[最新]钢筋混凝土极限状态设计---4_图文
第八章钢筋混凝土构件正常使用极限状态验算

第八章钢筋混凝土构件正常使用极限状态验算钢筋混凝土构件正常使用极限状态验算,是指在使用过程中,构件受到工作荷载作用时,保证其安全可靠地工作的一种验算方法。
该验算方法主要涉及构件的强度验算和变形验算两个方面。
首先,对于强度验算,需要计算构件所受工作荷载产生的应力和变形,与构件的抗弯强度、抗压强度、抗剪强度等进行比较。
通常,构件的设计强度可以通过相应的设计规范中的计算公式来确定。
例如,在抗弯强度验算时,可以根据规范中的受拉区和受压区的计算公式,计算出构件的最大抗弯强度。
然后,将该抗弯强度与施加在构件上的工作荷载产生的弯矩进行比较,以确定构件是否能够满足强度要求。
另外,对于变形验算,主要考虑构件在受荷状态下的变形情况,以确保构件在使用过程中不会产生过大的变形,影响正常使用。
一般来说,变形验算主要包括挠度验算和裂缝宽度验算。
挠度验算需要计算构件在工作荷载下的挠度,与规范中所要求的挠度限值进行比较,以确定构件的变形是否满足要求。
裂缝宽度验算则需要计算构件在工作荷载下的裂缝宽度,与规范中规定的最大裂缝宽度进行比较,以确保构件在使用过程中不会出现过大的裂缝。
在进行正常使用极限状态验算时,需要结合实际工程情况,确定构件的荷载组合,并考虑不同荷载组合下的最不利情况。
同时,还需要注意构件的截面尺寸、钢筋配筋、混凝土等材料的性能参数等因素的准确性,以提高验算的准确性和可靠性。
最后,进行正常使用极限状态验算的目的是为了确保钢筋混凝土构件在使用过程中不会发生破坏或损坏,保证其安全、稳定和可靠地工作。
通过合理地进行验算,可以有效避免因工作荷载超过构件承载能力而引起的结构安全隐患,提高工程质量和使用寿命。
总之,钢筋混凝土构件正常使用极限状态验算是一项重要的设计工作,需要综合考虑构件的强度和变形特性,并利用相应的设计规范和计算方法进行验算。
只有通过科学、合理的验算,才能保证结构在使用过程中的安全可靠性。
钢筋混凝土结构的设计方法—概率极限状态设计方法

极限状态的分类
欧洲混凝土协会
我
国
国 际 标 准 化 组 织
极限状态
承载能力
正常使用
的 可 靠 度 标 准 、 各
极限状态
极限状态
种
规
范
国际预应力混凝土协会
承载能力极限状态
——对应于结构或构件达到最大承载能力或不适于继续承载的变形。
结构或结构构件丧 失稳定(柱的压曲 4 失稳)
3 结构转变 成机动体系
结构可靠性
3.耐久性 结构在正常使用和正常维护的条件下,在规定的时间内,具有足够的耐久性。
例如,不发生由于混凝土保护层碳化或裂缝宽度过大而导致 的钢筋锈蚀过快或过度,从而致使结构的使用寿命缩短。
结构可靠性
结构的安全性、适用性和耐久性这三者总称为结构的可靠性。
可靠性
——结构在规定的时间(设计基准期)内,在规定的条件(结构设 计时所确定的正常设计、正常施工和正常使用条件)下,完成预定 功能的能力。
汶川地震震害
承载能力极限状态
支架压曲失稳
正常使用极限状态
——对应于结构或构件达到正常使用或耐久性能的某项规定限值。
影响正常使用或外观的变形
正
常
影响正常使用或耐久性能的局部损坏
使
用
影响正常使用的振动
极 限
状
影响正常使用的其它特定状态
态
使用寿命——为结构或构件在正常维护条件下,不需要大修即可按其设计规 定的目的正常使用的时间。
结构的使用年限超过设计基准期时,表明它的失效概率可能会增大,不能 保证其目标可靠指标,但不等于结构丧失所有要求功能甚至报废,通常使用寿 命大于设计基准期。
一般桥梁结构的设计基准期为100年 ;建筑结构的设计基准期为50年。
钢筋混凝土设计规范

