数据结构与算法分析总结
学习数据结构心得体会

学习数据结构心得体会数据结构研究总结通过一学期对《数据结构与算法》的研究,大概的了解了基本的数据结构和相应的一些算法。
下面总结一下自己一个学期研究的收获和心得。
数据结构是什么:数据结构是计算机存储、组织数据的方式。
数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。
通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。
数据结构往往同高效的检索算法和索引技术有关。
数据结构重要性:一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。
对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。
一个逻辑数据结构可以有多种存储结构,且各种存储结构影响数据处理的效率。
在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。
许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。
许多时候,确定了数据结构后,算法就容易得到了。
有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。
不论哪种情况,选择合适的数据结构都是非常重要的。
选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。
这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。
常见的数据结构:1.顺序表:定义:顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构。
线性表采用顺序存储的方式存储就称之为顺序表。
顺序表是将表中的结点依次存放在计算机内存中一组地址连续的存储单元中。
基本运算:置表空:sqlsetnull(l)判表满:sqlempty(l)求表长:sqllength(l)插入:sqlinsert(l,i,x)按序号取元素:sqlget(l,i)删除:sqldelete(l,i)按值查找:sqllocate(l,x)2.链表定义:链表是一种物理储备单元上非连续、非顺序的储备结构,数据元素的逻辑顺序是经由过程链表中的指针链接次序实现的。
数据结构与算法课程总结

本课程的先修可称为离散数学和高级语言程序设计,后续课程为操作系统、数据库系统 原理和编译原理等。
数据结构中的存储结构及基本运算的实现需要程序设计的基本知识和编程能力和经验, 本课程大部分实例和实验均是用 C 语言实现的,故要求叫熟练地掌握 C 语言。 三、选用的教材及参考书
教材选用《数据结构与算法》,大连理工大学出版社,作者郭福顺、廖明宏等。参考书 为《数据结构(C 语言版》,清华大学出版社出版,严蔚敏、吴伟民编著。 四、教学内容
第六章 树 教学要求: 本章目的是二元树的定义、性质、存储结构、遍历、线索化,树的定义、存储结构、 遍历、树和森林与二元树的转换,哈夫曼树及其应用(优化判定过程和哈夫曼编码)等内容。 要求在熟悉这些内容的基础上,重点掌握二元树的遍历算法及其有关应用,难点是使用本章 所学到的有关知识设计出有效算法,解决与树或二元树相关的应用问题。 教学内容 1.树的概念(领会) 1.1 树的逻辑结构特征。 1.2 树的不同表示方法。 1.3 树的常用术语及含义。
数据结构与算法分析》实验报告

数据结构与算法分析》实验报告《数据结构与算法分析》实验报告一、实验目的本次实验旨在通过实际操作和分析,深入理解数据结构与算法的基本概念和原理,掌握常见数据结构的实现和应用,以及算法的设计和性能评估。
通过实验,提高编程能力和解决实际问题的能力,培养逻辑思维和创新精神。
二、实验环境操作系统:Windows 10编程语言:Python 3x开发工具:PyCharm三、实验内容1、线性表顺序表的实现与操作链表的实现与操作2、栈和队列栈的实现与应用(表达式求值)队列的实现与应用(排队系统模拟)3、树和二叉树二叉树的遍历算法实现(前序、中序、后序)二叉搜索树的实现与操作4、图图的存储结构(邻接矩阵和邻接表)图的遍历算法(深度优先搜索和广度优先搜索)5、排序算法冒泡排序插入排序选择排序快速排序归并排序6、查找算法顺序查找二分查找四、实验步骤及结果1、线性表顺序表的实现与操作定义一个顺序表类,使用数组来存储元素。
