八年级数学第十四章轴对称等腰三角形公开课课件 新人教版
新人教版八年级上册数学课件

新人教版八年级上册数学课件注:直接按Ctrl键点击你所要下载的课件即可.可以长期关注11.1 全等三角形PPT课件.ppt11.2 三角形全等的判定PPT课件1.ppt11.2 三角形全等的判定PPT课件2.ppt11.2 三角形全等的判定(ASA AAS) PPT课件.ppt11.2 三角形全等的判定(SAS) PPT课件.ppt11.2 三角形全等的判定(SSS) PPT课件.ppt11.2 三角形全等的判定2PPT课件.ppt11.2 三角形全等的条件PPT课件.ppt11.3 角的平分线的性质PPT课件1.ppt11.3 角的平分线的性质PPT课件2.ppt12.1 轴对称 PPT课件1a.ppt12.1 轴对称 PPT课件2a.ppt12.1 轴对称 PPT课件3a.ppt12.2 作轴对称图形PPT课件1.ppt12.2 作轴对称图形PPT课件2.ppt12.2 作轴对称图形PPT课件3.ppt12.2 作轴对称图形PPT课件4.ppt12.2.1 作轴对称图形PPT课件.ppt 12.2.2 用坐标表示轴对称PPT课件.ppt 12.3.1 等腰三角形PPT课件1.ppt12.3.1 等腰三角形PPT课件2.ppt12.3.1 等腰三角形的判定课件.ppt 12.3.1 等腰三角形的性质课件1.ppt 12.3.1 等腰三角形的性质课件2.ppt 12.3.1 等腰三角形的性质课件3.ppt 12.3.2 等边三角形PPT课件1.ppt12.3.2 等边三角形PPT课件2.ppt12.3.2 等边三角形PPT课件3.ppt13.1 平方根PPT课件1.ppt13.1 平方根PPT课件2.ppt13.1 平方根PPT课件3.ppt13.1 平方根PPT课件4.ppt13.1 平方根PPT课件5.ppt13.1 算术平方根PPT课件.ppt13.1 习题讲解PPT课件.ppt13.2 立方根PPT课件1.ppt13.2 立方根PPT课件2.ppt13.2 立方根PPT课件3.ppt13.2 平方根、立方根习题课课件.ppt13.2 习题讲解PPT课件.ppt13.3 实数PPT课件1.ppt13.3 实数PPT课件2.ppt13.3 实数PPT课件3.ppt13.3 实数(实数的概念)课件.ppt13.3 实数习题讲解课件.ppt14.1 变量与函数的初步认识课件.ppt14.1.1 变量PPT课件.ppt14.1.2 变量与函数PPT课件1.ppt 14.1.2 变量与函数PPT课件2.ppt 14.1.2 函数PPT课件.ppt14.1.3 函数的图象PPT课件1.ppt 14.1.3 函数的图象PPT课件2.ppt 14.2 一次函数_待定系数法PPT课件.ppt 14.2 一次函数_复习课PPT课件.ppt 14.2 一次函数_实际问题PPT课件.ppt 14.2 一次函数_正比例函数PPT课件.ppt 14.2 一次函数的图象和性质课件.ppt 14.2.1正比例函数(第1课时)课件.ppt 14.2.1正比例函数(第2课时)课件.ppt 14.3 一次函数与一元一次方程(1课时).ppt 14.3 一次函数与一元一次方程(2课时).ppt14.3 一次函数与一元一次方程(3课时).ppt 14.3.1一次函数与一元一次方程课件.ppt 14.3.2一次函数与与一元一次不等式.ppt 14.3.3一次函数与二元一次方程组.ppt14.3.4用函数观点看方程(组)与不等式1.ppt 14.3.4用函数观点看方程(组)与不等式2.ppt14.3.4用函数观点看方程(组)与不等式3.ppt15.1 整式的乘法PPT课件1.ppt15.1 整式的乘法PPT课件2.ppt15.1 整式的乘法(1)PPT课件.ppt15.1 整式的乘法(2)PPT课件.ppt15.1.1 单项式乘以单项式PPT课件.ppt 15.1.2 单项式与多项式相乘课件1.ppt 15.1.2 单项式与多项式相乘课件2.ppt 15.1.3 多项式与多项式相乘课件.ppt15.1.4 同底数幂的乘法PPT课件.ppt15.2 乘法公式(第1课时)PPT课件.ppt 15.2 乘法公式(第2课时)PPT课件.ppt 15.2 乘法公式(第3课时)PPT课件.ppt 15.2 乘法公式_平方差公式课件.ppt15.2.1 平方差公式PPT课件.ppt15.2.2 完全平方公式PPT课件.ppt15.3 整式的除法(第1课时)课件.ppt 15.3 整式的除法(第2课时)课件.ppt 15.3.2 单项式除单项式PPT课件.ppt 15.3.2 整式的除法PPT课件.ppt15.4 因式分解.ppt15.4 因式分解(1).ppt15.4 因式分解(2)(平方差公式).ppt 15.4 因式分解(3)(完全平方公式法).ppt 15.4《因式分解》复习ppt课件.ppt。
新人教版八年级数学上册13.1.1轴对称ppt课件

轴对称
形状
是否轴对称图 对称轴的数
形
量(条)
是
2
是 不是
4 -------
是
是
20
1
无数
可编辑课件PPT
轴对称
对称轴问题
(1)有些轴对称图形的对称轴只有一条, 但有的轴对称图形的对称轴却不止一条,有的 轴对称图形的对称轴甚至有无数条。
(2)对称轴通常画成虚线,是直线,不 能画成线段。
21
可编辑课件PPT
形,那么这两个图形关于这条直线_对_称_;如果
把两个成轴对称的图形看成一个图形,那么这个
图形就是__轴__对__称__图__形___.
