等分威尔金森功分器的设计
等分威尔金森功分器的设计与仿真

摘要摘要本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端口的回波损耗:C11>20dB,频带内的插入损耗:C21<3.1dB,C31<3.1dB,两个输出端口间的隔离度:C23>25dB为设计指标的等分威尔金森功分器。
先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。
优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。
关键词:仿真,威尔金森功分器,ADS,优化ABSTRACTABSTRACTIn this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required.Key words:Simulation Wilkinson Power dividers ADS optimization目录目录第1章引言 (1)1.1 功分器的发展概述 (1)1.2本次设计的主要工作 (3)第2章功分器的技术基础 (4)2.1基本工作原理 (4)2.2 功分器的技术指标 (6)第3章 ADS介绍 (8)3.1 ADS发展概述 (8)3.2 ADS 的仿真设计方法 (9)3.3 ADS的辅助设计功能 (10)3.4 ADS与其他EDA软件和测试设备间的连接 (15)3.5 ADS应用结论 (15)第4章功分器的原理图设计、仿真与优化 (16)4.1等分威尔金森功分器的设计指标 (16)4.2建立工程与设计原理图 (16)4.3基本参数设置 (16)4.4功分器原理图仿真 (19)4.5功分器的电路参数的优化 (26)第5章功分器版图的生成与仿真 (28)5.1功分器版图的生成 (28)5.2功分器版图的仿真 (34)第6章结论 (37)参考文献 (38)致谢 (35)外文资料原文 (36)译文 (44)主要符号表1P ...................................................1端口的输入功率 2P ...................................................2端口的输出功率 3P ...................................................3端口的输出功率 0Z ..................................................输入端口特性阻抗 02Z ..........................................4λ分支微带线的特性阻抗 03Z ..........................................4λ分支微带线的特性阻抗 2R .................................................2端口接的负载电阻 3R .................................................3端口接的负载电阻 2U .....................................................2端口输入电压 3U .....................................................3端口输入电压 2in Z ....................................................2端口输入阻抗 3in Z ....................................................3端口输入阻抗 r P ..........................................................反射功率 i P ..........................................................入射功率 11S .....................................端口2匹配时,端口1的反射系数 21S .........................端口2匹配时,端口1到端口2的正向传输系数 31S .........................端口3匹配时,端口1到端口3的正向传输系数 11C ..........................................................回波损耗 21C ..........................................................插入损耗 31C ..........................................................插入损耗 23C ...........................................................隔离度第1章引言1.1 功分器的发展概述功率分配器是将输入信号功率分成相等或不相等的几路输出的一种多端口的微波网络,广泛应用于雷达、多路中继通信机等大功率器件等微波射频电路中。