实现插入、删除、查找等基本操作。
进行性能测试,分析在不同位置插入和删除元素的时间复杂度。
实验结果表明,在顺序表的前端或中间进行插入和删除操作时,时间复杂度较高,而在末尾操作时效率较高。
链表的实现与操作定义链表节点类和链表类。
实现链表的插入、删除、查找等操作。
比较顺序表和链表在不同操作下的性能差异。
结果显示,链表在频繁插入和删除元素的情况下表现更优,而顺序表在随机访问元素时速度更快。
2、栈和队列栈的实现与应用(表达式求值)用栈来实现表达式求值的算法。
输入表达式,如“2 + 3 ( 4 1 )”,计算并输出结果。
经过测试,能够正确计算各种复杂的表达式。
队列的实现与应用(排队系统模拟)模拟一个简单的排队系统,顾客到达和离开队列。
输出队列的状态和平均等待时间。
实验发现,队列长度和顾客等待时间与到达率和服务率密切相关。
3、树和二叉树二叉树的遍历算法实现(前序、中序、后序)构建一棵二叉树。
分别实现前序、中序、后序遍历算法,并输出遍历结果。
数据结构与算法基础知识总结

数据结构与算法基础知识总结1 算法算法:是指解题方案的准确而完整的描述。
算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。
算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。
特征包括:(1)可行性;(2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性;(3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义;(4)拥有足够的情报。
算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。
指令系统:一个计算机系统能执行的所有指令的集合。
基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。
算法的控制结构:顺序结构、选择结构、循环结构。
算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。
算法复杂度:算法时间复杂度和算法空间复杂度。
算法时间复杂度是指执行算法所需要的计算工作量。
算法空间复杂度是指执行这个算法所需要的内存空间。
2 数据结构的基本基本概念数据结构研究的三个方面:(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。
数据结构是指相互有关联的数据元素的集合。
数据的逻辑结构包含:(1)表示数据元素的信息;(2)表示各数据元素之间的前后件关系。
数据的存储结构有顺序、链接、索引等。
线性结构条件:(1)有且只有一个根结点;(2)每一个结点最多有一个前件,也最多有一个后件。
非线性结构:不满足线性结构条件的数据结构。
3 线性表及其顺序存储结构线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。
在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。
数据结构与算法总结

《数据结构与算法》课程学习总结报告1004012005 10计本(4)班章兴春本学期所学习的《数据结构与算法》课程已经告一段落,就其知识点及其掌握情况、学习体会以及对该门课程的教学建议等方面进行学习总结。
以便在所学习知识有更深刻的认识。
一、《数据结构与算法》知识点:学习数据结构之前、一直以为数据结构是一门新的语言、后来才知道学习数据结构是为了更加高效的的组织数据、设计出良好的算法,而算法则是一个程序的灵魂。
经过了一学期的数据结构了,在期末之际对其进行总结。
首先,学完数据结构我们应该知道数据结构讲的是什么,数据结构课程主要是研究非数值计算的研究的程序设计问题中所出现的计算机处理对象以及它们之间关系和操作的学科。
第一章主要介绍了相关概念,如数据、数据元素、数据类型以及数据结构的定义。
其中,数据结构包括逻辑结构、存储结构和运算集合。
逻辑结构分为四类:集合型、线性、树形和图形结构,数据元素的存储结构分为:顺序存储、链接存储、索引存储和散列存储四类。