汇报人:雪
CONTENTS
添加目录标题
钢筋混凝土设 计基础
承载能力极限 状态设计
正常使用极限 状态设计
耐久性设计
抗震设计
PART ONE
PART TWO
抗压强度高:钢 筋混凝土结构中, 混凝土承受压力, 钢筋承受拉力, 共同承载载荷。
耐久性好:钢筋混 凝土结构中的混凝 土具有很好的碱性, 能保护钢筋不受腐 蚀,因此钢筋混凝 土结构的使用寿命
较长。
施工方便:钢筋 混凝土结构在施 工过程中,可以 一次性浇筑完成, 施工方便快捷。
抗震性能好:钢 筋混凝土结构中, 钢筋和混凝土的 协同作用能够有 效地吸收地震能 量,减轻地震对
结构的破坏。
PART FIVE
耐久性定义:结构在正常使用和环境作用下保持其性能不变的能力。 影响因素:材料性能、结构设计、施工质量和环境条件等。 设计目标:确保结构在使用年限内满足安全、适用和耐久性的要求。 设计原则:综合考虑各种影响因素,采取相应的措施提高结构的耐久性。
混凝土的强度等级 混凝土的抗冻等级
定义:指结构或结构构件达到 最大承载能力或出现不适于继 续承载的变形
考虑因素:包括结构重要性系 数、结构构件承载力设计值、
结构重要性系数等
计算方法:根据不同情况采用 不同的计算方法,如塑性极限
分析法等
计算公式:承载能力极限状态计算公式为:N≤Nu,其中N为荷载设计值,Nu结构整体
倒塌
抗震承载力: 根据地震烈度、 场地条件等因
素确定
抗震构造措施: 加强节点连接, 提高整体稳定
性
隔震与减震设 计:采用隔震 支座、减震器 等措施降低地
钢筋混凝土梁受弯承载力的极限状态分析

钢筋混凝土梁受弯承载力的极限状态分析一、前言钢筋混凝土梁是建筑结构中常用的梁型,其受弯承载力是设计中必须考虑的重要参数。
本文旨在通过极限状态分析的方法,深入研究钢筋混凝土梁受弯承载力的计算方法,为工程实践提供参考。
二、钢筋混凝土梁的受弯承载力钢筋混凝土梁的受弯承载力可以分为两种状态:弹性状态和破坏状态。
1.弹性状态下的计算方法在弹性状态下,钢筋混凝土梁的受弯承载力可以使用弯矩与曲率的关系式进行计算。
其中,弯矩M与截面曲率κ的关系式为:M = EIκ其中,E为混凝土的弹性模量,I为截面惯性矩,κ为曲率。
钢筋混凝土梁的受弯承载力为:N = Ws + Wc其中,Ws为钢筋的贡献,Wc为混凝土的贡献。
2.破坏状态下的计算方法在破坏状态下,钢筋混凝土梁的受弯承载力可以分为两种情况:钢筋首先达到屈服,或者混凝土首先破坏。
(1)钢筋首先达到屈服当钢筋首先达到屈服时,钢筋的贡献达到最大值。
此时,钢筋混凝土梁的受弯承载力为:N = Asfy + 0.85fcbhα其中,As为钢筋的截面面积,fy为钢筋的屈服强度,fcb为混凝土的轴心抗压强度,h为截面高度,α为中性轴深度与截面高度之比。
(2)混凝土首先破坏当混凝土首先破坏时,混凝土的贡献达到最大值。
此时,钢筋混凝土梁的受弯承载力为:N = 0.85fcbhα + βAsfy其中,β为钢筋的利用系数。
当钢筋截面面积小于等于βfcbhα/fy时,β=1,否则β按以下公式计算:β = 0.85 + 0.15fy/σs其中,σs为钢筋的应力。
三、极限状态分析极限状态分析是一种基于概率统计理论的结构设计方法,其目的是确定结构在极限状态下所能承受的荷载。
在极限状态分析中,首先需要确定荷载的概率分布,然后通过统计方法计算结构的可靠性指标,最后确定结构所能承受的荷载。
对于钢筋混凝土梁的极限状态分析,可以采用可靠度指标β进行计算。
其计算公式为:β = (R - X)/S其中,R为荷载的可靠度指标,X为结构的阈值,S为结构的标准差。
钢筋混凝土 第三章按近似概率理论的极限状态设计法

