现代密码学.

合集下载

现代密码学杨波课后习题讲解

现代密码学杨波课后习题讲解

选择两个不同的大素数p和q, 计算n=p*q和φ(n)=(p-1)*(q-1)。 选择整数e,使得1<e<φ(n)且e 与φ(n)互质。计算d,使得 d*e≡1(mod φ(n))。公钥为 (n,e),私钥为(n,d)。
将明文信息M(M<n)加密为 密文C,加密公式为 C=M^e(mod n)。
将密文C解密为明文信息M,解 密公式为M=C^d(mod n)。
课程特点
杨波教授的现代密码学课程系统介绍了密码学的基本原 理、核心算法和最新进展。课程注重理论与实践相结合, 通过大量的案例分析和编程实践,帮助学生深入理解和 掌握密码学的精髓。
课后习题的目的与意义
01 巩固课堂知识
课后习题是对课堂知识的有效补充和延伸,通过 解题可以帮助学生加深对课堂内容的理解和记忆。
不要重复使用密码
避免在多个账户或应用中使用相同的密码, 以减少被攻击的风险。
注意网络钓鱼和诈骗邮件
数字签名与认证技术习题讲
05

数字签名基本概念和原理
数字签名的定义
数字签名的应用场景
数字签名是一种用于验证数字文档或 电子交易真实性和完整性的加密技术。
电子商务、电子政务、电子合同、软 件分发等。
数字签名的基本原理
利用公钥密码学中的私钥对消息进行签 名,公钥用于验证签名的正确性。签名 过程具有不可抵赖性和不可伪造性。
Diffie-Hellman密钥交换协议分析
Diffie-Hellman密钥交换协议的原理
该协议利用数学上的离散对数问题,使得两个通信双方可以在不安全的通信通道上协商出一个共 享的密钥。
Diffie-Hellman密钥交换协议的安全性
该协议在理论上被证明是安全的,可以抵抗被动攻击和中间人攻击。

