数据挖掘技术及应用综述
数据挖掘技术在高校教务管理中的应用综述

( 1 ) 概念描述。它是指 描述某类对象具有 的内涵 、 并概括
教务管理 中的应用进 行论述 。
2数 据 挖 掘 概 述 2 . 1 数 据 挖 掘 的 概 念 与 应 用
这类对象的有关特 征。概念描述 的两种方式分 别是数据特 征
化和数_ 据 区分。数据特 征化 是描述某类对象 的共 同特征 ,而 数据区分则是描述不同类对象之 间的区别 。 ( 2 ) 分类和预测 首先, 分类 建立 一个 能够描述 并区分数
( 8 ) 灵活性好 , 拓 展空问火。
( 7 ) 并种信息构建在统一的平台之上 , 经过融合加工后 , 能 用水 、 电、 煤气和 也话那样使用交通资源而又无需关注底层复
算机信息处理能力 , 高效采集, 分析和应用交 通信 息, 提 供实 云计算足指计算 资源 统一规 划组织管理协调以实现集 中 时高效的交通服务功能。 共享为 目的计算机 系统 。在 云计 算资源基础 上。利用 已有交
前 已经广 泛应用于许多领域 ,比如生物医学 、 金融数据 分析 、 则展示的是两个或两个 以上 的数据项频繁地在给定数据集 中
起 出现 的条件矗 这些数据项足 以某种规律共 同I J j 现 的话,
( 3 ) 每个 信息节 点既是信息的享 有者也足信息的提供者 , 上的开放 式服 务模式 , 使得使用者参与 到了系统 中来 , 帮助人 随着 计算机硬件和 信来自技术 的发展,使得海量数据 的处
理 已经成为研究与生产 中的一项重要工 作,数据挖掘技术 由 据类的模型, 然后使用这个模型米预测类标 记未知的对缘类。
此 丽诞生。数据挖掘也 叫知识发现 ,指的足从大型数据集中 归纳分类 的形式有 多样 , 比如分类 规则、 判定树和神经 网络等
数据挖掘技术在房地产行业的应用综述

、
。
,
、
一
,
。
房 关 键 词 :数据 挖 掘 : 地 产 行 业 :多元 统 计 分 析 房 地 产行 业 是 个数 据 量 大 关 联 性 强 影 响 因 素 多 的 复 杂 非 线 性 系统 数 据 挖 掘 技 术 在 房 地 产 行 业 的 应 用 是 个 年 轻 且 充满希 望 的 研 究 领 域 人 们 对 它 的研 究 正 日益 广 泛 和 深 入 解 决 好 这 些 问题 对 于 政 府 部 门 合 理 分 析 产 业 发 展 制 定 产 业 政 策 及 开 发 企 业 和 个 人 正 确 判 断房 地 产市 场 形 势 做 出 投 资 或 购 房 决 策具 有 重 要 意 义 总体来说 数 据挖 掘 (D a ta Min in g 本 文 下 面 均简 称 D M 技 ) 在 房 地 产 行 业 的应 用 主 要 使 用 了 三 种技 术 : 术 ( 1 ) 分 类技 术 ( 2 )聚 类技 术 ( 3 )关 联 规 则 发 现 技 术 本 文 主 要 从 商 业 贷款 风 险 评 估 技 术 房 地 产 公 司 经 营等 级 划 分 和 客户 关 系 管 理 这 三 点 综 述 数 据 挖 掘 技 术 在 房 地 产 行 业 的 应用 1 基 于 神经 网络技术 房地产 商业 贷款风 险分析 随着 房 地 产 市 场 的 逐 步 走 热 投 身 于 房 地 产 项 目开 发 的 企 业 日益 增 多 在 贷 款 企 业 情 况 的 多 数 不 确 定 因 素 面 前 银 行 的 商业 贷 款 风 险 也 随之 提 高 信 息 不 对 称 情 况 下 银 行 在 贷 款 的 过 程 中不 得 不 承 担 由于 缔 约 方 违 约 或 经 营 的 失 败 而 使 得 银 行 不 能 回收贷 款利息与本金 的风 