七年级上册数学《用字母表示数》代数式 知识点整理
北师大版(2024)数学七年级上册+第三章 +1 代数式 + 第1课时 用字母表示数及代数式

解:(1) 1 πa2 16
(2)ab- 1 πa2 16
4.购买单价为 a 元/个的物品 10 个,支付 b 元(b>10a),则应找回( D ) A.(b-a)元 B.(b-10)元 C.(10a-b)元 D.(b-10a)元 5.某市某日的温差为 11 ℃,最高气温为 t ℃,则最低气温可表示为( C ) A.(11+t) ℃ B.(11-t) ℃ C.(t-11) ℃ D.(-t-11) ℃ 6.设 k 是一个偶数,则比 k 大且与 k 相邻的一个偶数是( C ) A.k+1 B.2k+1 C.k+2 D.2k+2
7.根据题意用含字母的式子表示结果. (1)一个两位数,十位上的数字是 a,个位上的数字是 b,求这个两位数; (2)某车上有 100 袋面粉,每袋 50 千克,取下 x 袋后车上还剩多少千克面粉?
解:(1)这个两位数为 10a+b (2)车上还剩下(5000-50x)千克面粉
知识点 2:代数式的定义
A.m+3n B.mn+3 C.m+n+3 D.m+3(n-1)
17.某文具店经销一批水彩笔,每盒进价为 m 元,零售价比进价高 a% ,后因市场 变化,该文具店把零售价调整为原来零售价的七折出售,那么调整后每盒水彩笔的零售 价是( A )
A.70% m(1+a% )元 B.30% m(1+a% )元 C.70% m·a% 元 D.30% m·a% 元
13.下列说法中,正确的是( D )
A.表示Biblioteka x,y,31 2的积的代数式为
312
xy
B.a 是代数式,1 不是代数式
C.a-3 的意义是 a 与 3 的差除 b 的商 b
字母表示数 知识点

字母表示数知识点“字母表示数”是数学中的一个重要概念,它涉及到代数的基本思想和方法。
以下是关于“字母表示数”的主要知识点:1. 代数式的定义与表示:- 代数式是由数字、字母通过有限次的四则运算得到的数学式。
- 例如:2x、x^2 + y^2、(a+b)/2等都是代数式。
2. 代数式的值:- 当字母在代数式中表示一个具体的数值时,代数式就有了确定的数值,这叫做代数式的值。
- 例如:当x=3时,2x=6,代数式2x的值就是6。
3. 变量的概念:- 变量是可以取不同数值的数学量,通常用字母表示。
- 例如:在方程y = 2x中,x和y都是变量。
4. 代数方程:- 含有未知数的等式叫做方程。
- 方程中的未知数通常用字母表示,如x、y、z等。
- 例如:3x + 5 = 10是一个方程,其中x是未知数。
5. 方程的解:- 满足方程的未知数的值叫做方程的解。
- 例如:如果x=3是方程3x+5=10的解,那么当x取值为3时,方程成立。
6. 代数式的性质与运算:- 代数式具有一定的运算性质,如加法结合律、乘法交换律等。
- 代数式可以进行加、减、乘、除等基本运算。
7. 函数的概念:- 如果在一个变化过程中有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与之对应,那么我们就说y是x的函数,其中x是自变量,y是因变量。
- 例如:y=2x,当x取任意一个实数值时,y都有唯一的值与之对应,所以y是x的函数。
这些知识点是“字母表示数”的核心内容,有助于理解代数的基本概念和应用。
在学习过程中,通过大量的练习和实例来加深对这一概念的理解是非常重要的。
北师大版七年级数学上册第三章知识点整理