现代密码的主要分类

现代密码的主要分类

现代密码的主要分类密码是信息安全领域中最基本的保护手段之一。

在现代密码学中,密码被分为多个分类,每种分类都具有不同的特点和应用场景。

下面将介绍现代密码的主要分类。

1. 对称密码对称密码也被称为私钥密码,是最常见的密码类型之一。

在对称密码中,加密和解密使用相同的密钥。

这意味着发送方和接收方需要共享同一个密钥,才能进行加密和解密操作。

对称密码的优势在于加密解密速度快,但其密钥管理与分发会带来一定的安全风险。

常见的对称密码算法有DES、AES和3DES等。

2. 公钥密码公钥密码也被称为非对称密码,是另一种常见的密码类型。

在公钥密码系统中,加密和解密使用不同的密钥。

发送方使用接收方的公钥进行加密,而接收方使用自己的私钥进行解密。

公钥密码的优势在于密钥管理方便,不需要事先共享密钥。

常见的公钥密码算法有RSA、ElGamal和ECC等。

3. 哈希算法哈希算法是一种将任意长度的数据转换为固定长度摘要的密码技术。

它常被用于验证数据的完整性和一致性。

哈希算法的特点是不可逆,即无法通过摘要反推原始数据。

常见的哈希算法有MD5、SHA-1和SHA-256等。

4. 消息认证码(MAC)消息认证码是一种基于密钥的密码操作,用于验证消息的完整性和来源。

它通过对消息进行加密和生成消息验证码来实现身份验证和防篡改功能。

常见的消息认证码算法有HMAC和CMAC等。

5. 数字签名数字签名是一种通过非对称密码算法,为文档或数据附加一个唯一的标记来验证发送方身份和消息完整性的技术。

数字签名可以防止篡改和抵赖,并且不需要发送方和接收方共享密钥。

常见的数字签名算法有RSA和DSA等。

6. 流加密和分组加密流加密和分组加密是对称密码算法的两种不同方式。

在流加密中,数据按位或按字节加密。

流加密的特点在于加密和解密速度快,适用于实时数据传输。

而分组加密将数据分成固定长度的块进行加密处理。

常见的分组加密算法有DES和AES 等。

7. 转身密码置换密码是一种基于置换的加密技术,通过改变数据中的位置或次序来加密数据。

现代密码学精讲PPT课件

现代密码学精讲PPT课件
3
2.1.1 什么是密码学(续)
发送者 Alice
明文m 加密器 Ek
密文c 公 共 信道
密钥k
密钥源
安全 信道
图 2.1 Shannon保密系统
分析者 Eve
解密器 明文m Dk
密钥k
接收者 Bob
4
2.1.1 什么是密码学(续)
通信中的参与者 (1) 发送者(Alice): 在双方交互中合法的信息发 送实体。 (2) 接收者(Bob):在双方交互中合法的信息接收 实体。 (3) 分析者(Eve):破坏通信接收和发送双方正常 安全通信的其他实体。可以采取被动攻击和主动 攻击的手段。 信道 (1) 信道:从一个实体向另一个实体传递信息的 通路。 (2) 安全信道:分析者没有能力对其上的信息进 行阅读、删除、修改、添加的信道。 (3) 公共信道:分析者可以任意对其上的信息进 行阅读、删除、修改、添加的信道。
定义2 一个加密方案可以被破译是指,第三方在 没有事先得到密钥对(e, d)的情况下,可以在适当 的时间里系统地从密文恢复出相对应的明文。 # 适当的时间由被保护数据生命周期来确定。
12
2.1.4 现代密码学主要技术(续)
私钥加密 定义3 一个由加密函数集{Ee: eK}和解密函数集{Dd: dK}组成加密方案,每一个相关联的密钥对(e, d) , 如果知道了e在计算上很容易确定d,知道了d在计算 上很容易确定e,那么,就是私钥加密方案。 # 私钥加密需要一条安全信道来建立密钥对。
2.1.4 现代密码学主要技术(续)
公钥加密实例
A1
Ee(m1)=c1
e
c1
e
A2
Ee(m2)=c2
c2
Dd(c1)=m1 Dd(c2)=m2

现代密码的主要分类

现代密码的主要分类

现代密码的主要分类
现代密码学作为信息安全的核心学科,主要关注信息传输和存储的安全保护。

其分类方式多种多样,以下是几种常见的分类方式:
1.对称密码与非对称密码:这是根据加密过程中是否使用相同的密钥进行加密和解密来划分的。

对称密码也称为传统密码,其加密和解密使用相同的密钥,如AES(高级加密标准)和DES(数据加密标准)。

非对称密码使用两个密钥:公钥用于加密,私钥用于解密,最著名的例子是RSA算法。

2.基于数学结构的分类:根据密码算法所依赖的数学结构,现代密码可以分为基于数学的密码和基于物理的密码。

基于数学的密码依赖于数学工具进行加密和破解,而基于物理的密码则利用物理系统的不稳定性或量子效应进行加密和破解。

3.基于应用场景的分类:根据应用场景的不同,现代密码可以分为通用密码、专用密码和匿名密码。

通用密码适用于所有类型的通信,如电子邮件和互联网浏览;专用密码专为特定应用设计,如电子银行和电子政务;匿名密码主要用于保护用户的匿名性,如在在线投票和数字货币交易中。

4.基于密钥的分类:根据密钥是否需要保密,现代密码可以分为公钥密码和私钥密码。

公钥密码使用两个密钥:一
个用于加密,另一个用于解密,这两个密钥都可以公开。

私钥密码只使用一个密钥进行加密和解密,该密钥需要保密。

以上分类方式有助于理解现代密码的基本概念和工作原理,但随着技术的进步,新的密码技术和应用场景不断涌现,现代密码的分类也在不断演变。

现代密码学概述

现代密码学概述

现代密码学概述现代密码学是研究保护信息安全的科学,它使用密码算法来加密和解密数据,以防止未经授权的访问和篡改。

密码学在现代社会中扮演着至关重要的角色,它保证了电子通信、互联网交易和数据存储的安全性。

一、密码学的基本概念和原理1.1 加密和解密在密码学中,加密是将明文转换为密文的过程,而解密则是将密文还原为明文的过程。

加密和解密的过程需要使用特定的密钥和密码算法。

1.2 对称密码和非对称密码对称密码算法使用相同的密钥进行加密和解密,加密和解密的速度较快,但密钥的分发和管理比较困难。

非对称密码算法使用一对密钥,分别用于加密和解密,密钥的管理更为灵活,但加密和解密的速度较慢。

1.3 数字签名和数字证书数字签名是在数字信息中添加的一种类似于手写签名的标识,用于验证数据的完整性和真实性。

数字证书则是由可信的第三方机构颁发的用于验证签名者身份的证书。

二、现代密码学的应用领域2.1 网络安全现代密码学在网络安全中扮演着重要的角色。

它通过对通信数据进行加密,保护用户的隐私和数据的安全,防止信息被窃听、篡改和伪造。

2.2 数据存储密码学被广泛应用于数据存储领域,如数据库加密、文件加密和磁盘加密等。

通过对数据进行加密,即使数据泄露也不会造成重大的损失。

2.3 电子支付现代密码学在电子支付领域也有广泛的应用。

它通过使用数字签名和加密技术,确保支付过程的安全性和可信度,防止支付信息被篡改和伪造。

三、常见的密码学算法3.1 对称密码算法常见的对称密码算法有DES(Data Encryption Standard)、AES (Advanced Encryption Standard)和RC4等。

