雅可比迭代法 迭代矩阵
矩阵雅克比迭代算法

雅克比迭代实验目的:1.学习和掌握线性代数方程组的jacobi 迭代法。
2.运用jacobi 迭代法进行计算。
方法原理:设方程组Ax=b 的系数矩阵A 非奇异而且),...,2,1(0n i a ii =≠,将A 分裂为 A=D+L+U,可以使计算简便。
其中),,...,,(2211nn a a a diag D = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0...............0...00 (002121)n n a a a L ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0...00...............00...02112n n a a a U A=D+L+U ,其中),,...,,(2211nn a a a diag D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0...............0...00 (002)121n n a a a L ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0...00...............00...02112n n a a a U 将方程组n ,...,2,1i ,b x a i n 1j j ij ==∑=乘以ii a 1,得到等价的方程组⎪⎪⎪⎭⎫ ⎝⎛-=∑≠=n i j 1j j ij i ii i x a b a 1x ,i=1,2,…n ,简记为x Bx f =+。
其中 11()B I D A D L U --=-=-+, 1f D b -=.我们称()x Bx f ϕ=+为迭代函数。
任取初始向量(0)x x =,按照(1)()k k x Bx f +=+形成迭代格式,称这种迭代方法为Jacobi 迭代法。
算法描述:Step1:给定一组x ,即初值。
Step2:用for 循环计算:x[k+1]=(b[i]-∑∑+=-=-n1i j 1i 1j ]j [x ]j ][i [a ]j [x ]j ][i [a )/a[i][i].Step3:当fabs(x[k+1]-x[k])<eps时停止。
yakb迭代seidel迭代-资料

雅科比法:function x=jcb(A,b,epsilon)clc;m=max(size(A));L=-tril(A,-1);U=-triu(A,1);D=diag(diag(A));T=L+U;for i=1:mT(:,i)=huidai(D,T(:,i));endif((norm(T,1)>=1)&&(norm(T)>=1)&&(norm(T,inf)>=1)&&(norm(T,'fro')>=1)) error('迭代矩阵的谱范数>1,无法用此方法计算!');endx=rand(m,1);y=zeros(m,1);while (norm(y-x))>epsilony=x;Dx=(L+U)*x+b;for j=1:mx(j,1)=Dx(j,1)/D(j,j);endendx0=inv(A)*b;r=norm(x0)-norm(x);高斯赛德尔法(令参数w=1):function x=sor(A,b,epsilon,w)clc;m=max(size(A));L=-tril(A,-1);U=-triu(A,1);D=diag(diag(A));M=(1/w)*D-L;N=((1-w)/w)*D+U;T=zeros(m);for i=1:mT(:,i)=qiandai(M,N(:,i));endif((norm(T,1)>=1)&&(norm(T)>=1)&&(norm(T,inf)>=1)&&(norm(T,'fro')>=1)) error('迭代矩阵的谱范数>1,无法用此方法计算!'); endx=rand(m,1); y=zeros(m,1);while (norm(y-x))>epsilon