12D .22.2015年元旦期间,北京各大公园接待游客达245 000万人次。

其中, “冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是A .424.510⨯ B .52.4510⨯C .62.4510⨯ D .60.24510⨯ 3.一个几何体的三视图如图所示,则这个几何体是 A .圆柱 B .球 C .圆锥 D . 棱柱4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的 中位数和众数分别是5. 在六张卡片上分别写有π,, 1.5,3,0,3-,从中任意抽取一张,卡片上的数为无理数的概率是6.正五边形的每个外角等于A. 36︒B. 60︒C. 72︒D. 108︒ 7.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线交AB 的延长线于点D ,连接OC ,AC . 若50D ∠=︒,则A ∠的度数是A. 20︒ B .25︒C .40︒D .50︒8.小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y (单位:千米)与行驶时间t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为 A. 43.5 B. 50 C. 56 D. 589. 如图,已知∠MON =60°,OP 是∠MON 的角平分线 ,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B,AB=4.则直线AB 与ON 之间的距离是A.B.2C.D.410. 如图1, ABC △和DEF △都是等腰直角三角形,其中90C EDF ∠=∠=︒,点A 与点D 重合,点E 在AB 上,4AB =,2DE =.如图2,ABC △保持不动,DEF △沿着线段AB 从点A 向点B 移动, 当点D 与点B 重合时停止移动.设AD x =,DEF △与ABC △重叠部分的面积为S ,则S 关于x 的函数图象大致是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:224mx my -= . 12 .13. 关于x 的一元二次方程230x x m +-=有两个不相等的实数根,则实数m 的取值范围 是 .14. 北京的水资源非常匮乏,为促进市民节水,从2014年5月1日起北京市居民用水实行阶梯水价,实施细则如下表:北京市居民用水阶梯水价表 单位: 元/立方米某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费 元.15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.图1 图216.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1AO 为 边做正方形111AOC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以 21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图所示的图形.则点4B 的坐标是 ,点n B 的坐标是 . 三、解答题(本题共30分,每小题5分)17.如图,AC 与BD 交于点O ,OA OC =,OB OD =.求证:DC AB ∥.18. 计算:()1136043-⎛⎫--︒+-+- ⎪⎝⎭π.19.解不等式组:()2131,5 4.2x x x x --⎧⎪⎨-+⎪⎩><20.先化简,再求值:222442111a a a a a a -+-+÷+--,其中1a =. 21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?F(1)求反比例函数的解析式; (2)求△BOD 的面积. 四、解答题(本题共20分,每小题5分)23. 如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC的平行线交于点E ,且DE 交AC 于点O ,连接AE . (1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题: (1)在这次抽样调查中,共调查 名学生; (2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数; (4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.25. 如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CD 与OB 交于点F ,过点,D A 分别作⊙O 的切线交于点G ,且GD 与AB 的延长线交于点E .(1)求证:12∠=∠;(2)已知::1:3OF OB =,⊙O 的半径为3,求AG 的长.26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AFBE的值.图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.28. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD .(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.29.定义符号{}min a b ,的含义为:当a b≥时,{}min a b b =,;当a b <时, {}min a b a =,.如:{}m i n 122-=-,,{}min 121-=-,. (1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.东城区2014-2015学年第二学期初三综合练习(一)数学试题参考答案及评分标准 2015.517. 证明:∵在ODC △和OBA △中,∵,,,OD OB DOC BOA OC OA =⎧⎪∠=∠⎨⎪=⎩∴ODC OBA △≌△. …………3分 ∴C A ∠=∠. …………4分 ∴DC AB ∥. …………5分()()1118.36043134415-⎛⎫-︒+-+- ⎪⎝⎭=-+=-解:π分分19. ()2131,8x x x x --⎧⎪⎨-+⎪⎩①②>解:5<2,2x 由①得,<, …………2分 1x -由②得,>, …………4分所以,不等式组的解集为12x -<<. …………5分()()()22224421112211112221131a a a a a a a a a a a a a a a a a -+-+÷+----=+⋅++---=+++=+20.解:分当1a =时,2=原式.…………5分 21.解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是()25x -元. …………1分根据题意,列方程得:200=120(25)x x -,…………3分 解得: 15x =. …………5分 答:每棵柏树苗的进价是15元. 22. 解:(1)过点C 向x 轴作垂线,垂足为E . ∵CE x ⊥轴,AB x ⊥轴,()4,2A -, ∴CE AB ∥,()4,0B -. ∴12OE OC CE OB OA AB ===. ∵4OB =,2AB =, ∴2OE =,1CE =.∴()2,1C -. …………2分 ∵双曲线ky x=经过点C , ∴2k =-.∴反比例函数的解析式为2y x=-. …………3分 (2)∵点D 在AB 上,∴点D 的横坐标为4-. ∵点D 在双曲线2y x=-上, ∴点D 的纵坐标为12. …………4分∴BOD S △11141222OB BD =⋅⋅=⨯⨯=.…………5分 四、解答题(本题共20分,每小题5分) 23.(1)证明:∵DE BC ∥,CE AB ∥,∴四边形DBCE 是平行四边形. ∴CE BD =.