险 因 此 银 行 机 构 为 了对 贷 款 风 险 的 有 效 管 理 与控 制 必 须 寻 求 有 效 的 贷 款 风 险 预 测 量 化 的 方 法 和 技术 针 对 此 问题 可 以 构 建 种 基 于 神 经 网 络 的 客 户 模 糊 分 类 数 据 挖 掘 方 法 旨在 对 客 户 的 贷 款 风 险 进 行 分 类 为 银 行 贷 款 风 险分 析 部 门准 确分 析 目标 客 户 提 供 种 有 效 的方 法 该 方 法 对 客户进 行 了 合 理 区 分 试 图 为 充 分做 好 客 户 关 系 管 理 增 强 企 业 竞争优势 提 高企 业 的核 心 竞 争 力提 供有 效 的解 决 方 案 该 方 法 的 思 想 是 运 用 模 糊 神 经 网 络分 析 探 索 影 响 因 素 之 间 共 同 作用 产 生 的 交 互 效 应 用 过 去 的事 实进 行 综 合评 价 训 练 网络 来 确定权 重 的 大 小 这 样 将会 使 结 果 更 加 准 确 可 信 1 1 贷 款 风 险 评 估 中指 标 体 系 的 建 立
数据挖掘技术及应用综述

维普资讯
第 2期( 总第 8 9期) N. S M N . ) o U o 9 2( 8
机 械 管 理 开 发
ME CHANI AL C MANAGE NT ME AN D D EVE J ME I 0P NT
2o 0 6年 4月
A r2 0 p .0 6
“ 类正 被信 息淹 没 。 人 却饥 渴 于 知识 .这是 1 8 年 ” 92
趋势大师J nN i i的首部著作 《 o a bt h s t 大趋势》 M g. ( ea
t ns中提 到的 。 r d) e 随着数 据库 技术 的迅 速发展 . 如何 从 含有 海量 信息 的数据 库 中提取更 有 价值 、更直 观 的信 息和知 识 ? 人们结 合统 计学 、 据库 、 数 机器 学 习 、 神经 网 络 、 式识别 、 糊数学 、 模 模 粗糙 集 理论 等技 术 。 出 ‘ 提 数 据挖掘 ’ 一新 的数据 处理 技术来 解 决这 一难题 。 据 这 数 挖 掘 ( aaMiig 就 是 从 大 量 的 、 完 全 的 、 噪 声 D t nn ) 不 有 的、 模糊 的 、 随机 的数 据 中 . 提取 隐含 在其 中的 、 人们 事 先不知 道 的 、 又是潜 在 的有用 的信 息 和知识 的过程 。 但 这 些数 据 可 以是 : 构 化 的 . 结 构 化 的 , 布在 网络 结 半 分
11 数据 挖掘 的概 念 .
数 据挖掘 的对 象包 含大量 数 据信息 的各 种类 型数
据 库 。如关 系数据 库 , 向对 象 数据库 等 , 本数 据数 面 文 据源 , 多媒 体 数 据 库 , 间数 据 库 , 态 数 据 库 , 空 时 以及 It nt 类 型 数 据 或 信 息 集 均 可 作 为数 据 挖 掘 的对 ne e等 r
数据挖掘技术在风力发电中的应用综述 何瑞峰

数据挖掘技术在风力发电中的应用综述何瑞峰摘要:风力发电作为一种新能源,在发展的过程当中依旧存在着很多不稳定的因素。
为了能够保证风力发电机器到可持续运行,仅仅只靠人力维护是远远不够的,对于风力发电机组运行的状态可能会导致的各种情况,应当有更精准的数据挖掘技术进行合理的掌控。
本文主要简述风力发电系统当中所用的研究方法,通过数据挖掘技术当中的几种常用的算法与风力发电系统相结合。
同时列举出风力发电领域,现如今可靠的数据挖掘方法。
以及当前的应用现状,同时,在未来方面也提出了数据挖掘技术可以在风力发电中应用的发展方向。