β值
失效概率 Pf
2.7 3.5×10-3
3.2 6.9×10-4
3.7 1.1×10-4
4.2 1.3×10-5
由于经济及历史原因,我国建筑工程的可靠度水平在世界范围 内是比较低的。表现在结构设计方面为:①荷载标准值偏低; 荷载分项系数较小;材料分项系数偏低,因此材料设计强度偏 高;②设计计算和构造措施普遍比国外安全储备少,尤其是最 小配筋率,取值明显低于其他国家规范的规定。
S
在结构设计中,不仅仅只考虑结构的承载能力,有时还要考 虑结构的适用性和耐久性,则极限状态方程可推广为:
Z = g ( x1 , x 2 , L , x n )
第二节
按近似概率的极限状态设计法
★ 由于结构抗力和荷载效应的随机性,安全可靠应 该属于概率的范畴,应当用结构完成其预定功能 的可能性(概率)的大小来衡量,而不是一个定 值来衡量。
M < Mu f < [f] wmax< [wmax]
M = Mu f = [f] wmax= [wmax]
M > Mu f > [f] wmax> [wmax]
承ቤተ መጻሕፍቲ ባይዱ能力极限状态
超过该极限状态,结构就不能满足预定的安全性功能要求 ◆ 结构或构件达到最大承载力(包括疲劳) ◆ 结构整体或其中一部分作为刚体失去平衡(如倾覆、滑 移) ◆ 结构塑性变形过大而不适于继续使用 ◆ 结构形成几何可变体系(超静定结构中出现足够多塑性 铰) ◆ 结构或构件丧失稳定(如细长受压构件的压曲失稳)
◆ 适用性 ◎ 结构在正常使用期间,具有良好的工作性能。如不发生影 响正常使用的过大的变形(挠度、侧移)、振动(频率、振 幅),或产生让使用者感到不安的过大的裂缝宽度。 ◆ 耐久性 ◎ 结构在正常使用和正常维护条件下,应具有足够的耐久 性。即在各种因素的影响下(混凝土碳化、钢筋锈蚀),结 构的承载力和刚度不应随时间有过大的降低,而导致结构在 其预定使用期间内丧失安全性和适用性,降低使用寿命。
钢筋混凝土构件正常使用极限状态验算PPT

而受压区应力分布仍接近于三角形。
根据试验研究和理论分析,计算受弯构件的开裂弯矩
Mf时,混凝土受拉区的应力图形可采用梯形,并假设塑化 区高度占受拉区高度的一半。
●截面换算
为了便于计算,规范引入换算截
性系数可按下列公式确定:
短期组合: 长期组合:
pls m ( m 1 )N s f tk A0 pll m ( m 1 )N l f tk A0
在荷载效应的短期组合与长期组合下,偏心受拉构件 截面受拉边缘即将开裂时的最大拉应力可分别按下列公式 进行计算:
N s cts m ftk A0W0 ( e0s A0 mW0 ) N l ctL m ftk A0W0 ( e0l A0 mW0 )
和材料强度标准值,结构系数d=1.0。
裂缝及其控制
按裂缝产生的原因分类,混凝土结构的裂缝可分 为以下几类:
裂缝控制等级: 一级——严格要求不出现裂缝的构件。 二级——一般要求不出现裂缝的构件。 三级——允许出现裂缝的构件,但是裂缝最大宽度不 应超过规定的最大裂缝宽度限值。
1.抗裂验算
抗裂就是不允许混凝 土开裂。规范要求在荷载效 应的短期组合和长期组合两 种情况下,构件验算点拉应 力不能超过由混凝土拉应力
截面抵抗矩塑性系数m较大;但考虑简化计算,其m 可偏安全地取为受弯构件的m;
因此在荷载效应的短期及长期组合下,偏心受压构件应分别 按下列公式进行抗裂度验算:
N s cts m ftk A0W0 ( e0s A0 W0 ) N l ctL m ftk A0W0 ( e0l A0 W0 )
面的概念,即将钢筋面积As按弹性模 量比E=Es/Ec换算成与混凝土具有相同
第十章钢筋混凝土正常使用极限状态验算与