威尔金森是怎么设计出威尔金森功分器的?

威尔金森是怎么设计出威尔金森功分器的?威尔金森功分器是个好东西,在射频领域里面应用很广泛。
第一次认识它是在教科书上,书上介绍了他的原理,自己也琢磨了很久,也理解了奇偶模分析的方法和隔离电阻的作用。
但是一直想知道威尔金森是怎么设计出来的?我们是否也可以按照一定的思路设计功分器呢?下面就去找这个思路,最终找到的这个思路可以方便的设计各种各样的功分器,俺的同事已经实践了哈,大家看完也可以试验一把。
首先明确一下这个功分器的要求:1.在微波射频领域,能量是非常宝贵的,所以设计的功分器不能够额外损失能量,如果分为两路的话就是每一路损耗3dB,即︱S21︱=︱S31︱=0.7072.各端口均50欧姆匹配,且两个输出口的完全隔离,即︱S11︱=︱S22︱=︱S33︱=︱S32︱=︱S23︱= 0图2根据以上的要求,我们设计一个对称的功分器,这样就可以只考虑一个端口,上面条件的一半就可以了,即︱S21︱=0.707,︱S11︱=︱S22︱=︱S32︱=0。
如图2所示,从中间把这个我们要设计的功分器分开,两边的的电压都是一模一样的,处处都是开路点。
1.由于端口1匹配,所以输入阻抗为50欧姆。
从1端口输入的能量分为对称的两路,那么每一路的阻抗都是100欧姆。
这个功分器第一个任务的就要用开路线左边的部分把端口2的50欧姆变换到100欧姆,且无损耗。
2.根据微波网络的理论,如果我们使用的都是电容,电感,传输线,电阻这些互易原件,那么整个功分器也就是互易的(关于对这个理论的理解后面文章会给出解释)。
即︱S2 1︱=︱S12︱=0.707。
也就是从端口2到端口1的能量为一半,那另外一半呢?又不能反射回去,又不能泄漏到端口3。
所以这个功分器的第二个任务就是要有一个电阻来吸收端口2入射过来的一半能量。
这个需求太抽象了,还要细化分解,下面利用奇偶模的方法来分析一下。
如下图所示,从端口2输入一个电压幅度为1的波,分解为奇偶模式,偶模式就是1端口输入情况下功率分配的逆过程,端口2、3均无反射波,有一半的能量从端口1输出,那么奇模的能量必须都要消耗到电阻上,不能有反射波回来。
威尔金森功分器和t型功分器

Wilkinson(威尔金森))功分器和T型功分器都是常用的功率分配器件,它们的设计目的都是将输入信号等分到两个输出端口,但是它们的结构和工作原理有所不同。
Wilkinson功分器是一种基于差分放大器的功率分配器件,它的输出端口之间有一定的隔离度,并且可以实现任意功率分配。
Wilkinson功分器由一个差分放大器和一个隔离电阻组成,其中隔离电阻用于将差分放大器的两个端口隔离开来,从而避免了信号的相互干扰。
Wilkinson功分器的设计要求差分放大器的带宽足够宽,以保证输出信号的频率响应良好。
T型功分器是一种简单的功率分配器件,它由三个电阻组成,其中两个电阻连接在一起作为输入端口,另一个电阻连接到输出端口。
T型功分器的输出端口之间没有隔离度,因此需要通过其他方式来实现隔离。
T型功分器的设计相对简单,但其带宽较窄,因此适用于低频信号的分配。
总的来说,Wilkinson功分器和T型功分器都有其适用的场景和优缺点。
在选择功率分配器件时,需要根据具体的应用场景和需求来选择最合适的器件。
功分器设计--基本理论

并联电阻为 R = 2Z0 = 100
在频率f0传输线长为/4。采用微波电路分析中的机辅设计程序,可算出S参量幅度, 并且绘在图5-40上。
图5-40 等分微带功分器的频响
微带功分器(Wilkinson功分器)设计 9
2.功率不等分
微带型功分器亦可做成功率不等分的,微带图形如图5-41所示,如端口3和2
பைடு நூலகம்
这两种模式。
图5-37 归一化、对称形式的Wilkinson功分器
微带功分器(Wilkinson功分器)设计 5
(1)偶模 对偶模激励,Vg2 = Vg3 = 1V,所以V2 = V3,没有电流流过r/2电阻 或端口1两根传输线入口之间连接处。因此,我们可将图5-37的网络对分,在 这些点具有开路终端,以得出图5-38(a)的电路(/4线的接地边没有示 出)。这时,从端口2看入得到的阻抗为:
而S11=0。注意:当功分器在端口1激励,且负载匹配时,电阻上没有功率损 耗。因此,当输出匹配时,功分器是无损耗的;只有从端口2和3来的反射功 率消耗在那电阻上。
图5-39 用于导出S11的微带功分器分析