关键词:风力发电;数据挖掘;故障预警;功率预测可以维持我们人类生活日常的能源有很多,在这其中有很多资源是属于不可再生能源,哪怕是可再生能源也需要经过几百年甚至几千年的沉淀才可以作为全新的能源。
相比那些不可再生能源来说,风能这个可再生能源的产生条件是非常简单的,只不过如何利用好这种能源成为了问题。
风力发电的产生就是在这方面逐步进行推进,让风能源逐渐为人们提供生活上的便利。
一,数据挖掘对于风力发电发展的必要性在目前为止,风力发电的领域当中已经有很多种研究手段以及分析方式。
通常都是采用提取振动信号,进行分析以及确定故障形式的方式来进行风电机组的故障诊断。
其次就是通过声发射的技术来诊断风力发电可能会发生的故障,在风力发电功率预测方面也有很多方向的研究,有对功率直接进行预测,或者是通过当前时段的风速来进行预测,未来可以为风电机组带来多大的能源。
在这些预测方向上面,传统的方法是需要很大人力的,就例如叶尖速比法爬山法等,这些方式都是需要有专业人员进行调控,在很多程度上还会给人员带来一定的危险。
学者通过研究,发现风电机组,虽然复杂多变,但是通过模型以及参数的性质则可以御运用庞大的数据进行测量。
可以在最大程度上预测风力发电可能出现的问题,以及在未来利用能源的使用情况。
于是研究人员开始通过数据挖掘技术,通过风力发电机组进行了海量数据分析。
空间数据挖掘及技术(综述)

01
水质监测
通过挖掘水质监测数据,评估水体质量 状况,为水环境治理和水资源保护提供 依据。
02
03
土壤质量监测
利用空间数据挖掘技术,监测土壤质 量状况,为土地资源保护和农业可持 续发展提供支持。
THANKS
感谢观看
空间聚类分析
将相似的空间对象归为同一类。
空间分类模型
根据已知的空间数据对新的空间对象进行分 类。
空间数据可视化
地图可视化
将空间数据以地图的形式呈现,便于理解和 分析。
三维可视化
利用三维图形技术展示空间数据,提供更直 观的视角。
可视化交互
允许用户通过交互操作来探索和查询空间数 据。
可视化分析工具
提供专业的可视化分析功能,帮助用户深入 挖掘空间数据的价值。
可解释性机器学习
研究如何让机器学习模型产生的结果更容易被人类理解和接受。
数据隐私保护
在空间数据挖掘过程中,保护用户隐私和数据安全是重要的问题,需 要研究如何在保证隐私的前提下进行有效的数据挖掘。
05
空间数据挖掘案例研究
城市规划中的空间数据挖掘应用
城市用地适宜性评价
利用空间数据挖掘技术,对城市用地进行适 宜性评价,为城市规划提供科学依据。
人工智能与机器学习在空间数据挖掘中的应用
深度学习
利用神经网络模型对空间数据进行特征提取和 模式识别,提高挖掘精度和效率。
强化学习
通过与环境的交互学习,自动优化空间数据挖 掘任务中的参数和策略。
迁移学习
将在一个任务上学到的知识应用于其他相关任务,减少重新训练模型的时间和 成本。
空间数据挖掘与其他领域的交叉研究
2
通过空间数据挖掘,可以发现隐藏在空间数据中 的知识,揭示出地理现象的内在规律,为解决实 际问题提供科学依据。
Web数据挖掘技术综述

中图分类号 :T P 3 1 1文献标识码:B 文章编号:1 0 0 9 - 4 0 6 7 ( 2 0 1 3 ) 1 5 . 3 2 . 0 2
一
、
We b数据挖掘的难点
下特点:
we b上有海量的数据信息 ,怎样对这些数据进行复杂的应用成了现 今数据库技术 的研究热点。数据挖掘就是从大量的数据 中发现隐含 的规 律性 的内容 , 解决数据的应用质量问题。充分利用有用 的数据 , 废弃虚 伪无用的数据 ,是数据挖掘技术的最重要 的 应用 。相对 于 We b的数据而
因为如果所需 的数据不能很有效地得到,对这些数据进行分析 、 集成 、
处理就无从谈起。.