这些算法在加密和解密的速度上都较快,但密钥的管理较为困难。

3.2 非对称密码算法常见的非对称密码算法有RSA、DSA和ECC等。

这些算法在密钥的管理上更为灵活,但加密和解密的速度较慢。

3.3 哈希函数算法哈希函数算法用于将任意长度的数据转换为固定长度的摘要值。

《现代密码学》教学大纲

《现代密码学》教学大纲

H
的复杂工程问题;
3.2 能够设计满足信息获取、传输、处理或使用等需求的系统,并能够 L
在设计环节中体现创新意识;
3.4 熟悉信息安全专业相关技术标准、知识产权、产业政策和法规,并
能在其现实约束条件下,通过技术经济评价对设计方案进行可行性研
M
究;
2.1 能够应用信息安全的基本原理,研究分析信息安全领域复杂工程问
6.4 消息认证
6.5 生日攻击
第 7 章 公钥密码体制(支撑教学目标 6)
7.1 公钥密码体制的基本概念
7.2 RSA 算法
7.3 椭圆曲线加密算法
第 8 章 数字签名技术(支撑教学目标 6)
8.1 数字签名简介
8.2 基于 RSA 数字签名
8.3 基于 ECC 数字签名
第 10 章 密钥管理(支撑教学目标 6)
闭卷笔试,课程作业、实验成绩、课堂表现、考勤。
七、成绩评定方法
期末笔试成绩占 80%,平时成绩占 20%(根据课程作业、实验成绩、课堂表现、 考勤等代密码学教程. 北京邮电大学出版社,2015.3 (教材)。
2.B. Schneier. Applied cryptograghy second edition: protocols, algorithms, and source code in C. NewYork: John Wiley & Sons, 1996. 中译本: 吴世忠, 祝世雄, 张文
专业的学生实际动手能力、设计能力、创新能力的培养。 4.专门的课程建设网站 5.由于《现代密码学》主要是讲解算法、模型及协议,比较抽象,因此课程
组开发了一些辅助教学软件(见课程建设网站),用以提高教学效果。
6.下一步拟在专门的课程建设网站中开发《现代密码学》课程教学的师生互 动、答疑模块。

现代密码学总结

现代密码学总结

现代密码学总结现代密码学总结第⼀讲绪论1、密码学是保障信息安全的核⼼2、安全服务包括:机密性、完整性、认证性、不可否认性、可⽤性3、⼀个密码体制或密码系统是指由明⽂(m或p)、密⽂(c)、密钥(k)、加密算法(E)和解密算法(D)组成的五元组。

4、现代密码学分类:(1)对称密码体制:(⼜称为秘密密钥密码体制,单钥密码体制或传统密码体制)密钥完全保密;加解密密钥相同;典型算法:DES、3DES、AES、IDEA、RC4、A5 (2)⾮对称密码体制:(⼜称为双钥密码体制或公开密钥密码体制)典型算法:RSA、ECC第⼆讲古典密码学1、代换密码:古典密码中⽤到的最基本的处理技巧。

将明⽂中的⼀个字母由其它字母、数字或符号替代的⼀种⽅法。

(1)凯撒密码:c = E(p) = (p + k) mod (26)p = D(c) = (c –k) mod (26)(2)仿射密码:明⽂p ∈Z26,密⽂c ∈Z26 ,密钥k=(a,b)ap+b = c mod (26)(3)单表代换、多表代换Hill密码:(多表代换的⼀种)——明⽂p ∈(Z26)m,密⽂c ∈(Z26)m,密钥K ∈{定义在Z26上m*m的可逆矩阵}——加密 c = p * K mod 26解密p = c * K-1 mod 26Vigenere密码:查表解答(4)转轮密码机:2、置换密码:将明⽂字符按照某种规律重新排列⽽形成密⽂的过程列置换,周期置换3、密码分析:(1)统计分析法:移位密码、仿射密码和单表代换密码都没有破坏明⽂的频率统计规律,可以直接⽤统计分析法(2)重合指数法完全随机的⽂本CI=0.0385,⼀个有意义的英⽂⽂本CI=0.065实际使⽤CI 的估计值CI ’:L :密⽂长。