y=x; Mx=N*x+b;x=qiandai(M,N*x+b); endx0=inv(A)*b; r=norm(x0)-norm(x);用matlab 很容易得出结果:雅科比法发散 GS 法收敛/question/135684084.html?si=10§2.2 迭 代 法前面介绍的直接法是在不考虑舍入误差时,求方程组精确解的方法,由于这种方法在求解的过程中,系数矩阵A 在不断地变动,如果A 的阶数较大时,占用计算机的内存就很大,而且程序比较复杂,对程序设计的技巧要求也较高,因此,我们希望找一种在求解过程中,原始系数矩阵A 在计算过程中始终不变,且程序设计又不复杂的求解方法,这种方法就是迭代法。
雅可比迭代法原理

雅可比迭代法原理雅可比迭代法(Jacobi Iteration Method)是一种用于线性方程组迭代求解的方法。
它广泛应用于数值计算和科学工程领域,特别在计算机模拟和科学计算中得到了广泛应用。
雅可比迭代法通过将线性方程组表达为矩阵形式,并不断迭代更新估计解向量,最终求得线性方程组的精确解或者近似解。
设有一个n阶方程组表达为Ax=b,其中A是一个n×n的系数矩阵,x是一个n维向量,b是一个n维向量。
雅可比迭代法的思想是通过迭代过程逐步逼近方程组的解。
首先,我们将方程组转化为x的显式表达式。
假设矩阵A对角线上的元素都不为0(这是雅可比迭代法的一个限制条件),方程组的第i个方程可以表达为:xi = (bi - Σaijxj) / aii其中,a_ij表示A的第i行第j列的元素。
然后,我们假定一个初始解向量x^(0)。
迭代过程则是通过反复使用上述方程表达式,不断更新解向量x,直到收敛到一个满足精度要求的近似解。
雅可比迭代法的公式表达为:x^(k+1)_i = (bi - Σa_ijx^k_j) / a_ii其中,k表示迭代过程的次数,k+1表示迭代的下一步。
雅可比迭代法的收敛原理是基于对角元素主支配性的分析。
如果A的对角元素主支配于其它元素,即对于每个i,都有,a_ii,> Σ,a_ij,(i ≠j),那么雅可比迭代法是收敛的。
在实际应用中,我们通常会通过编写程序或者使用现有的数值计算软件来求解方程组,并进行相应的误差分析。
雅可比迭代法的优点之一是简单易实现,容易理解。
它不需要对矩阵进行变换,只需要进行一系列的矩阵乘法和向量加法操作,因此它的计算量相对较小。
此外,雅可比迭代法还能有效解决病态问题,即系数矩阵A 的条件数很大的情况。
然而,雅可比迭代法也有一些缺点。
首先,它的收敛速度相对较慢,特别是对于条件数很大的矩阵。
其次,迭代过程必须保证A的对角元素都不为0,否则无法进行迭代。
并且,迭代的停止条件需要合适地选择,不然可能陷入无限循环。
第八节 雅可比迭代法

1)
1( 5
x1(k1)
x2( k 1)
4.2)
取 x(0)=(0,0,0)T 计算如下:
k
x1(k)
1
0.72
x2(k) 0.902
…
…
…
8 1.099998 1.199999
x3(k) 1.1644
… 1.3
上页 下页 返回
三 迭代收敛的充分条件
第三章 第八节
定理 1 在下列任一条件下,雅克比迭代法收敛。
上页 下页 返回
a i j1 ii
1
ji
时,高斯——塞德尔迭代法收敛
定义
若 | aii | | aij | ji
( i 1 , 2 , , n )
或 | a jj | | aij |
i j
( j 1 , 2 , , n )
称矩阵 A 行(或列)严格对角占优。
上页 下页 返回
第三章 第八节
定理3 若矩阵 A 行(或列)严格对角占优,则
则有x* =Bx*+f , 即x*为原方程组Ax=b 的解,B
称为迭代格式(1)的迭代矩阵。
上页 下页 返回
第三章 第八节
问题: 如何构造迭代格式,迭代法产生的 向量 序列{ x(k) }的收敛条件,收敛速度,误差估计等。
一 雅可比迭代法
设方程组
a11x1 a12 x2 a1n xn b1
Seidel 迭代法收敛。
证 A =D-L-LT , BG =(D-L) -1LT ,设 为BG 的特
征值, y 为对应的特征(复)向量,即