( 二 )半结构化 的数据结构
搬用于数据库的数据挖掘技术。
l 、We b 挖掘技术 的分类
一
We b上的数据与传统 的数据库 中的数据不同 , 传统的数据库都有一 定 的数据模型 ,可以根据模型来具体描述特定的数据。而 We b 上 的数据 非常复杂 ,没有特定 的模型描述 ,每一站点的数据都各 自 独立设计 ,并
we b 内容挖掘有两种策略 : 直接挖掘文件的 内容,或在其他工具搜 索的基础上进行改进 。采取第 1种策 略的有锁定网络的查询语言 We b L o g 、W e b S h o y 等 ;采 取第 2种策略的方法 主 要是对查找引擎的查询结果进行进一步的处理 ,
1 、庞大性。由于 we b的开放性 ,使得 we b 上的信息与 臼俱增 ,呈
爆炸性增长。网上的网页数量达到 l 0亿 ,而且正在以每月近千万的速度 增长。
2 、 动态性 。 we b 不仅以极快的速度增长 , 而且其信息还在不断地发 生更新。新 闻、 公 司广告、股票市场 、We b服务中心等都在不断地更新
数据挖掘综述

数据挖掘综述数据挖掘是一种通过从大量数据中发现模式、关联和趋势来提取有用信息的过程。
它是一门综合性的学科,结合了统计学、机器学习、数据库技术和人工智能等领域的知识和方法。
数据挖掘在各个行业和领域都有广泛的应用,包括市场营销、金融、医疗保健、社交网络分析等。
数据挖掘的过程通常包括以下几个步骤:1. 问题定义:明确需要解决的问题或目标,例如预测销售额、发现异常行为或推荐系统等。
2. 数据收集:收集与问题相关的数据,可以是结构化数据(如数据库中的表格)或非结构化数据(如文本、图像或音频)。
3. 数据清洗:对数据进行清洗和预处理,包括处理缺失值、异常值和重复值,以及转换数据格式和统一数据标准等。
4. 特征选择:选择对问题有预测能力的特征,以减少计算复杂性和提高模型性能。
5. 模型选择:选择适合问题的数据挖掘模型,例如分类、聚类、关联规则挖掘、时序分析等。
6. 模型训练:使用标记好的训练数据对选定的模型进行训练,以学习模式和关联规则。
7. 模型评估:使用测试数据对训练好的模型进行评估,以确定模型的性能和准确性。
8. 模型优化:根据评估结果对模型进行优化和调整,以提高模型的预测能力和泛化能力。
9. 结果解释:对模型的结果进行解释和可视化,以便理解和应用。
数据挖掘的技术和算法有很多,常见的包括决策树、神经网络、支持向量机、朴素贝叶斯、聚类算法、关联规则挖掘等。
选择合适的算法取决于问题的性质和数据的特点。
数据挖掘的应用非常广泛。
在市场营销中,可以通过分析客户购买历史和行为模式来预测客户的购买意愿和需求,从而制定个性化的营销策略。
在金融领域,可以通过分析交易数据和市场趋势来预测股票价格的波动和风险,以辅助投资决策。
在医疗保健领域,可以通过分析病人的病历和基因数据来预测疾病的风险和治疗效果,从而实现个性化的医疗服务。
在社交网络分析中,可以通过分析用户的社交关系和行为模式来发现社交网络中的影响力节点和社群结构,以及预测用户的兴趣和行为。
数据挖掘中的软计算方法及应用综述-最新范文

数据挖掘中的软计算方法及应用综述1在过去的数十年中,随着计算机软件和硬件的发展,我们产生和收集数据的能力已经迅速提高。
许多领域的大量数据集中或分布的存储在数据库中[1][2],这些领域包括商业、金融投资业、生产制造业、医疗卫生、科学研究,以及全球信息系统的万维网。
数据存储量的增长速度是惊人的。
大量的、未加工的数据很难直接产生效益。
这些数据的真正价值在于从中找出有用的信息以供决策支持。
在许多领域,数据分析都采用传统的手工处理方法。
一些分析软件在统计技术的帮助下可将数据汇总,并生成报表。
随着数据量和多维数据的进一步增加,高达109的数据库和103的多维数据库已越来越普遍。
没有强有力的工具,理解它们已经远远超出了人的能力。
所有这些显示我们需要智能的数据分析工具,从大量的数据中发现有用的知识。
数据挖掘技术应运而生。
数据挖掘就是指从数据库中发现知识的过程。
包括存储和处理数据,选择处理大量数据集的算法、解释结果、使结果可视化。
整个过程中支持人机交互的模式[3]。
数据挖掘从许多交叉学科中得到发展,并有很好的前景。
这些学科包括数据库技术、机器学习、人工智能、模式识别、统计学、模糊推理、专家系统、数据可视化、空间数据分析和高性能计算等。
数据挖掘综合以上领域的理论、算法和方法,已成功应用在超市、金融、银行[4]、生产企业[5]和电信,并有很好的表现。
软计算是能够处理现实环境中一种或多种复杂信息的方法集合。
软计算的指导原则是开发利用那些不精确性、不确定性和部分真实数据的容忍技术,以获得易处理、鲁棒性好、低求解成本和更好地与实际融合的性能。