北师大版七年级数学上册第三章知识点整理 北师大版七年级数学上册第三知识点整理 七上第三整式及其加减 1.字母表示数 1)字母表示运算律 2)字母表示计算公式 字母可以表示任何数 2.代数式 1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等. 2)书写要求:①字母与字母相乘时,乘号通常简写作“ ”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”. ②除法一般写成分数形式 ③如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起再写单位。
3.整式 1)单项式:表示数字和字母的积,单独的一个数或一个字母也是单项式. ①系数:单项式中的数字因数(包括其前面的符号) ②次数:单项式中,所有字母的指数的和;单独的数字是0次单项式. 注意:(1)单项式中数与字母之间都是乘积关系,凡字母出现在分母中的式子一定不是单项式,如1/x不是单项式;(2)单项式中不含加减运算;(3)π是常数,在单项式中相当于数字因数;(4)定义中的“数”可以是小数,也可以是分数、整数. 2)多项式:几个单项式的和;在多项式中,每个单项式叫做多项式的项,不含字母的项叫常数项;一个多项式含有几项,就叫几项式; 次数:多项式里,次数最高项的次数,是多项式的次数; 注意:(1)确定多项式的项时,不要忽略它的符号;(2)关于某个字母的n次项式,要求是合并同类项后的最简多项式. 3) 整式:单项式和多项式统称为整式. 4)同类项:①概念:所含字母相同,并且相同字母的指数也相同的项;与它们的系数大小无关,与字母顺序无关;几个常数也是同类项. ②合并同类项法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 4.整式的加减: 1)整式加减是求几个整式的和或差的运算,其实质是去括号,合并同类项 2)法则:几个整式相加减,用括号把每一个整式括起,再用加减号连接,然后去括号,合并同类项. 3)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果. 5.探索与表达规律:图形中的规律、数字中的规律、算式中的规律.。
七年级数学上册第3章代数式3-1用字母表示数课件青岛版

3.1 用字母表示数
1 课时讲解 用字母表示数
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 用字母表示数
知1-讲
1. 随着数的范围扩充至有理数,字母不仅可以表示正数、 0,也可以表示负数,字母还可以像数一样参与运算.
2. 用字母表示数,一般能简明地把数、数量关系、法则和 变化规律表达出来,为叙述和研究问题带来方便.
特别解读
知1-讲
1. 同一问题中,相同的字母必须表示相同的量,不同的量
必须用不同的字母表示.
2. 用字母可以表示任意数或式子.用字母表示数后,同一
个式子可以表示不同的含义.
3. 用字母表示实际问题中的某个量时,字母的取值必须使
式子有意义且符合实际情况.
4. 特定的字母表示特定数,如π表示圆周率.
3. 用字母表示数的应用
3-1. 用字母表示数,下列书写规范的是( D )
知1-练
A. a2
B. -1xa
C. -112a
D. 2a2
3-2. 李老师从家到学校以每分钟v m的速度走t(t>10) min
即可到达.一天,李老师刚要出门,就接到学校电话要
求提前10 min到校,那么李老师每分钟需多走 _t_-_v_t1_0_-__v_ _m__.
知1-练
2-2. 已知a是两位数,b是一位数,把b直接写在a的左边, 就成为一个三位数,这个三位数可表示成_1_0_0_b_+__a_.