fi :密⽂符号i 发⽣的数⽬。

第三讲密码学基础第⼀部分密码学的信息论基础1、 Shannon 的保密通信系统模型(1)对称密码体制(2)(3)⼀个密码体制是⼀个六元组:(P , C, K 1, K 2, E, D )P--明⽂空间C--密⽂空间K 1 --加密密钥空间 K 2--解密密钥空间E --加密变换D --解密变换对任⼀k ∈K 1,都能找到k’∈K 2,使得D k’ (E k (m ))=m ,?m ∈M.2、熵和⽆条件保密(1)设随机变量X={xi | i=1,2,…,n}, xi 出现的概率为Pr(xi) ≧0, 且, 则X 的不确定性或熵定义为熵H(X)表⽰集X 中出现⼀个事件平均所需的信息量(观察前);或集X 中每出现⼀个事件平均所给出的信息量(观测后).(2)设X={x i |i=1,2,…,n}, x i 出现的概率为p (x i ) ≥0,且∑i=1,…,n p (x i )=1;0 )(1log )()(≥=∑ii ai x p x p X HY={y i |i=1,2,…,m}, y i 出现的概率为p (y i ) ≥0,且∑i=1,…,m p (y i )=1; 则集X 相对于集Y 的条件熵定义为(3) X 视为⼀个系统的输⼊空间,Y 视为系统的输出空间,通常将条件熵H (X|Y)称作含糊度,X 和Y 之间的平均互信息定义为:I (X,Y)=H (X)-H (X|Y) 表⽰X 熵减少量。

现代密码学

现代密码学

课程名称:现代密码学课程编码:学分:2适用学科:理工科硕士研究生现代密码学Modern Cryptography教学大纲一、课程性质《现代密码学》是应用数学硕士研究生的一门专业方向选修课程。

随着计算机和通信网络的应用,信息的安全性受到人们的普遍重视,现代的信息安全除了涉及国家安全外,也涉及个人权益、企业生存和金融防范等。

密码学是信息安全的重要领域,它的理论和技术随着计算机技术的发展也得到了迅速发展和广泛应用。

本课程主要就是学习密码学的基本内容。

二、课程教学目的通过学习密码学理论,信息与计算科学和应用数学专业的学生应能正确理解其基本概念和理论,掌握常用的密码算法。

本课程将培养学生基础理论与应用结合的能力,并为后续课程的学习和本课程的进一步运用打下良好的基础。

三、教学基本内容与要求第一章引言1、了解密码学的发展概况2、熟练掌握密码学的基本概念第二章古典密码1、熟练掌握古典密码中的基本加密运算2、理解几种典型的古典密码体制3、了解古典密码的统计分析第三章香农理论1、熟练掌握密码体制的数学模型2、掌握熵及其性质3、了解伪密钥和唯一解距离4、了解密码体制的完善保密性5、理解乘积密码体制第四章分组密码1、熟练掌握分组密码的基本原理2、理解数据加密标准DES3、了解多重DES及DES的工作模式4、理解高级加密标准AES第五章公钥密码1、熟练掌握公钥密码的理论基础2、掌握RSA公钥密码3、掌握大素数的生成方法4、了解椭圆曲线上的Menezes- Vanstone公钥密码第六章序列密码与移位寄存器1、熟练掌握序列密码的基本原理2、理解移位寄存器与移位寄存器序列3、掌握移位寄存器的表示方法4、了解线性移位寄存器序列的周期性、序列空间和极小多项式5、知道m-序列的伪随机性几点说明本课程教学时数为48学时,根据不同章节难易程度安排上机练习。

课程内容要求的高低用不同词汇加以区分:对于概念、理论,从高到低以“理解”、“了解”、“知道”三级区分;对于运算、方法,以“熟练掌握”、“掌握”、“会”或“能”三级区分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代密码学
学时:3 学分:3
课程属性:专业选修开课单位:理学院
先修课程:高等数学、概率论与数理统计、线性代数
后继课程:信息安全技术
一、课程的性质
本课程是信息与计算科学专业选修课。