微带功分器(Wilkinson功分器)设计 8
设计一个频率为f0、用于50系统阻抗的等分微带功分器,并且绘出回波损耗S11、插 入损耗(S21 = S31)和隔离度(S23 = S32)与频率(从0.5f0到1.5f0)的关系曲线。 解:由图5-36和上述的推导,功分器中的/4传输线应具有的特性阻抗为
图5-41 用微带形式的功率不等分功分器
微带功分器(Wilkinson功分器)设计 10
3. N路功分器或功率合成器 如下图5-42所示,这电路可使所有端口匹配,且使所有端口隔离。 但是,缺点是当N3时,功分器要求电阻交迭。这导致较难以用 平面形式制作。功分器亦可用多级阶梯阻抗变换形式制作,以 拓宽带宽。四节功分器的实际结构表示在图5-43上。
威尔金森是怎么设计出威尔金森功分器的

威尔金森是怎么设计出威尔金森功分器的威尔金森功分器是一种用于将输入信号分解为功率成分的电路。
它由英国工程师威尔金森于1947年设计,并在1950年的《电子工程师杂志》上发表。
这个电路设计的初衷是为了解决实际电路中功率测量的问题。
威尔金森功分器的设计是基于一种被称为“复制器”的元件。
复制器是一种有两个输入端和两个输出端的电路,其特点是在两个输出端上复制输入信号。
复制器的设计实现了信号的复制,这在威尔金森功分器的设计中起到了关键作用。
威尔金森功分器的电路结构如下:
威尔金森功分器设计与仿真威尔金森功分器(Wilkinson Power Divider)是一种常用的微波功分器,广泛应用于无线通信和雷达系统中。
它能将输入信号均匀地分配到两个输出端口,并且具有较宽的工作频率范围和较低的插入损耗。
本文将介绍威尔金森功分器的设计原理和仿真方法。
1.威尔金森功分器的设计原理```┌─Z1─┐RF in ─┤ ├─ Z2 ─ RF out1├─Z0─┤└─Z3─┘RF out2```其中,RF in为输入端口,RF out1和RF out2为输出端口,Z0为特征阻抗,Z1和Z2为等效阻抗,Z3为耦合阻抗。
在设计过程中,首先需要确定特征阻抗Z0的数值,一般为50欧姆。
然后,根据所需的功分比例,计算等效阻抗Z1和Z2的数值。
最后,选择合适的耦合阻抗Z3,使得整个电路达到最佳的工作性能。
2.威尔金森功分器的仿真方法首先,打开ADS软件并创建一个新的工程。
然后,在工程中添加一个新的设计,选择“Schematic”类型。
在Schematic设计界面中,依次添加所需的元件,包括传输线、阻抗匹配器和耦合器。
其中,传输线用于连接输入端口和输出端口,阻抗匹配器用于实现输入和输出的阻抗匹配,耦合器用于实现信号的均匀分配。
接下来,设置传输线的特性阻抗和长度,以及阻抗匹配器和耦合器的阻抗数值。
通过调整这些参数,可以实现所需的功分比例和工作频率范围。
完成电路设计后,可以进行仿真和优化。
选择“Simulation”菜单,设置仿真参数,如频率范围和步长。
然后,运行仿真并得到结果。
根据仿真结果,可以评估电路的性能,并进行优化。
如果需要改变功分比例或工作频率范围,可以调整各个元件的数值,并重新运行仿真。
最后,完成电路设计和优化后,可以进行PCB布局和封装设计。
根据实际需求,选择合适的材料和尺寸,并进行布局和封装设计。
总结:本文介绍了威尔金森功分器的设计原理和仿真方法。
通过合理选择和调整各个元件的数值,可以实现所需的功分比例和工作频率范围。
基于ADS的等分威尔金森功分器仿真PPT课件

.
13
功分器的发展趋势
近年来随着我国国民经济和科学技 术的发展,电子信息尤其是无线通信日 新月异,3G还没普及,4G已经崭露头角, 功率分配器不仅应用在射频功率的分配 和合成,在超宽带短脉冲电磁场应用中, 采用阵列天线的技术是提高探测距离是 较为理想的选择,阵列天线的关键技 术——功分器的研制就相当重要。
功分器实物图:
.
2
课题任务及主要技术指标
课题任务: 通过功分器的学习,利用ADS仿真软件, 设计一个等分威尔金森功分器,并仿真 得到其各端口的S参数。
等分威尔金森功分器设计主要技术指标: • 频率范围:0.9~1.1GHz • 频带内输入端口的回波损耗:C11>20dB • 频带内的插入损耗:C21<3.1dB,C31<3.1dB • 两个输出ห้องสมุดไป่ตู้口间的隔离度:C23>25dB
.
3
功分器电路结构图
.
4
主要内容
• 首先介绍微带型的功分器的工作原理和 主要技术指标;
• 利用ADS对功率分配器的电路原理图进行 设计、仿真及其优化;
• 为了更加贴近实际电路,在原理图仿真 的基础上,使用矩量法对版图进行进一 步仿真。
.
5
课题研究难点、重点及其 关键是什么?
• 功分器设计的难点功分器微带电路的设 计以及隔离电阻的选择。
• 功分器设计的重点功分器原理图的仿真 及优化
• 功分器设计的关键是电路参数的优化, 以及版图的仿真。
.