又∵CD 是边AB 上的中线,∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形.∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. …………3分 (2)解:作CF AB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =. 在Rt ABC △中,根据勾股定理可求得AB =. ∵1122AB CF AC BC ⋅=⋅,∴AC BC CF x AB ⋅==.∵12CD AB x ==, ∴4sin 5CF CDB CD ∠==.…………5分 24.解:(1)20÷10%=200(名),…………1分 答:一共调查了200名学生; (2)最喜欢古筝的人数:200×25%=50(名), 最喜欢琵琶的人数:200×20%=40(名); 补全条形图如图; …………3分 (3)二胡部分所对应的圆心角的度数为:60200×360°=108°; …………4分 (4)1500×30200=225(名). …………5分答:1500名学生中估计最喜欢古琴的学生人数为225. 25.(1)证明:连结OD ,如图.∵DE 为⊙O 的切线,OD 为半径, ∴OD DE ⊥.∴90ODE ∠=︒,即290ODC ∠+∠=︒.26. 解:(1)AF =BE ; …………1分(2)AF BE=. …………2分 理由如下:∵四边形ABCD 是菱形,120ABC ∠=︒,∴AC BD ⊥,60ABO ∠=︒.∴90FAO AFO ∠+∠=︒.∵AG BE ⊥,∴90EAG BEA ∠+∠=︒.∴AFO BEA ∠=∠.又∵90AOF BOE ∠=∠=︒,∴AOF BOE △∽△. …………3分∴AF AO BE OB= . ∵60ABO ∠=︒,AC BD ⊥,∴tan 60AO OB=︒=.∴AF BE = …………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B , ∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分 (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. …………4分 (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒.∵()0,1C ,()1,0A -,∴1OA OC ==.∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒.∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标, 则1110,1.k b b -+=⎧⎨=-⎩ 解得111,1.k b =-⎧⎨=-⎩ 所以,直线AM 的函数表达式为1y x =--. 令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形,∴1OC ON ==.∴点N 的坐标为()1,0.∵2CP AC ⊥,1AP AC ⊥,∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫ ⎪⎝⎭. …………6分 综上,在对称轴上存在点1P 13,22⎛⎫-⎪⎝⎭,2P 11,22⎛⎫ ⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分28.解:(1) 当60α=︒时, BD A A '⊥. ------------1分(2)补全图形如图1,B D A A '⊥仍然成立;------------3分(3)猜想BD A A '⊥仍然成立.证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F ,如图2,则90AEC A FC ''∠=∠=︒. ∵BC BC '=,∴BCC BC C ''∠=∠.∵90ACB A C B ''∠=∠=︒,∴90ACE BCC '∠+∠=︒,'90A C F BC C ''∠+∠=︒. ∴ACE A C F ''∠=∠.在AEC △和A FC ''△中,90,,,AEC A FC ACE A C F AC A C ''∠=∠=︒⎧⎪''∠=∠⎨⎪''=⎩∴AEC A FC ''△≌△. 图2图1∴AE A F '=.在AED △和A FD '△中,90,,,AEC A FD ADE A DF AE A F '∠=∠=︒⎧⎪'∠=∠⎨⎪'=⎩∴AED A FD '△≌△.∴AD A D '=.∵AB A B '=,∴'ABA △为等腰三角形.∴BD A A '⊥------------7分29.解:(1)∵20x ≥,∴2x -1≥-1.∴2-x -1>2.∴{}2min 2x =--1,-2. ┉┉2分(2) ∵()2211x x k x k -+=-+-2, ∴()2111x k k -+--≥. ∵2min{2,3}3x x k -+-=-, ∴13k --≥. ∴2k -≥. ┉┉5分(337m -≤≤. ┉┉8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015北京市海淀区中考一模数学 2015.5一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为A .-1B .1C .-2D .2 4.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140°6.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C .(3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CE7.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是A .98,95B .98,98C .95,98D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6 B. CD .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是2A0Bba 21二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若D A A B ⊥,1AD =,BD BC 的长为__________.15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点,理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos60(3.14π)--++-o .18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根; (2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为 亿; (3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有 万人.25.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D ,过点C 作⊙O 与边AB 相切于点E ,交BC 于点F ,CE 为⊙O 的直径.(1) 求证:OD ⊥CE ;(2) 若DF =1, DC =3,求AE 的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).