二、教学目的
学习和了解密码学的一些基本概念,理解和掌握一些常用密码算法的加密和解密原理,认证理论的概念以及几种常见数字签名算法和安全性分析。

三、教学内容
本课程涉及分组加密、流加密、公钥加密、数字签名、哈希函数、密钥建立与管理、身份识别、认证理论与技术、PKI技术等内容。

四、学时分配
章课程内容学时
1 密码学概论 2
2 古典密码体制 2
3 现代分组密码10
4 流密码 4
5 公开密钥密码体制12
6 密钥管理 2
7 Hash函数 4
8 数字签名 6
9 身份识别 2
10 认证理论与技术 2
11 PKI技术 2
12 密码应用软件 2
13 密码学新进展 2
五、教学方式
本课程是信息与计算科学专业选修课程,理论性较强。

在教学方法上,采用课堂讲授,课后自学,课堂讨论、课下练习编程、课下操作实验等教学形式。

(一)课堂讲授
本课程属理论课程,涉及到较多的数学知识,在讲述的过程中教师应尽量联系生活实际,加深学生对密码算法的认识。

在教学中要求同学重点掌握密码学的基本概念、算法的编程和密码技术的应用,要着重培养学生编写算法的能力,在课程内容方面既要保持理论的系统性,又要注意联系实际应用,并且重视技术科学的一般方法学的培养。

(二)课后自学
为了培养学生整理归纳,综合分析和处理问题的能力,每章都安排一部分内容,课上教师只给出自学提纲,不作详细讲解,课后学生自学(数学部分、加密方法的C与C++实现部分)。

(三)课堂讨论
课堂讨论的目的是活跃学习气氛,开拓思路。

教师应认真组织,安排重点发言,充分调动每一名同学的学习积极性,做好总结。

(四)习题课
习题课以典型例题分析为主,并适当安排开阔思路及综合性的练习及讨论。

共2学时(已包括在前述学时分配中)。

(五)课外作业
课外作业的内容选择基于对基本理论的理解和巩固,培养密码算法的验证和简单的加、解计算能力。

利用所学的密码知识,分析实际问题的解决能力,习题以计算性小题为主,平均每学时1-2道题。

六、考核方式
(一)平时测验
为及时了解教学情况,教师可适当安排期中测验,要求使用1或2个学时,让学生理解如何学习密码学理论部分。

(二)考试
考试可采用闭卷与开卷相结合的形式,以闭卷为主。

闭卷部分的试题包括基本概念,基本理论,分析实际安全问题,题型可采用填空,计算,简答等方式。

开卷部分的考试采用对学生平时编写算法的测试。

总评成绩:学生上课出勤,平时作业,编写算法代码共占30%;期末闭卷考试占70%。

七、教材及教学参考书
[1]张福泰. 密码学教程. 武汉: 武汉大学出版社,2006年9月.
[2]宋震. 密码学. 北京:中国水利水电出版社,2002年7月.
[3]Michael Welschenbach编著,赵振江,连国卿等译. 编码密码学—加密方法的C与C++实现.北京:电子工业出版社,2003年6月.
[4] 钟诚,赵跃华,杨铭熙,叶震,陆向艳,宋建华. 信息安全概论. 武汉: 武汉理工大学出版社,2003年6月.
[5] 冯登国,裴定一. 密码学导引. 北京:科学出版社, 1999年.
[6] 卢开澄. 计算机密码学(第2版). 北京:清华大学出版社,1998年7月。

八、教学基本内容及要求
第1章密码学概论
要求深刻理解与熟练掌握的重点内容有:1.信息安全的基本概念,2. 密码学的基本概念,3.与密码学有关的难解数学问题。

要求一般理解与掌握的内容有:信息安全的基本内容、密码体制分类、密码学的发展历史。

重点:密码体制的分类。

难点:密码体制的攻击类型理解。

第2章古典密码体制
本章主要了解1949年之前的古典密码体制,掌握不同类型的加密方式,并了解和认识无条件安全及古典密码的破译。

本章知识点:代换密码(分类和举例)、置换密码(列置换密码、周期置换密码)、古典密码的破译、无条件安全的一次一密体制。

要求学生能够使用C、C++编写Caesar 密码算法,练习最基本或最简单的加密模式。

为进一步
加强对加密算法的理解,课堂上演示实现的Caesar密码。

第3章现代分组密码
要求掌握分组密码概述,主要使用的结构及模式,详细学习DES、IDEA、RC5、AES算法的流程,特别是如何实现这些算法,并了解每个算法的安全性及其效率。