30
可编辑课件PPT
想一想:0-9十个数字中,哪些是
轴对称图形?(抢答)
01234
56789
31
可编辑课件PPT
猜字游戏: 在艺术字中,有些汉字是轴对称的, 你能猜一猜下列是哪些字的一半吗?
3、(日照·中考)已知以下四个汽车标志图案: 其中是轴对称图形的图案是 (只需填入图案代号).
【解析】根据轴对称的定义可以得出①③是轴对称图形. 答案:①③
39
可编辑课件PPT
通过本课时的学习,需要我们: 1.了解轴对称图形和两个图形关于某直线对称的概念.
2.能识别简单的轴对称图形及其对称轴(直线),能找出 两个图形关于某直线对称的对称点.
28
可编辑课件PPT
想一想
轴对称
轴对称图形
两个图形成轴对称
29
可编辑课件PPT
比较归纳
轴对称
区别 联系
轴对称图形
_一___个图形
两个图形成轴对称
__两___个图形
新人教版八年级数学上册《轴对称》课件

∵∠B=∠C(已知) ∴AB=AC(等角对等边) B
例 如图, △ABC中, ∠A=36°, ∠C=72°,BD平分∠ABC, 那么图中 共有几个等腰三角形?你能依次说明吗?
A C
A D
B
C
已知在△ABC中, AB=AC, BE、CD分别平分 ∠ABC、 ∠ACB,且相交于点O,试说明△BOC是等 腰三角形。
点P ,则点P即为所求.
3、能不能在三角形ABC内找 一点到A、B、C的距离相等
A
····
O C
B 4、角是轴对称图形,角平分线所在直线是它的对称轴. 性质:角平分线上的点到这个角的两边的距离相等.
如图:∵BD平分∠ABC, ED⊥AB于E,CD⊥BC于C,∴ED=CD
B
EA
D C
我来设计
如图,直线a,b,c表示三条相交叉的公路,A.B.C表示公 路的交叉点.若在△ABC内部修建一处加油站,使加油站 到三条公路a,b,c的距离相等,则加油站应建在何处.
2、底角是顶角一半的等腰三角形是____等_腰__直_角三角 形。
3、如果一个三角形三个外角的比是3:3:2,则这
是一个
()
A.等腰三角形
D B.等边三角形
C.直角三角形 D.等腰直角三角形
思考拓展
如图,⊿ABC中,BC=BA,∠A=600,BD是AC边的中线, 延长BC到E,使CE=CD,试说明:DE=DB
若DB是AC边上的高,上述结论还成立吗?
提示:
∵ BA=BC
∴∠BCA=∠A=600(等边对等角)
∵ CE=CD ∴∠E=∠CDE=300(三角形外角性质) ∵ BA=BC, BD是AC边的中线 ∴∠DBC=300(等腰三角形三线合一 )
八年级数学《等腰三角形的性质》说课课件

说学法
三
实验法探究法讨论法
说教学过程
四
(一)回顾与引入(二)猜想与证明(三)应用与提高(四)心得与体会(五)作业与巩固
你们的三角形都是如何剪成的?