通常,软计算试图寻找对精确的或不精确表述问题的近似解[6]。
它是创建计算智能系统的有效工具。
软计算包括模糊集、神经网络、遗传算法和粗集理论。
2数据挖掘中的软计算方法目前,已有多种软计算方法被应用于数据挖掘系统中,来处理一些具有挑战性的问题。
软计算方法主要包括模糊逻辑、神经网络、遗传算法和粗糙集等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者简介:韩少锋,男,1980年生,中北大学在读硕士研究生。
研究方向:人工智能技术。
引言
“人类正被信息淹没,却饥渴于知识.”这是1982年
趋势大师JohnNaisbitt的首部著作《大趋势》(Mega-trends)中提到的。
随着数据库技术的迅速发展,如何从含有海量信息的数据库中提取更有价值、更直观的信息和知识?人们结合统计学﹑数据库﹑机器学习﹑神经网络﹑模式识别﹑模糊数学﹑粗糙集理论等技术,提出‘数据挖掘’这一新的数据处理技术来解决这一难题。
数据挖掘(DataMining)就是从大量的﹑不完全的﹑有噪声的﹑模糊的﹑随机的数据中,提取隐含在其中的﹑人们事先不知道的﹑但又是潜在的有用的信息和知识的过程。
这些数据可以是:结构化的,半结构化的,分布在网络上的异构性数据。
数据挖掘在许多领域得到了成功的应用,使数据库技术进入了一个更高级的发展阶段,很多专题会议也把数据挖掘和知识发现列为议题之一。
1数据挖掘技术概述
1.1数据挖掘的概念
数据挖掘的概念有多种描述,最常见的有两种:(1)G.PiatetskyShapior,W.J.Frawley数据挖掘定义为:从数据库的大量数据中揭示出隐含的、先进而未知的、潜在有用信息的频繁过程。
(2)数据挖掘的广义观点:数据挖掘是从存放在数据库、数据仓库或其他信息库中的大量数据中挖掘有趣知识的过程。
数据挖掘的特点有:1)用户需要借助数据挖掘技术从大量的信息中找到感兴趣的信息;2)处理的数据量巨大;3)要求对数据的变化做出及时的响应;4)数据挖掘既要发现潜在的规则,也要管理和维护规则,规则的改变随着新数据的不断更新而更新;5)数据挖掘规则的发现基于统计规律,发现的规则不必适用于全部的数据。
数据挖掘要面对的是巨大的信息来源;通过数据挖
掘,有价值的知识、规则或高层次的信息就能从数据库的相关数据集合中抽取出来,并从不同角度显示,从而使大型数据库作为一个丰富可靠的资源为知识归纳服务。
1.2数据挖掘的简史
从数据库中知识发现(KDD)一词首先出现在1989
年举行的第十一届国际联合人工智能学术会议上。
目前为止,由美国人工智能协会主办的KDD国际研讨会已经召开了8次,规模由原来的专题讨论会发展到国际学术大会,研究重点也从发现方法转向系统应用。
1999年,亚太地区在北京召开的第三届PAKDD会议收到158篇论文,研讨空前热烈。
目前,数据挖掘技术在零售业的购物篮分析﹑金融风险预测﹑产品质量分析﹑通讯及医疗服务﹑基因工程研究等许多领域得到了成功的应用。
1.3数据挖掘的对象
数据挖掘的对象包含大量数据信息的各种类型数
据库。
如关系数据库,面向对象数据库等,文本数据数据源,多媒体数据库,空间数据库,时态数据库,以及
Internet等类型数据或信息集均可作为数据挖掘的对
象。
1.4数据挖掘的工具
许多软件公司和研究机构,根据商业的实际需要
开发出许多数据挖掘工具。
例如:有多种数据操控和转换特点的SASEnterpriseMiner;采用决策树、神经网络和聚类技术综合的数据挖掘工具集-IBMInterlligentMiner;可以提供多种统计分析、
决策树和回归方法,在Teradata数据库管理系统上原地挖掘的Teradata
WarehouseMiner;以及同时具有数据管理和数据概括能力,能够用于多种商业平台的SPSSClementine。
以上
主流数据挖掘工具都能提供常用的挖掘过程和挖掘模
数据挖掘技术及应用综述
韩少锋
陈立潮
(中北大学计算机科学与技术系
山西
太原
030051)
【摘要】介绍了数据挖掘技术的背景、概念、流程、数据挖掘算法,并阐述了数据挖掘技术的应用现状。
【关键词】数据挖掘
知识发现
人工智能
数据仓库
【中图分类号】TP311.138
【文献标识码】B
【文章编号】1003-773X(2006)02-0023-02
第2期(总第89期)机械管理开发
2006年4月No.2(SUMNo.89)MECHANICALMANAGEMENTANDDEVELOPMENT
Apr.2006
23・・
第2期(总第89期)机械管理开发2006年4月
式,在实际中均有成功用例。