最后着重介绍算法性能分析,包括算法的时间性能分析以及算法的空间性能分析。
第二章具体地介绍了顺序表的定义、特点及其主要操作,如查找、插入和删除的实现。
需要掌握对它们的性能估计。
包括查找算法的平均查找长度,插入与删除算法中的对象平均移动次数。
链表中数据元素的存储不一定是连续的,还可以占用任意的、不连续的物理存储区域。
与顺序表相比,链表的插入、删除不需要移动元素,给算法的效率带来较大的提高。
链表这一章中介绍了链表的节点结构、静态与动态链表的概念、链表的基本运算(如求表长、插入、查找、删除等)、单链表的建立(头插法和尾插法)以及双向循环链表的定义、结构、功能和基本算法。
第三章介绍了堆栈与队列这两种运算受限制的线性结构。
其基本运算方法与顺序表和链表运算方法基本相同,不同的是堆栈须遵循“先进后出”的规则,对堆栈的操作只能在栈顶进行;而队列要遵循“先进先出”的规则,教材中列出了两种结构的相应算法,如入栈、出栈、入队、出队等。
数据结构与算法解析

数据结构与算法解析数据结构和算法是计算机科学领域中非常重要的概念和技术。
它们为程序的设计和运行提供了基础,是计算机科学家和软件工程师必备的知识和能力。
本文将对数据结构和算法进行解析,帮助读者更好地理解和应用它们。
一、数据结构数据结构是组织和存储数据的方式。
它与算法密切相关,能够提高程序的效率和性能。
常见的数据结构包括数组、链表、栈、队列、树和图等。
下面将对其中几种常见的数据结构进行解析。
1. 数组数组是一种线性数据结构,用于存储相同类型的数据元素。
它具有随机访问的特点,可以直接通过索引访问元素。
数组的插入和删除操作相对较慢,因为需要移动其他元素。
但是,由于数据在内存中是连续存储的,所以数组的读取操作非常高效。
2. 链表链表是一种动态数据结构,由节点组成。
每个节点包含数据和指向下一个节点的指针。
链表的插入和删除操作非常高效,但是随机访问效率较低。
链表分为单链表、双向链表和循环链表等不同类型。
3. 栈栈是一种先进后出的数据结构,类似于弹夹。
栈具有压栈和出栈两种操作,可以用于解决递归问题、括号匹配和表达式求值等。
栈的实现可以使用数组或链表。
4. 队列队列是一种先进先出的数据结构,类似于排队。
队列具有入队和出队两种操作,可以用于实现消息传递、任务调度和缓存等。
队列的实现可以使用数组或链表。
5. 树树是一种非线性数据结构,由节点和边组成。
树的每个节点可以有多个后续节点,称为子节点。
树由根节点、内部节点和叶节点组成。
常见的树包括二叉树、二叉搜索树和堆等。
6. 图图是一种非线性数据结构,由节点和边组成。
图的节点称为顶点,边连接两个节点。
图可以分为有向图和无向图,可以用于建模复杂关系和网络结构。
二、算法算法是解决问题的步骤和方法。
好的算法能够提高程序的效率和性能。
常见的算法包括排序算法、搜索算法和图算法等。
下面将对其中几种常见的算法进行解析。
1. 排序算法排序算法是将一组数据按照特定顺序进行排列的算法。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序和堆排序等。
数据结构心得体会5篇

数据结构心得体会5篇出色的心得体会,我们积累了实践中的智慧和教训,每次写下心得体会,都是一次自我反思和成长的机会,不容错过,以下是本店铺精心为您推荐的数据结构心得体会5篇,供大家参考。
数据结构心得体会篇1数据结构与算法课程设计是计算机科学与技术专业学生的集中实践性环节之一、是学习数据结构与算法理论和实验课程后进行的一次全面的综合练习。
其目的是要达到理论与实际应用相结合,提高学生组织数据及编写程序的能力,使学生能够根据问题要求和数据对象的特性,学会数据组织的方法,把现实世界中的实际问题在计算机内部表示出来并用软件解决问题,培养良好的程序设计技能。
当初拿到这次课程设计题目时,似乎无从下手,但是经过分析可知,对于简单文本编辑器来说功能有限,不外乎创作文本、显示文本、统计文本中字母—数字—空格—特殊字符—文本总字数、查找、删除及插入这几项功能。
于是,我进行分模块进行编写程序。
虽然每个模块程序并不大,但是每个模块都要经过一番思考才能搞清其算法思想,只要有了算法思想,再加上c程序语言基础,基本完成功能,但是,每个模块不可能一次完成而没有一点错误,所以,我给自己定了一个初级目标:用c语言大体描述每个算法,然后经调试后改掉其中明显的错误,并且根据调试结果改正一些算法错误,当然,这一目标实现较难。