图1 图2 图3请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.EDCBAEDCBAb n '<海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17. (本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+ ………………………………………………………………5分18. (本小题满分5分) 解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分 243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分20. (本小题满分5分) 证明:∠EBC =∠FCB ,A B E F C D ∴∠=∠. …………………………………………………………1分 在△ABE 与△FCD 中,,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明:0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得x =. ∴1221,x x k k==-. …………………………………………………………4分方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得 40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明:四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F .∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠=. 90DAB ∴∠=.又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图.四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE . ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin4572BH AB =⋅=. …………………………………………4分在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=10BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分(2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分) (1)证明:⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB .AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在 ⊙O 上, ∴ ∠EFC =90°. CE ⊥AB ,∴∠BEC =90°. ∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠.∴BF EF EFFC=.又DF =1, BD=DC =3, ∴ BF =2, FC =4.∴EF = ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得BE = ……………………4分 EF ∥AD , ∴21BE BF EA FD ==.∴AE ……………………………………………………5分26. (本小题满分5分)解:BC +DE. ……………………………………………………2分解决问题: 连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形,∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-,∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上. 设直线BC 的解析式为y kx b =+.∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x=时,1y=,当4x=时,3y=,∴如图,点E的坐标为(0,1),点F的坐标为(4,3).设点A平移后的对应点为点'A,点D平移后的对应点为点'D.当图象G向下平移至点'A与点E重合时,点'D在直线BC上方,此时t=1;…………………………………………………………5分当图象G向下平移至点'D与点F重合时,点'A在直线BC下方,此时t=3.……………………………………………………………………………………6分结合图象可知,符合题意的t的取值范围是13t<≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分图1 图2(2)方法一:证明:连接BE,如图2.∵四边形ABCD是菱形,∴AD∥BC.,.是菱形ABCD的对角线,∴.……………………………………………………………2分.由菱形的对称性可知,,.……………………………………………………………………3分.GEB CBE∴∠=∠.,.…………………………………………………………4分EBG BEC∴∠=∠.在△GEB与△CBE中,,,,GEB CBEBE EBEBG BEC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB≌△CBE.EG BC∴=.………………………………………………………………………………5分方法二:证明:连接BE,设BG与EC交于点H,如图3.∵四边形ABCD是菱形,∴AD∥BC.,.是菱形ABCD的对角线,∴.………………………2分.由菱形的对称性可知,,.……………………………………………3分50FBC∠=︒,图350EBG EBC FBC BEC∴∠=∠-∠=︒=∠.………………………………………………4分BH EH∴=.在△GEH与△CBH中,,,,GEH CBHEH BHEHG BHC∠=∠⎧⎪=⎨⎪∠=∠⎩G FE DC BA120ADC∠=︒60DCB∴∠=︒AC1302DCA DCB∠=∠=︒180100EDC DEC DCA∴∠=︒-∠-∠=︒50BEC DEC∠=∠=︒100EBC EDC∠=∠=︒100GEB DEC BEC∴∠=∠+∠=︒50FBC∠=︒50EBG EBC FBC∴∠=∠-∠=︒120ADC∠=︒60DCB∴∠=︒AC1302DCA DCB∠=∠=︒180100EDC DEC DCA∴∠=︒-∠-∠=︒50BEC DEC∠=∠=︒100EBC EDC∠=∠=︒GFEDCBAHGFEDCBA∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3). …………………………………………………………………7分29.(本小题满分8分) 解:(1)①; ……………………………………………………………………1分② 点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当时,取最大值2.当时,.5x ∴=. ………………………………………3分 当时,或.2x ∴=-或8x =. ………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分 (3),∴顶点坐标为.………………………………………………………………6分 若,的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,的最小值为,即;当时,的值小于,即..∴s 关于t 的函数解析式为 211)s t t =+≥ (. ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分AE BG +1x =b '2b '=-23x -=-+5b '=-53x -=-53x -=-+2222()y x tx t t x t t =-++=-+(,)t t 1t <b 'y t m t =1x <y 2[(1)]t t --+2[(1)]n t t =--+22(1)1s m n t t t t ∴=-=+-+=+。

相关文档
最新文档