对折长方形纸片,剪下靠近对称轴一个角再展开。
先画一个等腰三角形,再剪下来。
教师提问
(一)回顾与引入
一学生回答
另一学生回答
1、回顾等腰三角形的定义
图1
图2
(三)应用与提高
例 : 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数
(三)应用与提高
练习2:如图,在△ABC中,AB=AC,D、E在AC、AB上,BC=BD,AD=DE=EB,求∠A的度数。
(三)应用与提高
练习3 填空:如图⑴∵AB=AC,AD⊥BC∴∠_=∠_,_=_; ⑵∵AB=AC,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC,AD平分∠BAC∴_⊥_,_=_
重合的线段
重合的角
AB=AC
BD=CD
AD=AD
∠B = ∠C.
∠BAD = ∠CAD
∠ADB = ∠ADC
猜想2
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.
①已知:AB =AC,AD平分∠BAC 求证:②已知: AB =AC,AD平分BC 求证:③已知: AB =AC,AD⊥BC 求证:
WHAT MAKES USDIFFERENT?
85%
《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节第一小节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质。
1、教学内容
“
2、教材的地位和作用
等边三角形专题知识公开课获奖课件省赛课一等奖课件

A
A
D
E
B
D
E
C
B
C
F
补充2:如图,已知△ABC是等边三角形, D是AC旳中点,EC⊥BC,且EC=BD。 求证:△ADE是等边三角形
A
E
D
B C
补充3:在等边△ABC所在旳平面上找一点P, 使△ PAB、 △ PBC、 △ PAC都是等腰三角 形,你能找到这么旳点P吗? 能找到多少个? 这些点旳位置有什么特点?
A
B
C
∴ △ABC是等边三角形
探索星空:探究鉴定二
2、有一种内角是60°旳等腰三角形是等边三角形。
A
当顶角为60°时,两个底角各为60°.
当底角为60°时,顶角为60°.
B
C
等边三角形旳鉴定措施:
• 1.三边相等旳三角形是等边三角形. •2.三个内角都相等旳三角形是等边三角形. •3.有一种内角是60 °旳等腰三角形是等边三 角形.
一种三角形旳三个内角满足什么条件才是等边 三角形
探索星空:探究性质一
1、等边三角形旳内角都相等吗?为何?
∵ AB=AC=BC
A
∴ ∠A=∠B=∠C(在同一个三角形中档边对等角)
B
C
又∵∠A+∠B+∠C=180° ∴ ∠A=∠B=∠C=60°
等边三角形性质一;
等边三角形旳内角都相等,
而且每一种内角都等于60°.
角形
习题13.3 7题, 12题 14题(选做)
(选择)
1、下列四个说法中,不正确旳有(B) (A)0个(B)1个(C)2个(D)3个
Ø三个角都相等旳三角形是等边三角形。 Ø有两个角等于60°旳三角形是等边三角形。 Ø有一种是60°旳等腰三角形是等边三角形。 Ø有两个角相等旳等腰三角形是等边三角形。
人教版八年级数学上册《轴对称》优秀课件3

求BC的长
M
N
B
C
2.如图,在Rt△ABC中,∠C=90,DE是AB的垂 直平分线,连接AE,∠CAE:∠DAE=1:2,
求∠B的度数。
C E
B
D
A
3、 如图,AD⊥BC,BD=DC,点C在AE 的垂直平分线上,AB、AC 、CE 的长度 有什么关系?AB+BD 与DE有什么关系?
AB=AC=CE AB+BD=DE
变式:将边换成角(口答)
4、如图,在△ABC中 ,AB=AC,点D在AC上,且 BD=BC=AD,
(1)写出△ABC中相等的线段和相等的角.
(2)求△ABC中∠A的度数.
A
D
B
C
5、趣味数学:
如图:点B、C、D、E、F在∠MAN的边上, ∠A=15°,AB=BC=CD=DE=EF,求∠ MEF的 度数。
A
(提示:过D作DG∥AE交BC于G 证△DFG≌△EFC即可)
D
B
GF
C
E
12、已知:如图,在等边△ABC中,D、E分别为BC、AC上 的点,且AE=CD,连结AD、BE交于点P,作BQ⊥AD于Q, 求证:
(1)∠APE=60°
(2)BP=2PQ.
证明:(1)∵△ABC是等边三角形,
A
∴AB=AC=BC,∠C=∠ABC=60°,
(1)正面照镜子(左右对称——只改变左右) (2)水中倒影(上下对称——上下、左右都改变)
我思,我进步 1
4、下列图形中,不是轴对称图形的是( C )
A角
B 线段
C 任两边都不相等的三角形 D 等边三角形
5、下列图形中,只有一条对称轴的是( C )
人教版八年级数学上册《等腰三角形》(第1课时)课件
底边BC上的高AF,得出AF是顶角∠BAC的
平分线,再证AF∥DE即可. 1
1
2
证明:过点A作AF⊥BC于F,
∵AB=AC,AF⊥BC于F,
F
∴AF平分∠BAC,∴∠1= ∠BAC.