最后,经过反复思考,看一下程序是否很完善,如果能够达到更完善当然最好。
并非我们最初想到的算法就是最好的算法,所以,有事我们会而不得不在编写途中终止换用其他算法,但是,我认为这不是浪费时间,而是一种认识过程,在编写程序中遇到的问题会为我们以后编写程序积累经验,避免再犯同样的错误。
但是,有的方法不适用于这个程序,或许会适用于另外一个程序。
所以,探索的过程是成长的过程,是为成功做的铺垫。
经过努力后获得成功,会更有成就感。
在课程设计过程中通过独立解决问题,首先分析设计题目中涉及到的数据类型,在我们学习的数据存储结构中不外乎线性存储结构及非线性存储结构,非线性存储结构中有树型,集合型,图型等存储结构,根据数据类型设计数据结点类型。
数据结构与算法分析总结5则范文

数据结构与算法分析总结5则范文第一篇:数据结构与算法分析总结数据结构和算法设计与分析谈到计算机方面的专业课程,我觉得数据结构算是一门必不可少的课了,它是计算机从业和研究人员了解、开发及最大程度的利用计算机硬件的一种工具。
数据结构与算法分析是两门紧密联系的课程,算法要靠好的数据结构来实现,二者的关系是密不可分的,谈到算法不得不讲数据结构,谈数据结构也不可避免的要了解算法,好的算法一定有一个好的数据结构,很多算法实际上是对某种数据结构实行的一种变换,研究算法也就是研究在实行变换过程中数据的动态性质。
这两门课程分别是我在大二和研一的时候学的,因为它们密切的联系,这里将其放在一起总结如下。
什么是数据结构呢?研究数据的逻辑结构和存储结构(物理结构)以及它们之间的关系,且为该结构定义相应的运算设计相应的算法。
这里的数据是指可输入到计算机能被程序处理的符号的集合。
其中,数据的逻辑结构是指数据之间逻辑关系的描述,逻辑结构的分类有线性结构、树形结构和图结构。
数据的存储结构是指数据在计算机中存储结构,也称为物理结构,它有4类基本的存储映射方法:1.顺序的方法;2.链接的方法;3.索引的方法;4.散列的方法。
在程序设计语言中,数据结构直接反映在数据类型上,比如一个整型变量就是一个节点,根据类型给他分配内存单元。
抽象数据类型:一组值以及在这些值上定义的操作集合,它是描述数据结构的一种理论工具,其特点是把数据结构作为独立于应用程序的一种抽象代数结构。
线性表结构:由一系列元素组成的有序的序列,除了第一个元素和最后一个元素外,每个元素都只有一个直接前趋和直接后继,元素的个数称为线性表的长度。
它的存储方式有顺序存储和链式存储。
顺序存储方式它的优点是存储单元是连续的,适合快速访问元素内容,链表的特点是动态申请内存空间,并通过指针来链接结点,按照线性表的前驱关系把一个个结点链接起来,这样可以动态地根据需要分配内存空间,经常用于插入新结点或删除节点的需要,链表还可以根据结点中指针个数分为单链表、双链表、循环链表等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构和算法设计与分析谈到计算机方面的专业课程,我觉得数据结构算是一门必不可少的课了,它是计算机从业和研究人员了解、开发及最大程度的利用计算机硬件的一种工具。
数据结构与算法分析是两门紧密联系的课程,算法要靠好的数据结构来实现,二者的关系是密不可分的,谈到算法不得不讲数据结构,谈数据结构也不可避免的要了解算法,好的算法一定有一个好的数据结构,很多算法实际上是对某种数据结构实行的一种变换,研究算法也就是研究在实行变换过程中数据的动态性质。
这两门课程分别是我在大二和研一的时候学的,因为它们密切的联系,这里将其放在一起总结如下。
什么是数据结构呢?研究数据的逻辑结构和存储结构(物理结构)以及它们之间的关系,且为该结构定义相应的运算设计相应的算法。
这里的数据是指可输入到计算机能被程序处理的符号的集合。
其中,数据的逻辑结构是指数据之间逻辑关系的描述,逻辑结构的分类有线性结构、树形结构和图结构。
数据的存储结构是指数据在计算机中存储结构,也称为物理结构,它有4类基本的存储映射方法:1•顺序的方法;2.链接的方法;3.索引的方法;4.散列的方法。
在程序设计语言中,数据结构直接反映在数据类型上,比如一个整型变量就是一个节点,根据类型给他分配内存单元。
抽象数据类型:一组值以及在这些值上定义的操作集合,它是描述数据结构的一种理论工具,其特点是把数据结构作为独立于应用程序的一种抽象代数结构。
线性表结构:由一系列元素组成的有序的序列,除了第一个元素和最后一个元素外,每个元素都只有一个直接前趋和直接后继,元素的个数称为线性表的长度。