本章知识点:分组密码概述、Feistel结构、分组密码的使用模式、数据加密标准DES、数据加密算法IDEA、RC5、高级加密标准AES算法。

学习中,为加强学生的编程能力,课堂上先熟悉Visual C++6.0下编写算法的模式(头文件和实现文件的编写模式),并在该界面下演示所有的分组密码算法(如何加密和解密),同时对部分程序算法代码讲解(如何存储数据)。

难点:分组密码的使用模式理解和分组密码实现。

第4章流密码(4学时)
本章要求了解什么是流密码,与分组密码的异同,当前流密码的用途。

掌握密钥流生成器的结构,基于LFSR的流密码模型,同时了解相关LFSR的数学基础。

本章知识点:流密码概述、二元加法流密码(密钥流的性质、密钥流生成器的结构、基于LFSR 的流密码模型)、流密码算法介绍(A5算法、LFSR算法)。

难点:流密码的数学基础(部分数学基础超出学习范围)。

第5章公开密钥密码体制
在数论、近世代数知识的基础上,学习公开密钥密码算法。

要求在区分公开密码密码和分组密码的前提下,掌握不同的公开密钥密码体制(基于大整数、基于离散对数、基于椭圆曲线),并能够编写大整数的基本运算(加法、减法、乘法、除法及求模运算)。

本章知识点:公钥密码体制概述、基于大整数难分解的公钥密码体制(以RSA为代表)、基于离散对数的公钥密码体制(Diffie-Hellman密钥交换协议、ElGamal体制)、基于椭圆曲线的公钥密码体制(数学背景和密码系统)
说明:课堂上演示RSA系统,并对部分代码进行讲解。

难点:编写算法中,大整数的存储问题。

第6章密钥管理
在学习了密码的安全性主要是基于密钥的安全性的基础上,要求理解和掌握密钥的组织结构和种类,密钥是怎样生成的(分析RSA和DES中用的密钥),了解密钥的分配和协商。

本章知识点:密钥的组织结构和种类、密钥生成、密钥分配和密钥协商、秘密共享和密钥托管。

重点:秘密共享方案。

第7章 Hash函数
要求理解和掌握单向函数的基本概念,散列函数的设计与构造,学习MD5、SHA-1算法,并能够编写其中一个算法代码。

本章知识点:单向散列函数概念、MD5算法、安全散列算法SHA-1、消息鉴别码。

说明:区分MD5与SHA-1的异同,课堂演示算法的实现过程。

难点:如何实现算法。

第8章数字签名
要求理解和掌握常规的手写签名与数字签名的不同,了解数字签名在不同资料上的定义,详细学习RSA 数字签名体制、ElGamal数字签名体制、数字签名标准DSS,分析每个算法的安全性。

要求学生在此基础上,能够讨论或独立构造基于不同难题的数字签名。

本章知识点:数字签名的基本概念、RSA 数字签名体制、ElGamal数字签名体制、数字签名标准DSS及其他各类数字签名模式。

说明:课堂演示数字签名软件,增加学生的认识和了解。

第9章身份识别
本章主要要求学生掌握身份识别概念,理解强、弱的身份识别,了解身份识别协议及其安全性问题。

本章知识点:身份识别的概念、弱身份识别、强身份识别、身份识别协议及其安全问题。

重点:身份识别概念,各类身份识别。

难点:身份识别协议理解。

第10章认证理论与技术
本章主要学习认证理论与技术,掌握认证模型和认证协议,了解Kerberos系统和X.509认证服务。

本章知识点:单向认证、双向认证、认证协议、Kerberos系统、X.509认证服务。

重点:认证模型和认证协议。

难点:Kerberos系统与X.509认证服务的理解。

第11章 PKI技术
本章主要掌握PKI技术,认识PKI的功能和要求,了解相关协议和产品。

重点:PKI的组成和功能。

难点:PKI相关协议。

第12章密码应用软件
本章主要学习和认识PGP,掌握IP安全性,了解电子商务安全技术。

本章知识点:安全邮件标准、邮件加密软件、IP安全性和电子商务技术。

重点:各种软件的使用。

第13章密码学新进展
本章主要了解密码学的新进展。

本章知识点:量子密码学、环签名与指定验证人签名、基于身份的公钥体制与无证书公钥体制和DNA密码简介。

重点:新进展的理解。

相关文档
最新文档