(D-L) -1LT y = y , LT y = (D-L) y ,则
[LT y, y ]= [ (D-L) y , y ]
类矩阵两种迭代法的收敛性比较

类矩阵两种迭代法的收敛性比较引言:在科学计算中,线性方程组的求解是很普遍的问题。
尤其是在大型科学计算中,线性方程组的求解是最重要的任务之一。
线性方程组的求解有很多种方法,例如高斯消元法、LU分解法、迭代法等等,其中迭代法是一种高效的方法。
迭代法的思想是从一个初值解开始,逐步改进解的准确度,直到满足误差要求。
在本文中,我们将讨论两种类矩阵迭代法的收敛性比较,即雅可比迭代法和高斯-赛德尔迭代法。
1.雅可比迭代法(Jacobi Iterative Method):雅可比迭代法是最简单的迭代法之一。
它是基于线性方程组的矩阵形式 Ax=b,将 A 分解成 A=D-L-U(D为A的对角线元素,L为A的下三角矩阵,U为A的上三角矩阵),其中 D 为对角线元素,L为严格下三角矩阵,U 为严格上三角矩阵。
则有如下迭代关系式: x^{(k+1)}=D^{-1}(L+U)x^{(k)}+D^{-1}b (1)其中,x^{(k)} 为 k 次迭代后的解,x^{(0)} 为初始解。
雅可比迭代法的迭代矩阵为M = D^{-1}(L+U)。
以下是雅可比迭代法的收敛性分析:定理1:若矩阵 A 为对称正定矩阵,则雅可比迭代法收敛。
证明:由于 A 为对称正定矩阵,所以存在唯一的解。
假设迭代后得到的解为 x^{(k)},则我们可以用误差向量 e^{(k)} = x-x^{(k)} 表示剩余项,则有 Ax^{(k)}-b = e^{(k)}。
对 (1) 式两边同时乘以 A^-1,得:x^{(k+1)}=x^{(k)}-A^{-1}e^{(k)}。
(2)将 (2) 式代入 Ax^{(k)}-b = e^{(k)} 中,得:Ax^{(k+1)}-b = Ae^{(k)}.(3)由于 A 为对称正定矩阵,则存在 A=Q\\Lambda Q^{-1},其中Q 为正交矩阵,\\Lambda 为对角矩阵。
因此,我们可以将 (3) 式转化为:\\| x^{(k+1)}-x \\|_{A} =\\| Q^{-1}A^{-1}Qe^{(k)}\\|_{\\Lambda} \\leq \\rho (Q^{-1}A^{-1}Q)\\|e^{(k)}\\|_{A}。
(完整版)第八节雅可比迭代法与高斯-塞德尔迭代法综述.doc

第八节 雅可比迭代法与高斯 —塞德尔迭代法一 雅可比迭代法设线性方程组Ax b(1)的系数矩阵 A 可逆且主对角元素 a 11,a 22,...,ann 均不为零 ,令D diag a 11 ,a 22 ,...,a nn并将 A 分解成AA D D(2)从而 (1) 可写成Dx D A x b令x B 1 xf 1其中 B 1I D 1 A, f 1 D 1b .(3)以B 1为迭代矩阵的迭代法(公式 )xk 1B 1 x kf 1(4)称为雅可比 (Jacobi) 迭代法 ( 公式 ), 用向量的分量来表示,(4) 为x i( k 1)1 n(j k )b ia i j xaiij 1j ii 1,2,...n,k 0,1,2,...(5)T其中 xx 1 0 ,x 20 ,...x n 0为初始向量 .由此看出 , 雅可比迭代法公式简单 , 每迭代一次只需计算一次矩阵和向量的乘法. 在电算时需要两组存储单元 , 以存放 x k及 x k 1 . 例1例1 用雅可比迭代法求解下列方程组10 x 1x 2 2x 3 7.2x 1 10x 22x 3 8.3x 1x 2 5x 34.2解将方程组按雅可比方法写成x 10.1x 20.2x 3 0.72 x 2 0.1x 1 0.2x 30.83x 30.2x 10.2x 20.84取初始值 xx 1 0 ,x 20 , x 3 0TT0,0,0, 按迭代公式x 1 k 10.1x 2 k0.2x 3k 0.72 x 2k 1 0.1x 1 k0.2x 3 k0.83 x 3k 1 0.2x 1 k 0.2x 2k0.84进行迭代,其计算结果如表1 所示表 