6
威尔金森功分器原理图
.
7
原理图生成的功分器版图
.
8
课题完成结果:原理图的S 参数仿真结果
.
9
结论:从图中结果可以看出,采取理论计 算的结果作为功分器的参数时,除了S11参 数外,各项指标都不上十分理想,功分器 在所要求的全频带内隔离度没有达到指标, 并且平坦度较差,并且当频率偏移中心频 率1GHz时,S11参数出现了严重的恶化,所 有还需要对功分器的各个参数进行优化。
功分器设计报告

(4)输出端口间的隔离度 端口 3 和端口 2 互为隔离端口,在理想情况下,隔离端口间应没有相互输出 的功率,但由于设计及制作精度的限制,使隔离端口间尚有一些功率输出。端口 3 到端口 2 的隔离度定义为: D 20 lg S 23 (dB)
/ 4
Zo 2Z o Zo
2Z o Zo 2Z o
/ 4
图2
关于这一点,我没有详述,大家可以参考由栾秀珍、房少军、金红和邰佑城 老师编著的《微波技术》这本书,书中对这阐述的非常详细。
三、功分器的基本指标
(1)频率范围 频率范围是各种射频和微波电路工作的前提, 功率分配器的设计结构和尺寸 大小与工作频率密切相关, 必须首先明确功率分配器的工作频率,才能进行具体 的设计工作。尤其是需要指明中心频率及其频带宽度。 (2)输入端口 1 的回波损耗 用 RL1 表示的端口 1 的回波损耗为: RL1 20 lg S11 (dB) (3)输入输出间的传输损耗 定义为输出端口 2 的输出功率 P2 和输入端口 1 的输入功率 P1 之比,记为
姓名:陶伟 班级:电科 09-1 班 学号:2220092322
一、 引言
功率分配器是将输人功率分成相等或不相等的几路功率输出的一种多端口 微波网络。在微波系统中, 需要将发射功率按一定的比例分配到各发射单元, 如 相控阵雷达等, 因此功分器在微波系统中有着广泛的应用。它的性能好坏直接影 响到整个系统能量的分配、合成效率。功率分配器有多种形式,其中最常用的是 四分之一波长(λp/4)功率分配器,这种功率分配器称为威尔金森(Wilkinson) 功率分配器。 威尔金森功率分配器由三端口网络构成, 其功率分配可以是相等的, 也可以是不相等的。在这里,我介绍的是等功率分配的微带线 Wilkinson功率分 配器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要摘要本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端口的回波损耗:C11>20dB,频带内的插入损耗:C21<3.1dB,C31<3.1dB,两个输出端口间的隔离度:C23>25dB为设计指标的等分威尔金森功分器。
先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。
优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。
关键词:仿真,威尔金森功分器,ADS,优化ABSTRACTABSTRACTIn this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required.Key words:Simulation Wilkinson Power dividers ADS optimization目录目录第1章引言 (1)1.1 功分器的发展概述 (1)1.2本次设计的主要工作 (3)第2章功分器的技术基础 (4)2.1基本工作原理 (4)2.2 功分器的技术指标 (6)第3章 ADS介绍 (8)3.1 ADS发展概述 (8)3.2 ADS 的仿真设计方法 (9)3.3 ADS的辅助设计功能 (10)3.4 ADS与其他EDA软件和测试设备间的连接 (15)3.5 ADS应用结论 (15)第4章功分器的原理图设计、仿真与优化 (16)4.1等分威尔金森功分器的设计指标 (16)4.2建立工程与设计原理图 (16)4.3基本参数设置 (16)4.4功分器原理图仿真 (19)4.5功分器的电路参数的优化 (26)第5章功分器版图的生成与仿真 (28)5.1功分器版图的生成 (28)5.2功分器版图的仿真 (34)第6章结论 (37)参考文献 (38)致谢 (35)外文资料原文 (36)译文 (44)主要符号表1P ...................................................1端口的输入功率 2P ...................................................2端口的输出功率 3P ...................................................3端口的输出功率 0Z ..................................................