又∵∠BAC=∠D+∠AED,AD=AE, ∴∠D=∠AED,∴∠AED= 1 ∠BAC.
2 ∴∠1=∠AED, ∴AF∥DE, ∴DE⊥BC.
20cm或22cm
20 36°或90°
70°或40°
解:设∠A=x, ∵CD=AD,∴∠ACD=∠A=x, 又∵∠BDC=∠A+∠ACD=2x, ∵CD=CB,∴∠B=∠BDC=2x, 在△ABC中,∵AB=AC,∴∠B=∠BCA=2x, 又∵∠A+∠B+∠BCA=180°, ∴x+2x+2x=180°,x=36°, ∴∠A=36°,∠B=∠BCA=72°
13.3.1 等腰三角形
(第一课时)
1.了解等腰三角形的概念. 2.掌握等腰三角形的性质. 3.会运用等腰三角形的概念和性质解决有关问题.
重点:等腰三角形的概念和性质及其应用. 难点:等腰三角形的“三线合一”的性质的理解及 其应用.
阅读课本P75-77页内容,了解本节主要内容.
等腰
轴对称 底边上的高(顶角的平分线或底边上的中线) 所在的直线;
例1:如图,在△ABC中,AB=AC,点D在AC上,且BD =BC=AD.求△ABC各角的度数. 解析:根据等腰三角形的性质,两底角相 等,利用三角形内角和定理建立方程. 解:设∠A=x°,
∵AD=BD,∴∠ABD=∠A=x°, ∴∠BDC=∠A+∠ABD=2x°.
∵BD=BC,∴∠C=∠BDC=2x°.
∵AB=AC,∴∠ABC=∠C=2x°. 在△ABC中, ∵∠A+∠ABC+∠C=180°,x°+2x°+2x°=180°, ∴x=36°,∴∠A=36°, ∴∠ABC=∠C=72°.
人教版八年级数学上册教学等腰三角形PPT精品课件
附:相关性质(性质1、2略)
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证 明)。 7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是 它的对称轴。但等边三角形(特殊的等腰三角形)有条对称轴。每个角的角平分线 所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。 8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。 9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半 的平方。
等腰三角形的性质
目录
1
教材分析
2
学情分析
3
教学目标
4
教学重难点
内容:本节课是义务教育教科书数学八年级上册第十三章 第三节 13.31 等腰三角形。
编写意图:等腰三角形是特殊的三角形,也是多边形中最简单 的轴对称图形,利用它的轴对称性研究等腰三角形,进而通过推理 论证得到等腰三角形的性质和判定方法,同时从中找到证明这些性 质的思路,由此体会图形变化在几何研究中的作用。借助图形的变 化研究图形的性质是几何中常用的方法。学习等腰三角形的性质不 仅可以进一步认识三角形,而且还可以了解一些几何中研究问题的 基本思路和方法。
讲授新课
(应用新知)
你可以用学过的知识证明性质1吗?有哪些证明方法?
已知:如图,△ABC 中,AB=AC。
A
求证:∠B=∠C
可以运用全等三角
形的性质“对应角
相等”来证明。
B
人教版八年级数学课件《等腰三角形的性质》
解:∵AB=AC,D是BC边上的中点, ∴ ∠C= ∠ B=30°, ∠BAD = ∠ DAC,∠ADC = 90°.
∴∠ BAC =180°- 30°-30°= 120°.
∴ BAD 1 =B6A0C°. 2
A
B
D
C
达标检测
人教版数学八年级上册
6.如图,已知△ABC为等腰三角形,BD、CE为底角的平分线,且∠DBC=∠F,求证:
∵AB=AC, AD⊥BC(已知), ∴BD=CD, ∠1=∠2(等腰三角形三线合一).
人教版数学八年级上册
A
12
B
C D
针对练习
人教版数学八年级上册
判断正误:
1.等腰三角形的顶角一定是锐角.
(X )
2.等腰三角形的底角可能是锐角或者直角、钝角都可以. (X)
3.钝角三角形不可能是等腰三角形.
(X)
A
B
C
性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高线 互相重合(三线合一).
知识精讲
综上可得:如图,在△ABC中, ∵AB=AC, ∠1=∠2(已知), ∴BD=CD,AD⊥BC(等腰三角形三线合一). ∵AB=AC, BD=CD (已知), ∴∠1=∠2,AD⊥BC(等腰三角形三线合一).