1k 0 1 2 34 56 7x 1 k 00.720.9711.0571.08531.09511.0983x 2 k0.831.0701.157 1.18531.19511.19831x 3 k0.841.1501.248 1.28281.29411.29802二 高斯 — 塞德尔迭代法由雅可比迭代公式可知 , 在迭代的每一步计算过程中是用x k的全部分量来计算xk 1 的所有分量 , 显然在计算第 i 个分量 x ik 1时 , 已经计算出的最新分量 x 1 k 1 ,...,x i 1 k 1 没有被利 用,从直观上看 , 最新计算出的分量可能比旧的分量要好些. 因此,对这些最新计算出来的第 k 1的分量 xjk 1加以利用 , 就得到所谓解方程组的高斯— 塞德( Gauss-Seidel )次近似 xk 1迭代法 .把矩阵 A 分解成A DL U(6)其中Ddiag a 11 ,a 22 ,...,a nn,L , U分别为 A 的主对角元除外的下三角和上三角部分 , 于是 , 方程组 (1) 便可以写成DL x Ux b即x B 2 x f 2其中B 2 D L 1f 2U , 以B 2为迭代矩阵构成的迭代法( 公式 )xk1B x kf1D L b(7)2 2称为高斯 — 塞德尔迭代法 ( 公式 ), 用 量表示的形式为x i( k 1 )1i 1(j k 1 )b ia ij x n(8)a ij x (j k )a iij1j i 1i 1,2,n,k 0,1,2,...(9)由此看出 , 高斯 — 塞德尔迭代法的一个明显的优点是 , 在电算时 , 只需一组存储单元 ( 计算出k 1kk 1kx i后 x i 不再使用 , 所以用 x i 冲掉 x i, 以便存放近似解 .例 2 例 2 用高斯 —— 塞德尔迭代法求解例 1.取初始值x 0x 1 0 ,x 20 , x 3T解0,0,0, T,按迭代公式x 1 k 10.1x 2k0.2x 3 k 0.72 x 2k 1 0.1x 1 k 10.2x 3k0.83x 3 k 1 0.2x 1 k 10.2x 2 k 10.84进行迭代,其计算结果如下表2表 2k0 1 23456 7 x 1 k0.721.04308 1.093 1.099131.099891.099991.113x 2 k0.902 1.167191.1951.199471.199931.199991.272x 3 k1.164 1.28205 1.2971.299721.299961.31.3477从此例看出 , 高斯 — 塞德尔迭代法比雅可比迭代法收敛快( 达到同样的精度所需迭代次数少 ), 但 这个结论 , 在一定条件下才是对的 , 甚至有这样的方程组 , 雅可比方法收敛,而高斯 — 塞德尔迭代法却是发散的 .三 迭代收敛的充分条件定理 1在下列任一条件下, 雅可比迭代法 (5) 收敛 .B 1 max na ij1a iiij j1i①;B 1naij11maxaiiji 1②j i;I D 1ATmax naij1ji 1 a jj③i j定理 2设 B 1,B 2 分别为雅可比迭代矩阵与高斯 — 塞德尔迭代矩阵 , 则B 2B 1(10)从而,当B1naij1maxa iiijj 1i时,高斯 — 塞德尔迭代法 (8) 收敛 .证明由 B 1,B 2的定义 ,它们可表示成B 1D 1 L UB 21D L 1U I D 1L D 1U用 e 表示 n 维向量e1,1,...,1 T , 则有不等式B 1 e B 1 eB 1D 1 LD 1U这里 , 记号|·|表示其中矩阵的元素都取绝对值, 而不等式是对相应元素来考虑的, 于是D 1U eB 1 D 1L eID 1 L1B 1Ie容易验证nnD 1LD 1 L所以,ID1L 及ID 1L 可逆,且ID 1L 1I D 1 L ...n 1D 1 LID 1 Ln11... D 1LI D 1LID 1L1I从而有B 2 e ID 1L 1D 1U eID 1L1I D 1L 1 B I e1I1 B 1IID 1 L 1eB 1 e因此必有B 2B 1因为已知B 1 1所以 B 2 1 .