它的存储方式有顺序存储和链式存储。
顺序存储方式它的优点是存储单元是连续的,适合快速访问元素内容,链表的特点是动态申请内存空间,并通过指针来链接结点,按照线性表的前驱关系把一个个结点链接起来,这样可以动态地根据需要分配内存空间,经常用于插入新结点或删除节点的需要,链表还可以根据结点中指针个数分为单链表、双链表、循环链表等。
在线性表结构中有两类特别的线性表:栈和队列。
栈是一种限制访问端口的线性表,常称为后进先出表。
正是这种特殊的性质使得栈的用途非常广泛,比如在计算表达式的值时处理运算符的先后次序,另外一个大的用处就是递归了,hanoi塔就是最典型的用了递归的思想,在算法中,也有很多运用递归思想的例子。
队列也属于限制访问点的线性表,它的特点就是加入和删除元素都只能在队列的一端进行,即队列首出,队列尾进,最大的特点是先来先服务,先进先出。
因为这个特点,队列常被用作消息缓冲器。
在算法设计中,顺序表主要用于检索,而利用栈中的递归思想在算法中则应用非常广泛,如递归排序,分治算法等。
树结构:是一种非常重要的非线性数据结构,它是由一个根结点和若干叶结点组成的树状结构,除了根结点每个结点只能有一个父节点,可以有若干子结点,若干个树结构还可以构成森林,树的存储结构也分为顺序存储和链式存储,最典型的是左孩子右兄弟法。
在树结构中比较重要的算法就是周游(遍历)树,有先根次序、后根次序以及中根次序。
树结构中有几类非常重要的特殊树结构,如二叉树,B树,B+树等,其中,二叉树应用最为广泛。
二叉树:是指每个结点最多有两个子结点的树结构,具体细分,根据叶子结点的特性可分为满二叉树、完全二叉树等。
二叉树的遍历也分为深度优先和广度优先。
另外,二叉树有几条非常重要的性质,这也使得它的应用非常广泛。
在算法设计中,典型的利用树的深度优先遍历的算法是回溯法,而典型的广度优先搜索算法是分枝定界法。
图:是一种较线性表和树更为复杂的数据结构。
一般来讲,数据的逻辑结构可表示为结点的有穷集合K和K上的一个关系r,如果对K中结点相对于r的前驱、后继个数加以限制,则可以分别定义线性结构、树形结构和图结构,即:线性结构:惟一前驱,惟一后继,反映一种线性关系;树形结构:惟一前驱,多个后继,反映一种层次关系;图结构:不限制前驱的个数,亦不限制后继的个数,反映一种网状关系。
通常用G=(V,E)代表一个图,其中V是顶点集,E是边集。
图分为有向图和无向图,图的存储方式有邻接表和邻接矩阵法。
和树类似的,图中也需要周游,同样有深度优先搜索和广度优先搜索,而比树的周游要更复杂,也更重要。
在这一块中,有两种比较典型的求最短路径和最小支撑树的算法需要注意,它们分别是Dijkstra 算法和Prim算法。
另外需要注意的是图的连通性。
在算法设计中,典型的用到图论的算法有贪心算法和动态规划算法。
对于计算机科学来说,算法的概念至关重要。
通俗的讲,算法是指解决问题的一种方法或一个过程,或者严格来讲,是由若干条指令组成的有穷序列,且满足以下4条性质;(1)输入:有零个或多个由外部提供的量作为算法的输入。
(2)输出:算法产生至少一个量作为输出。
(3)确定性:组成算法的每条指令是清晰的,无歧义的。
(4)有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。
我们研究一个算法或者评价一个算法主要是通过估计该算法的复杂性,包括时间复杂性和空间复杂性。
空间复杂性是指使用该算法的程序在运行时需要占用多少内存空间,具体包括指令空间、数据空间和环境栈空间。
时间复杂性是指执行该程序所需要的时间量级,通常是估算的时间,包括编译时间和运行时间。
同时评价一个算法的好坏还要看其时间复杂性和空间复杂性随着输入规模的增长趋势,一般能接受的最好是线性增长。
在算法设计这本书中,每介绍一个算法都会分析其算法复杂度,由此可看出它的重要性。
首先,从递归的分治算法开始。
分治算法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归的解这些子问题,然后将各个子问题的解合并得到原问题的解。
该算法的主要应用有大整数乘法,矩阵乘法、合并排序等。
可以大大降低算法的时间复杂度,但使用递归栈可能增加程序的空间规模。
动态规划算法和贪心算法:与分治算法类似,动态规划的基本思想也是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治算法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是相互独立的。