1.5数据挖掘的方法
数据挖掘的核心技术是人工智能、机器学习、数学统计等,但它并非多种技术的简单结合,而是不可分割的整体,还需其他技术的支持,才能挖掘出令用户满意的结果。
具体来说,数据挖掘方法可分以下几类。
(1)人工神经网络方法:是从结构上模仿生物神经网络,是一种通过训练来学习的非线性预测模型;它将每一个连接看作一个处理单元,试图模拟人脑神经元的功能;可完成分类、聚类、特征挖掘等多种挖掘任务。
最大的优点是能精确地对复杂问题进行预测。
相应缺点是:人工神经网络虽在预测方面有用,但却难于理解;人工神经网络易于受训练过渡的影响;构造神经网络要对其训练许多遍,需要花费许多时间。
(2)统计方法:统计学为数据挖掘提供了许多判别和回归方法,有:贝叶斯推理,回归分析,方差分析等技术。
贝叶斯推理是在知道新信息后修正数据集概率分布的基本工具,处理数据挖掘中分类问题。
回归分析用来找到一个输入变量和输出变量关系的最佳模型,或用来描述一个变量的变化趋势和别的变量值的关系的线性回归,有的用来为某些事件发生的概率建模和预测变量集的对数回归。
方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响。
(3)决策树方法:是常用的方法,它可用来数据分析,也可用来预测。
决策树(decisiontree)用树形结构表示决策集合,进而通过对数据集的分类产生规则。
(4)模糊数学方法:客观事物往往具有某种不确定性。
系统的复杂性越高,其精确性越低,模型性越强。
在数据挖掘过程中,利用模糊数学方法对实际问题进行模糊评判、模糊决策、模糊识别和模糊聚类,往往能够取得更好效果。
(5)数据挖掘方法还有:粗糙集法,聚类分析,关联规则,遗传算法,以及近年来的数据可视化方法和联机分析处理等。
事实上,任何一种挖掘工具往往是根据业务问题选择合适的挖掘方法,每种方法各有其擅长,要视具体问题选定。
2数据挖掘的流程
(1)确定数据挖掘目的;(2)数据准备;(3)确定挖掘方法和工具;(4)挖掘;(5)结果分析;(6)知识的运用。
3数据挖掘的应用
随着大量算法的完善、挖掘过程的系统化和规范化、挖掘工具的不断推陈出新,数据挖掘技术已显示了它广泛的应用前景。
例如:(1)在医学上用数据挖掘技术在DNA数据的分析研究中,可进行DNA序列间的相似搜索和比较;同时出现基因序列的相关分析;致病基因的发现和遗传数据分析等。
(2)在商业上:利用数据挖掘可以进行销售、顾客、产品、时间和地区的多位分析;促销活动的有效性分析;顾客忠诚度的分析;购买推荐分析以及相关商品的参照促销等。
(3)在电信业中的电信市场激烈竞争和迅速扩张中,可以利用数据挖掘技术的帮助来理解商业行为,确定电信模式,捕捉盗用行为,更好的利用资源和提高服务质量。
4结束语
数据挖掘在研究领域和商业领域中越来越多的应用,已经得到人们的关注,促使这一技术得到迅速发展和完善。
当看到它给人们带来利益的同时,也不能忽视存在的问题,例如:数据挖掘方法的效率还有待提高,尤其是超大规模数据集中数据挖掘的效率,以及挖掘结果的无效性等等。
目前应予综合考虑的是:采用数据挖掘解决的商业问题的类型,为进行数据挖掘所作的数据准备,数据挖掘的各种算法和理论基础。
参考文献
[1]NaisbittJ.Megatrends:Tennewdirectionstransformingourlives[M].NewYork:WarnerBooks,1980.16-17.
[2]施伯乐,汪卫.数据仓库与数据挖掘研究进展[J].计算机应用与软件,2003(11):10-12.
[3]范明,孟小峰,等.数据挖掘—概念与技术[M].北京:机械工业出版社,2001.
[4]夏火松.数据仓库与数据挖掘技术[M].北京:科学出版社,2004.[5]刘兴华.数据挖掘技术及其应用研究[J].辽宁师范大学学报(自然科学版),2002,25(2):101-105.
(收稿日期:2005-11-03)
SurveyofDataMiningTechnologyandApplication
HanShaofengChenLichao
〔Abstract〕Thispaperintroducesthebackground,conceptandprocessofdataminingtechnologyanddataminingalgorithms,andelaboratestheapplicationactualityofdataminingtechnology.
〔Keywords〕DataminingKnowledgediscoveryArtificialintelligenceDatabase
24
・・。