知1-练
例 3 下列式子: ① a; ② 312x; ③ mn; ④ 1a2b;⑤ b÷a; ⑥ 7·9; ⑦ m+n万元. 其中符合用字母表示
数的书写要求的个数是( )
字母表示数知识点汇总

字母表示数知识点汇总1、代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式.。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
2、代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米3、代数式的系数:代数式中的数字中的数字因数叫做代数式的系.....数.。
如3x,4y 的系数分别为3,4。
注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。
a3b 的系数是14、代数式的项:代数式表示7262--x x 6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。
5、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
字母表示数与代数式(6种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

字母表示数与代数式(6种题型)【知识梳理】一、字母表示数1.用字母表示数(1)意义:使用一个字母a可以表示任意一个数字。
(2)优越性:用字母还可以表示数的运算律和一些图形的面积、周长和体积。
2.字母表示数要注意的几点:数字与字母及字母与字母的乘号要省略;除法运算要用分数线来表示;数学应写在字母的前面,当字母前的数字是1的时候应省略不写(当字母前的数字是带分数时,一定要带分数化成假分数;主体为和的形式,后面有单位需加括号;注意:字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明地将数量关系表示出来.3.字母表示数常见的类型:(1)用字母表示运算律;(2)用字母表示数学公式;(3)用字母表示实际问题;(4)用字母表示性质二、代数式:用运算符合和括号把数或表示数的字母连接而成的式子叫做代数式.注:①单独一个数或一个字母也是代数式;②“=”不是运算符号,不能将等式与代数式混淆)三、代数式的值用数字代替代数式里的字母,按照代数式中的运算关系计算得出的记过叫做代数式的值.求代数式的值第一步:用数值代替代数式里的字母.第二步:按照代数式指明的运算,计算出结果.【考点剖析】 题型一:字母表示图形的周长和面积例1.黑板的长为2.5米,宽为b 米,则他的面积和周长分别是多少?【分析】本题是根据长方形的性质求解的,要熟记长方形的面积公式,周长公式。
【解答】面积22.5 2.5()b b =⨯=米 周长()()2.522 2.5()b b =+⨯=+米 【点评】数字与字母或数字与括号相乘时,通常省略乘号,但要把数字写在字母或括号前面。
【变式1】若长方形的长为,a 宽为,b 则长方形的周长是________, 面积是________. 答案:2(a+b ) ab 题型二:字母表示运算律例2.请用字母表示已学过的四则运算律,如加法结合律等。
【解答】加法交换律:a b b a +=+ 加法结合律:)()(c b a c b a ++=++ 乘法交换律:a b b a ⨯=⨯乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯ 乘法分配律:bc ac c b a +=⨯+)(【点评】这里的“×”号,只是为了使表达清晰,实际做题时要注意书写规范。
初一数学代数式、用字母表示数
1、用字母表示加法交换律,错误的是( )A .a +b =b +aB .m +n =n +mC .p ·q =q ·pD .x +y =y +x2、如果m 表示奇数,n 表示偶数,则m +n 表示( )A .奇数B .偶数C .合数D .质数3、如图1两同心圆,大圆半径为R ,小圆半径为r ,则阴影部分的面积为( )A .πR 2B .πr 2C .π(R 2+r 2)D .π(R 2-r 2)4、数轴上点A 位于原点的右侧,所对应的实数为a (a <3),则位于原点左侧,与A 点距离为3的点B 所对应的实数为( )A .3-aB .a -3C .a +3D .-35、下列数值一定为正数的是( )A .|a |+|b |B .a 2+b 2C .|a |-|b |D .|a |+21 6、比较a +b 与a -b 的大小,叙述正确的是( )A .a +b ≥a -bB .a +b >a -bC .由a 的大小确定D .由b 的大小确定代数式一、专题精讲例1、在下列各式:①﹣3;②ab =ba ;③x ;④2m ﹣1>0;⑤1x ;⑥8(x 2+y 2)中,代数式的个数是( ) A .1个B .2个C .3个D .4个例2、小明比小亮大3岁,小亮今年a 岁,小明今年__________岁。