动态规划算法适用于解最优化问题。
通常可按以下4个步骤:(1)找出最优解的性质,并刻画其结构特征。
(2)递归的定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解。
动态规划算法的基本要素是最优子结构性质和子问题重叠性质。
最优子结构性质。
如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。
最优子结构性质为动态规划算法解决问题提供了重要线索。
子问题重叠性质。
子问题重叠性质是指在用递归演算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。
动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。
另外一点要素是备忘录方法,它作为动态规划算法的变形,用表格保存已解决问题的答案,在下次需要解此子问题时,只要简单查看子问题的解答,而不必重新计算。
与动态规划动态规划算法设计策略典型的应用案例有:矩阵连乘、最大字段和、流水作业调度等。
有时满足动态规划条件的问题可以有更好的算法,比如贪心算法。
贪心算法即总是做出在当前看来是最好的选择。
也就是说贪心算法并不从整体最优上加以考虑,它所做的总是做出的选择只是在某种意义上的局部最优。
这种启发式的策略并不能总是奏效,然而对某些特定的问题确能达到预期目的。
比如活动安排的例子。
贪心算法的基本要素主要有贪心选择性质和最优子结构性质。
所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。
这是贪心算法与动态规划的主要区别,它们的共同点是都要求问题具有最优子结构性质。
贪心算法的典型案列是:活动安排、最优装载问题、最短路径和最优生成树问题。
回溯法和分枝定界法:回溯法有“通用的解题法”之称。
用它可以系统的搜索一个问题的所有解或任一解。
它在问题的解空间树中,按深度优先策略,从根节点出发搜索解空间树。
其算法框架包含递归回溯和迭代回溯,两个特别的解空间树为子集树和排列树。
典型的回溯法的案例有:批处理作业调度、图的m着色、旅行售货员问题、0-1背包问题等。
分枝定界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。
一般情况下,分治定界法与回溯法的求解目标不同。
回溯法的求解目标是找出解空间中满足约束条件的所有的解,而分枝定界法的求解目标则是找出满足约束条件的一个解,或是满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
由于求解目标不同,导致分支定界法与回溯法对解空间的搜索方式也不相同。
回溯法以深度优先的方式搜索解空间,而分枝定界法则以广度优先或以最小耗费优先的方式搜索解空间。
另外,在算法分析中一定要提的是NP问题。
首先需要介绍P(Polynomial,多项式)问题P问题是可以在多项式时间内被确定机(通常意义的计算机)解决的问题。
NP(No n-Determi nistic Poly no mial, 非确定多项式)问题,是指可以在多项式时间内被非确定机(他可以猜,他总是能猜到最能满足你需要的那种选择,如果你让他解决n皇后问题,他只要猜n次就能完成----每次都是那么幸运)解决的问题.这里有一个著名的问题----千禧难题之首,是说P 问题是否等于NP问题,也即是否所有在非确定机上多项式可解的问题都能在确定机上用多项式时间求解。
NP完全(NP Complete,NPC)问题是指这样一类NP问题,所有的NP问题都可以用多项式时间划归到他们中的一个。
所以显然NP完全的问题具有如下性质:它可以在多项式时间内求解,当且仅当所有的其他的NP—完全问题也可以在多项式时间内求解。
这样一来,只要我们找到一个NPC问题的多项式解,所有的NP问题都可以多项式时间内划归成这个NPC问题,再用多项式时间解决,这样NP就等于P了。
小结一下,在算法设计这么课中学了这么几大类典型的算法,里面也涉及到具体的应用案例,但我觉得学算法的目的远不是学会这几种固定的特殊问题的解法而已,事实上领会这些巧妙算法背后的思想然后学会迁移到其他新的问题中去才是领会了算法设计的精髓。
…■不……。