即高斯 — 塞德尔迭代法收敛 .若矩阵 A 为对称,我们有 定理 3 若矩阵 A 正定 , 则高斯 — 塞德尔迭代法收敛 . 证明把实正定对称矩阵 A 分解为A D LL TUL T, 则 D 为正定的 , 迭代矩阵B 2D L 1 L T设 是B 2的任一特征值 , x 为相应的特征向量 , 则D L 1xxL T以 D L 左乘上式两端 , 并由 A D L L T 有1 L T x Ax 用向量 x 的共轭转置左乘上式两端 , 得1x T L T xx T Ax(11)求上式左右两端的共轭转置, 得1x T L x x T Ax以1和1分别乘以上二式然后相加, 得1 1 x T L TL x2x T Ax由 AD L L T ,得11x T D A x2x T Ax即221x T L x1x T Ax(12)因为 A 和 D 都是正定的 , 且 x 不是零向量 , 所以由 (11) 式得1, 而由 (12) 式得12, 即1, 从而B 21, 因而高斯 — 塞德尔迭代法收敛 .定义 1 设 Aa ijn n为 n 阶矩阵 .① ①如果na ij ,i 1,2,...na iij ij i(13)即 A 的每一行对角元素的绝对值都严格大于同行其他元素绝对值之和, 则称 A 为严格对角优势矩阵.② ②如果na ij ,aiii 1,2,...nj ij i且至少有一个不等式严格成立 , 则称 A 为弱对角优势矩阵 .2 1 0 1 1 0 13 1 1 2 1例如13 是严格对角优势矩阵,13 是弱对角优势矩阵 .A 11A 12定义 2设 A a ijn n是 n 阶矩阵,如果经过行的互换及相应列的互换可化为 0A22,即存在 n 阶排列矩阵 P, 使P T APA 11 A 120 A 22其中A 11,A22 为方阵,则称A 是可约的 , 否则称 A 为不可约的 .A 是可约矩阵 , 意味着Ax b 可经过若干次行列重排, 化为两个低阶方程组 ,事实上 ,Ax b 可化为 P T AP P T x P T b , 记P T y1 , d x y2 P T b dy d12于是,求解 Ax b 化为求解 A 11 y1A 12 y2 dA 22 y 2d1 2可以证明 , 如果 A 为严格对角优势矩阵或为不可约弱对角优势矩阵 , 则 A 是非奇异的 .定理 4 如果 A 为严格对角优势矩阵或为不可约弱对角优势矩阵, 则对任意 x 0 , 雅可比迭代 法(4) 与高斯 — 塞德尔迭代法 (8) 均为收敛的 .证明 下面我们以 A 为不可约弱对角优势矩阵为例, 证明雅可比迭代法收敛, 其他证明留给 读者 .要证明雅可比迭代法收敛,只要证 B 11,B 1是迭代矩阵 .用反证法 , 设矩阵B 1有某个特征值, 使得1, 则 det IB 10,由于 A 不可约,且具有弱对角优势,所以D 1 存在,且I B 1IID 1AD 1D A D从而det D A D另一方面,矩阵DAD与矩阵 A 的非零元素的位置是完全相同的,所以D AD也是不可约的 , 又由于1, 且 A 弱对角优势,所以na iia iia ij ,i 1,2,...nj ij i并且至少有一个 i 使不等号严格成立. 因此 , 矩阵D AD弱对角优势,故DA D为不可约弱对角优势矩阵 . 从而det D A D 0矛盾,故B1的特征值不能大于等于1,定理得证 .。
研究生数值分析(11)---雅可比(Jacobi)迭代法

a x (k) n,n1 n1
bn )
取初始向量
X
(0)
(
x (0) 1
,
x (0) 2
,
,
x (0) n
)T
利用(4)反复迭代可以得到一个向量序列 {X (k)}
称式(4)为雅可比迭Jacobi代公式。
若记
a11
D
a22
0
a21 0
0 a12
0
L a31
a32
0
U
特征方程 I D1(L U ) 0
又可以写成 D1 D L U 0 因为 D1 0 ,所以 D L U 0 上式左端为将系数矩阵 A 的对角元同乘以 λ 后所得新矩阵的行列式。