例3、某种蔬菜今天的价格比昨天上涨了20%,如果昨天的价格为每千克a 元,那么这种蔬菜今天的价格为每千 克 元,当a =1.2时,今天蔬菜的价格为 元。
例4、已知22a ab +=-10,22b ab +=16,则224a ab b ++=_______,22a b -=______。
例5、填空(1)零乘任何数得零,用字母表示为 。
(2)某汽车公司对所有车辆进行消毒处理,今将m 千克水中,加入n 千克消毒制剂,则消毒液的重量为__________。
(3)大量事实证明,治理垃圾污染刻不容缓。
据统计,全球每分钟约有850万吨污水排入江河湖水,则t 分钟排污量为 万吨。
七年级上代数式知识点梳理+例题讲解+测试题
知识梳理用字母表示数:示出来。
代数式:1.用基本运算符号(+.-为代数式。
注:单独一个数或一个字母也是代数式。
Π是数字不是字母。
2.或省略不写,单项式:1.2.3.注:单独一个数或一个字母也是单项式。
多项式:1.几个单项式的和叫做多项式。
计算所得的结果叫0,5ba3+,a2+2ab+b2,aa5+,-k.一个字母也是单项式,-k;多项式:5ba3+,a2-k;【练1a2x+ax,x2-3x+4,-Πx,0单项式集合:{多项式集合:{整式集合:{一次整式集合:{二次整式集合:{【例2(1)单项式4yx -3Π(2)多项式ab-2a-100常数项是. (3)多项式2xy-xy2-13是,它是次【分析】.是.m│+2=5,可k的值.【重难点四】代数式求值【例4】当x=3,y=2,求22x 【分析】本题中,具体数值为x=3字母所对应数值带入求解可得。
解答:22x -4xy+3y原式=2×23-4×3×2+3×2=18-24+6 =0【练4】若2)2(+a +丨b-1丨=0【重难点五】整体代入思想求值【例5】若2=-b a ,求代数式5分析:本题中没有给出a 、b 间的关系,b a 22-是b a -的2解答:原式=)(25b a -+=5+2×2 =9的值。
【例6】【分析】根据程序框图的算法,输入一个数x 第一步先算x-1,第二步再算一、选择题1、代数式-23xy 3A .-2,4B .-6,2、若220x x +-=,则322x x +- A .2017 B .3、代数式 , ,, , A. 个B. 个4、某商店在甲批发市场以每包m场以每包n 元(m>n)A .盈利了 B .亏损了 5、图1中3,6,9,··称为正方形数.下列数既是三角形数又是正方形数的是 ( )A .2010B .2012C .2014D .2016,单项式-23πa 2b 的系数是x 的值为81,则第2016次输出的结果为3、已知A 是关于a 的三次多项式,B 是关于a 的二次多项式,则A +B 的的值是×4=43+4,…,若a b ×10=a b.220b -=;②212a b c x y -++是一a 2c -3a 2b)-4a 2c]-abc 的值.2、当x=-2时,代数式633-++cx bx ax 值为8,求当x=2时,代数式633-++cx bx ax 的值。
2.1 代数式(第1课时 字母表示数)(同步课件)七年级数学上册(沪科版2024)
【归纳总结】首先从表格中发现上下左右四个数和中间数的数量关系,再用字
母a分别表示其他几个数,把这五个数相加即可发现和为5a.
概念归纳
用字母表示数,可以把一些数量关系更简明
地表示出来.把具体的数换成抽象的字母,
使所得式子反映的规律具有普遍意义,从而
为叙述与研究问题带来方便.
用字母表示公式
用字母表示数量关系
计
算
与
应
用
练一练
1.某数比数a小15%,则该数为( B
)
A.15%a
B.(1-15%)a
C.(1+15%)a
D.a-15%
【学法指导】小15%是指少于a的15%,即a-15%a,而不是a-15%.
2.设n是任意一个整数,下列说法错误的是( A
A.任意一个偶数都可用4n表示
B.有的偶数不能用4n表示
C.2n可以表示任意一个偶数
日
6
一
7
二
三
四
五
六
1
2
3
4
5
8
9
10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
练一练
3.三个连续偶数,中间的一个数为2n,则其他两个数表示为 2n-2,2n+2
三个偶数的和为
6n .
4.某校七年级有师生参加爱心捐款活动,其中有a名教师,b名学生,若平均每
C=a+b+c
梯形
C=a+b+c+d
圆
C=2πr
面积(S)
S=a2
3.1 列代数式表示数量关系(第1课时 用字母表示数) 课件七年级数学上册 (人教版2024)
练一练
2.用字母表示数,说明:
(1)任意两个奇数之和是偶数.