例3 已知点D、E在△ABC的边BC上,AB=AC. (1)如图①,若AD=AE,求证:BD=CE; (2)如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.
人教版数学八年级上册
图①
图②
典例解析
人教版数学八年级上册
证明:(1)如图①,过A作
AG⊥BC于G.
∵AB=AC,AD=AE, ∴BG=CG,DG=EG, ∴BG-DG=CG-EG,
人教初中数学八上《等腰三角形》教案 (公开课获奖)2
《等腰三角形》教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点等腰三角形的判定定理及推论的运用教学难点正确区分等腰三角形的判定与性质能够利用等腰三角形的判定定理证明线段的相等关系教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠A CB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是 [ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知 AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件A B=AC,其他条件不变,图6中还有等腰三角形吗?IV课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,• 再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DCAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D CABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.EDCABP所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D B
找出其中重合的线段和角,填入下表: 重合的角
∠BAD 、∠CAD ∠C 、∠B ∠ADC、 ∠ADB
重合的线段
AB、AC
AD、AD
BD、CD
你能发现等腰三角形的性质吗?说一说你的猜想。 A
性质1 等腰三角形的两个底角相等(“等边对等角”) 性质2 等腰三角形顶角平分线、底边上的中线、底
C 边上的高重合 (“三线合一”) B D
(1)性质1(等腰三角形的两个底角相等)的条件和 受性质1证明的启发,你能证明性质2 结论分别是什么?
(等腰三角形顶角平分线、底边上的 (2)用数学符号如何表达条件和结论?
条件:在△ABC中,AC=AB;结论: ∠B = ∠C (3)如何证明? A
中线、底边上的高重合)吗 ?
证明:作底边BC边上的中线AD
A C
B
D
(1)等腰三角形底边中点到两腰 的距离相等吗?
E C
A
D
F B
(2)利用类似的方法,还可以得 到等腰三角形中那些线段相等?
这节课我们主要学习了什 么内容?有哪些收获呢?
1、等腰三角形的概念
2、等腰三角形的性质: A:等边对等角
B:三线合一
(一)课本习题14.3第1、4、6 题。 (二)预习课本P143~P145.
B
D
C
(3) ∵ AD是角平分线, AD BC, BD = CD 。
例题:如图,在△ABC中,AB=AC,点D在 AC上,且BD=BC=AD, 求△ABC各角的度数。
A
D
B C
(1)等腰三角形的一个角 是360,它的另外两个角是 720 , 720 或 360 , 1080 _______________________ (小提示:顶角36° 或底角36°) (2)等腰三角形的一个角是1000,它的另外 400 , 400 两个角是_______________________ (3)如图,在△ABC中, AB=AD=DC,∠BAD=260 , 求∠B和∠C的度数。
你能指明它的腰、底 边、顶角、和底角吗?
B
C
腰:AC、AB
底边:BC
顶角:两腰所夹的角∠BAC 底角:底边与腰的夹角∠ABC、 ∠ACB
把剪出的等腰三角形ABC沿折痕(AD所在的 直线)对折,回答下面问题:
等腰三角形是轴对称图形,请找出它的对称轴。
A
等腰三角形的两底角有什么关系? 顶角的平分线所在的直线是等腰三角形 的对称轴吗? 底边上的中线所在的直线是等腰三角C 形的对称轴吗?底边上的高所在的直 线呢?
1、如图:做出点B关于直线L的对称点C 2、若点A在直线L上,线段 AB与线段AC是什么关系? 3、△ABC是关于直线L 的 轴对称图形 。
l
.A
C
B
.
(1)三角形是轴对称图形吗? (2)什么样的三角形是轴对称,并剪下阴影
部分,再把它展开,得到一个什么图形?
B A D C
像△ABC 这样有两条边相等(AB=AC)的三角形, 叫做等腰三角形。
A
腰
顶 角
腰
底角 B
底角 底边
C
等腰三角形中,相等的两边都叫做腰,另一边叫做 底边,两腰的夹角叫做顶角,腰和底边的夹角叫做 底角.
除了剪纸的方法,你还能用其它的方法 作(画)出一个等腰三角形吗?
a A
利用轴对称的知识
在△ACD和△ABD中 AB=AC AD=AD BD=CD ∴△ACD≌△ABD(SSS) ∴∠B = ∠C
C
D
B
练习1.根据等腰三角形性质2在ABC中,
AB=AC时,
A
(1) ∵ADBC, BAD = CAD , BD = CD 。
(2) ∵AD是中线, AD BC , BAD = CAD 。