例8 用雅可比迭代法求解方程组
10x1 2x2 x3 3 2x1 10x2 x3 15 x1 2x2 5x3 10
由迭代矩阵的特征方程
10 2 1 2 10 1 0 1 2 5
展开得到
(10 2)(50 2 10 3) 0
解得
1
1 5
, 2
1 10
7
, 3
1 10
7
于是 (J ) 1 7 0.3646 1
10
因而雅可比迭代公式是收敛的。
练习:考察用雅可比Jacobi迭代法解方程组 AX=b的收敛性,
解:相应的雅可比迭代公式为
x1(
k
1)
1 10
(2x2(k )
x (k) 3
3)
x2(k
1)
1 10
(2
x1(
k
)
x (k) 3
15)
x3(k
1)
1 5
(
x1(
jacobi迭代法解析:原理与应用

jacobi迭代法解析:原理与应用标题:Jacobi迭代法解析:原理与应用导语:在数值计算和线性代数中,Jacobi迭代法是一种常用的迭代方法,用于解决线性方程组。
本文将深入探讨Jacobi迭代法的原理、应用和相关领域的研究,以帮助读者对这一数值算法有更全面和深刻的了解。
一、Jacobi迭代法介绍1.1 基本原理Jacobi迭代法是一种迭代法,用于求解线性方程组Ax = b,其中A是一个方阵,x和b是向量。
该方法通过不断迭代计算逼近线性方程组的解,直至满足预设的精度要求。
1.2 迭代公式详细介绍Jacobi迭代法的迭代公式,包括终止条件和迭代收敛性分析。
1.3 算法流程介绍Jacobi迭代法的算法流程和步骤,以及如何选择合适的初始解向量和迭代次数。
1.4 算法复杂性分析分析Jacobi迭代法的时间和空间复杂性,以便读者可以评估它在实际问题中的应用可行性。
二、Jacobi迭代法的应用2.1 线性方程组求解探讨Jacobi迭代法在解决大规模线性方程组时的应用,包括稀疏矩阵和高度并行计算环境下的性能优化。
2.2 特征值求解介绍Jacobi迭代法在计算特征值和特征向量时的应用,以及与其他方法(如幂法和QR算法)的比较和优势。
2.3 图划分与图分割探讨Jacobi迭代法在图划分和图分割问题中的应用,以及如何利用迭代过程提高划分结果的质量。
2.4 数值模拟与优化讨论Jacobi迭代法在数值模拟和优化问题中的应用,如流体力学、结构力学和优化设计等领域。
三、Jacobi迭代法的扩展与改进3.1 并行Jacobi迭代法介绍并行Jacobi迭代法的思想和实现策略,包括数据并行和任务并行,并讨论其对迭代收敛性和算法效率的影响。
3.2 加速算法与预条件技术探讨Jacobi迭代法的加速算法和预条件技术,如超松弛迭代法(SOR)、不完全LU分解和多重网格方法等,以加快迭代收敛速度和提高求解精度。
3.3 进一步的应用领域介绍Jacobi迭代法在其他领域的应用,如图像处理、信号处理和机器学习等,并指出其优势和适用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雅可比迭代法(Jacobi iteration method)是一种用于求解线性方程组的迭代算法。
给定一个线性方程组Ax = b,其中A是一个n×n矩阵,x和b是n维向量,雅可比迭代法通过构造一个迭代矩阵来逼近方程的解。
雅可比迭代法的迭代矩阵通常表示为D - L - U,其中D、L和U分别是矩阵A的对角矩阵、严格下三角矩阵和严格上三角矩阵。
具体来说,D的对角线元素是A的对角线元素,L是A 的下三角部分(不包括对角线),U是A的上三角部分(不包括对角线)。
雅可比迭代法的迭代公式为:
x^(k+1) = D^(-1) * (b - (L + U) * x^k)
其中,x^k表示第k次迭代的解向量,D^(-1)是对角矩阵D的逆矩阵。
雅可比迭代法的收敛性取决于迭代矩阵D - L - U的谱半径(即最大特征值的绝对值)。
如果谱半径小于1,则雅可比迭代法收敛;否则,可能不收敛。
在实际应用中,通常会使用其他更高效的迭代方法,如高斯-赛德尔迭代法(Gauss-Seidel method)或SOR方法(Successive Over-Relaxation method)。