输入端口特性阻抗 02Z ..........................................4λ分支微带线的特性阻抗 03Z ..........................................4λ分支微带线的特性阻抗 2R .................................................2端口接的负载电阻 3R .................................................3端口接的负载电阻 2U .....................................................2端口输入电压 3U .....................................................3端口输入电压 2in Z ....................................................2端口输入阻抗 3in Z ....................................................3端口输入阻抗 r P ..........................................................反射功率 i P ..........................................................入射功率 11S .....................................端口2匹配时,端口1的反射系数 21S .........................端口2匹配时,端口1到端口2的正向传输系数 31S .........................端口3匹配时,端口1到端口3的正向传输系数 11C ..........................................................回波损耗 21C ..........................................................插入损耗 31C ..........................................................插入损耗 23C ...........................................................隔离度第1章引言1.1 功分器的发展概述功率分配器是将输入信号功率分成相等或不相等的几路输出的一种多端口的微波网络,广泛应用于雷达、多路中继通信机等大功率器件等微波射频电路中。
功率分配器又可以逆向使用作为功率合成器,因此有时又称为功率分配/合成器。
对于高效率应用场合,对功率分配器的主要要求是:插损较小,各路幅度和相位一致性要好,以保证较高的分配与合成效率;两支路之间的隔离度要好,平滑度高,当其中的一路出现故障时不至于影响另一路的正常工作或影响很小,以提高设备的安全系数和可靠性;宽频带,即在超宽的频带内达到所要求的性能;电路形式简单,容易调整,且体积小,以便于设备的小型化和实现批量生产;有足够的功率容量,以满足大功率分配合成的需要。
当功率分配/合成器的工作频率较低时,其理论分析与实际研制都能达到较高的效果,但随着频率升高,特别是在10GHz以上,则会带来许多的问题:要求加工精度更高,微带线的损耗增加,微带不连续模型不够精确,隔离电阻尺寸可以与波长相比拟,不再是一个纯电阻,且波长变短使分配/合成器的体积减小带来微带间的耦合等等。
随着我国军事装备发展的突飞猛进,对频率高端,尤其是2GHz~10GHz宽频带内高可靠微波功分器的应用也越来越广,需求量迅猛增加。
特别是在微波测量和电子对抗系统中,为提高装备的实用性和多信号捕捉能力,往往选用宽带体制来作为系统方案,此时对功分器提出了全频带带宽覆盖的要求。
功分器是微波接收、发射及频率合成系统中不可缺少的部件,无论是微波通信、雷达、遥控遥感、电子侦测、电子对抗还是微波测量系统中,都有将信号等功率分配的要求,讲信号等功率分配为多路,再分别进行处理,是非常普遍的应用。
在发射系统中,将功分器反转使用,就是功率合成器,在中、大功率发射源中,对整个系统性能有着重要的影响。
尤其是在多通道侧向系统中,更是决定着系统性能的关键部件,对幅度的一致性、相位的一致性指标有着严格的要求,这样才能保证系统的测量精度。
微波功分器除了幅度、相位一致性要求外,对功分器的插入损耗还有着较高电子科技大学成都学院本科毕业设计论文的要求,以避免过大的损耗降低信号强度。
同时,为保证各路之间的不受串扰的影响,隔离度指标也相当的重要,在微波测量系统中尤其如此。
此外,在微波发射源中作为微波功率合成器使用时,对微波功分器的承受功率还有更高的要求。
近年来随着我国国民经济和科学技术的发展,电子信息尤其是无线通信日新月异,3G还没普及,4G已经崭露头角,功率分配器不仅应用在射频功率的分配和合成,在超宽带短脉冲电磁场应用中,采用阵列天线的技术是提高探测距离是较为理想的选择,阵列天线的关键技术——功分器的研制就相当重要。
无线电发射设备中,为了保证足够远的传输距离,待传输信号须经过一系列的功率放大直至获得足够大的功率再送至发射天线。
采用功率合成技术将多路固态器件输出功率进行同向叠加,是获得更高输出功率的有效途径之一。
随着无线通信技术的快速发展,各种通讯系统的载波频率不断提高,小型化低功耗的高频电子器件及电路设计使微带技术发挥了优势。
单波传输使得系统的增益达不到实际的要求,从而必须实现多波传输,也就是将功率进行分配,即产生了功率分配器,简单功分器。
本文设计仿真的是最简单最经典的威尔金森功分器,在射频电路和测量系统中,如混频器、功率放大器电路中的功率分配与耦合元件的性能将影响整个系统的通信质量,而微带功分器在实践应用中显得更为突出。