第十章钢筋混凝土正常使用极限状态验算与钢筋混凝土是一种常用的建筑材料,其在正常使用情况下需要进行极限状态验算,以确保结构的安全性和可靠性。
本章将介绍钢筋混凝土正常使用极限状态验算的基本原理、方法和步骤。
1.概述钢筋混凝土结构在正常使用情况下,不仅需要承受荷载的作用,还要满足一定的变形要求,以保证结构的正常使用。
正常使用极限状态验算主要是验证结构在正常使用载荷下的强度和刚度,以及满足相关的变形要求。
2.验算的基本原理正常使用极限状态验算的基本原理是结构在正常使用载荷下,钢筋混凝土的受力性能和变形控制是否满足设计要求。
主要包括以下两个方面:-强度验算:通过验算结构在正常使用荷载下的强度是否满足设计要求,包括钢筋的抗拉和抗压性能、混凝土的抗压性能等。
-变形验算:通过验算结构在正常使用荷载下的变形是否满足设计要求,包括结构的挠度、裂缝宽度等。
3.验算的方法和步骤正常使用极限状态验算的方法和步骤可以按照以下几个方面进行:-荷载计算:首先需要计算出结构在正常使用情况下的荷载,包括永久荷载、活荷载等。
根据设计规范的要求,确定荷载的组合形式和作用时间。
-材料的力学性能:根据钢筋混凝土的设计要求,确定使用的材料的力学性能参数,包括混凝土的强度、钢筋的强度等。
-构件受力计算:根据结构的平面布置和受力情况,进行构件的受力计算,包括弯矩、剪力、轴力等。
根据不同构件的要求,进行不同的验算方法和步骤。
-刚度验算:根据结构的变形要求,进行正常使用荷载下的刚度验算。
主要是验证结构的挠度是否满足设计要求,如果不满足,则需要进行必要的刚度调整措施。
-强度验算:根据结构的强度要求,进行正常使用荷载下的强度验算,包括钢筋的抗拉和抗压性能、混凝土的抗压性能等。
如果存在强度不足的情况,则需要采取合理的加固措施。
-验算结果的评估:根据正常使用极限状态验算的结果,对结构的安全性进行评估,确定是否满足设计要求。
4.注意事项在进行正常使用极限状态验算时,需要注意以下几个方面:-选择合适的验算方法和步骤,根据具体的结构类型和受力特点,灵活采用不同的验算方法。
钢筋混凝土梁受弯承载力的极限状态分析

钢筋混凝土梁受弯承载力的极限状态分析1. 概述钢筋混凝土梁是建筑结构中常用的构件之一,承载结构负荷的能力是设计的重要指标之一。
梁的受弯承载力是指梁在受弯矩作用下所能承受的最大荷载,也是梁设计中的重要参数之一。
本文将从极限状态分析的角度出发,介绍钢筋混凝土梁受弯承载力的计算方法。
2. 极限状态设计基本原理极限状态设计是建筑结构设计中的一种设计方法,其基本原理是将结构在使用寿命内所可能承受的荷载和变形分为两类,即正常工作状态和极限状态。
正常工作状态下,结构应能够满足正常使用要求,而在极限状态下,结构发生破坏或失效。
极限状态设计的目的是为了确保结构在极限状态下依然具有足够的安全性。
3. 钢筋混凝土梁受弯承载力的计算方法钢筋混凝土梁受弯承载力的计算方法包括弯矩容许值法、受压区高度法、受拉钢筋屈服限制法等。
其中,弯矩容许值法是最常用的方法之一。
3.1 弯矩容许值法弯矩容许值法是通过计算梁截面的弯矩容许值和实际弯矩之间的比较来确定梁的承载能力。
弯矩容许值可通过截面的几何形状和材料强度来计算。
梁的实际弯矩可通过荷载分析得到。
弯矩容许值和实际弯矩之间的比较可用以下公式表示:MRd >= M其中,MRd为弯矩容许值,M为实际弯矩。
弯矩容许值的计算涉及到混凝土和钢筋的特性和截面形状等因素。
在计算时,需要考虑截面受压区和受拉区的不同特性,以及混凝土和钢筋的强度等因素。
具体计算方法可参考《混凝土结构设计规范》(GB 50010-2010)等国家标准。
3.2 受压区高度法受压区高度法是通过计算梁截面受压区的高度来确定梁的承载能力。
梁截面受压区高度的计算涉及到混凝土的强度、钢筋的位置和形状等因素。
具体计算方法可参考《混凝土结构设计规范》等国家标准。
3.3 受拉钢筋屈服限制法受拉钢筋屈服限制法是通过计算梁截面受拉钢筋的屈服限制来确定梁的承载能力。
具体计算方法可参考《混凝土结构设计规范》等国家标准。
4. 结论钢筋混凝土梁受弯承载力的计算方法多种多样,其中弯矩容许值法是最常用的方法之一。