(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数.
答:(1)任意两个奇数之和是偶数:2m+1+2n+1=2(m+n+1).
(2)如果m为自然数,那么与m相邻的两个自然数之和是
偶数:m+1+m - 1=2m.
随堂练
①②④⑥
1.下列式子是代数式的是
因此类推问题(2),该机器人识别n㎡范围内的苹果
需要的时间是(n÷5)s或者 s.
5
(3)若该机器人搭载了10个机械手,它与采摘工人同时工作1 h,假
设工人ms可以采摘一个苹果,则机器人可比工人多采摘多少个苹果?
首先我们先来分析这其中的代数关系:
机器人多采摘的苹果个数
=机器人采摘的苹果个数-工人采摘的苹果个数
(3)a的11倍再加上2;
(4)x,y两个数和的平方;
(5)甲数为a,比甲数的平方大3的数.
解:(1)2x - y.
(3)11a+2.
(2)3(m - 5).
(4)(x+y)2.
(5)a2+3.
随堂练
4.以下各式不是代数式的是
( C)
A.5
B.3x2 - 2x+5
C.a+b=b+a
2
D.
解析:判断是不是代数式,关键是了解代数式的概念,注意代数式与等式、
D. a (10+ a ) cm2
分层练习-基础
6. 【情境题·生活应用】腹有诗书气自华,最是书香能致远.为鼓励和推
广全民阅读活动,某书店开展促销活动,促销方法是将原价为 x 元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式
一、本节学习指导
本节知识点很多,大多都需要我们掌握。
不要偷懒,捧起我们的书本多看看,课后练习认真完成。
本节知识并不难,相信你们都能掌握好。
此外,如果有疑问的知识点千万不要闷在心里,无论是问老师还是问加速度,总之要弄明白,为以后学习铺垫。
二、知识要点
1、代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。
【重要】
注:单独的一个数或一个字母也是代数式。
如:5,a,x均是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;如:2x=5这个整体因为含有等号所以不是代数式,但是等号左边的2x和右边的5却是代数式。
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
2、代数式的书写格式:【重要】
①代数式中出现乘号,通常省略不写,如v×t 通常写成 vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;5×8,不能省略乘号写成58;
⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作
注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如(a²-b²)平方米
3、代数式的系数:【重要】
代数式中的数字中的数字因数叫做代数式的系数。
如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a的系数是1;
②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。
a3b的系数是1
4、代数式的项:【重要】
代数式6x2-2x-76表示x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项
注意:在交待某一项时,应与前面的符号一起交待。
5、同类项:【重要】
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
这两个条件缺一不可;
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
6、合并同类项:【重要】
把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;
②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:
①如果两个同类项的系数互为相反数,合并同类项后结果为0;
②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;
③只要不再有同类项,就是最后结果,结果还是代数式。
7、根据去括号法则去括号:【重要】
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;比如+(2x+5),括号前面是正号,所以去括号后还是不变:2x+5
括号前面是“-”号去掉,括号里各项都改变符号。
比如:-(2x-8),因为括号前面是负号,所以去括号后,括号内的每一项都要变为原来的相反数:-2x+8
8、根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
注意:①去括号时,要连同括号前面的符号一起去掉;
②去括号时,首先要弄清楚括号前是“+”号还是“-”号;
③改变符号时,各项都变号;不改变符号时,各项都不变号。
三、经验之谈
本节知识是我们以后学习数学的基础,非常重要,掌握起来都还算容易。
我们对每一条重点只需理解性记忆就行了,多写些代数式出来观察。
特别是针对代数式的合并同类项和去括号,非常重要,也容易混淆,这一点我们要特别注意。
此外,我们还得多做练习题来巩固本节知识。
本文由索罗学院整理。