初中数学中的折叠问题

合集下载

数学初中折叠问题解题技巧

数学初中折叠问题解题技巧

数学初中折叠问题解题技巧
初中数学中的折叠问题是一种常见的问题类型,涉及到几何和代数等多个方面,具有一定的挑战性和趣味性。

下面是一些折叠问题的解题技巧:
1. 观察折叠过程,提取关键信息。

在折叠问题中,通常会涉及到两个或多个图形的折叠,需要观察折叠过程,并提取关键信息。

例如,在将一个矩形折叠成正方形的过程中,关键信息可能是矩形的长和宽,或者是正方形的边长。

2. 利用几何图形的性质,进行推理和计算。

折叠问题通常涉及到几何图形的性质,例如面积、周长、角等。

在解决问题时,需要利用这些性质进行推理和计算。

例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,进而计算出折叠后的形状。

3. 利用代数知识,进行化简和求解。

折叠问题还可以利用代数知识进行化简和求解。

例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,并将它们用代数式表示出来。

然后,通过解方程组或代数式的方法求解答案。

4. 寻找规律,构建模型。

有些折叠问题可以通过寻找规律,构建模型来解决。

例如,在将一个正多边形折叠成平面图形的过程中,可以尝试利用正多边形的边数来构建模型。

通过模型,可以更好地理解和解决问题。

折叠问题是初中数学中的一种重要问题类型,需要学生掌握一定
的几何和代数知识,并学会利用这些知识进行推理和计算。

同时,学生还需要具备较强的逻辑思维能力和分析问题的能力,才能有效地解决折叠问题。

初中数学中有关图形的折叠问题

初中数学中有关图形的折叠问题

专题复习图形的折叠问题折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.类型1 三角形中的折叠问题1.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=75°,则∠1+∠2=【 】A .150°B .210°C .105°D .75°2.已知,如图,Rt △ABC 中,∠C=90º,沿过点B 的一条直线BE 折叠△ABC,使C 恰好落在AB 边的中点D 处,则∠A=________.3.(2014·德阳)如图,△ABC 中,∠A =60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC=70°,那么∠A′DE 的度数为________.4.如图,在Rt△ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′=________.5.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,若点D 的坐标为(10,8),则点E 的坐标为________. A D B EC6.如图,在等腰△ABC 中,AB =AC ,∠BAC =50°.∠BAC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是 .7.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠B .8.如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若C(3/2,√3/2),则该一次函数的解析式为________.9.如图,D 是等边△ABC 边AB 上的一点,且AD∶DB=1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE∶CF=( )A.3/4B.4/5C.5/6D.6/7 10.如图,将△ABC 纸片的一角沿DE 向下翻折,使点A 落在BC 边上的A ′点处,且DE ∥BC ,下列结论:①∠AED =∠C ;②A 1D/DB=A 1E/EC ;③BC=2DE ;④ BD A E A C AD A E S S S ∆'∆''=+四形边。

初中几何折叠问题的三种解法

初中几何折叠问题的三种解法

初中几何折叠问题的三种解法初中几何折叠问题的三种解法初中几何是数学中的一个重要分支,而折叠问题则是初中几何中常见的一种问题。

在这里,我们将介绍三种不同的方法来解决初中几何折叠问题。

方法一:手工模拟法手工模拟法是一种简单直观的方法。

它通过将纸张折叠成所需形状来解决问题。

步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 将纸张按照比例剪成相应大小。

3. 按照题目要求,将纸张进行折叠,直到得到所需形状。

4. 计算所需参数并得出答案。

优点:手工模拟法操作简单易懂,适合初学者使用。

同时也能够帮助学生更好地理解折叠问题的本质。

缺点:手工模拟法需要较长时间完成,并且需要精确测量和折叠。

同时也容易出现误差和偏差。

方法二:平面几何法平面几何法是一种基于平面几何知识来解决问题的方法。

它通过利用图形相似性和对称性来计算所需参数。

步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 根据平面几何知识,计算所需参数,如角度、长度等。

3. 得出答案。

优点:平面几何法具有计算速度快、精度高等特点。

同时也能够帮助学生更好地理解平面几何知识的应用。

缺点:平面几何法需要学生具备一定的数学基础,并且需要对图形相似性和对称性有深入理解。

同时也容易出现计算错误和漏算情况。

方法三:三维几何法三维几何法是一种基于立体几何知识来解决问题的方法。

它通过利用立体图形的投影和相似性来计算所需参数。

步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 利用三维几何知识,将立体图形投影到二维平面上,并计算所需参数,如角度、长度等。

3. 得出答案。

优点:三维几何法具有计算速度快、精度高等特点。

同时也能够帮助学生更好地理解立体几何知识的应用。

缺点:三维几何法需要学生具备一定的数学基础,并且需要对立体图形的投影和相似性有深入理解。

同时也容易出现计算错误和漏算情况。

结论:初中几何折叠问题可以通过多种方法来解决,其中手工模拟法、平面几何法和三维几何法是常见的三种方法。

数学折叠问题初一

数学折叠问题初一

数学折叠问题初一摘要:一、数学折叠问题的背景和意义1.数学折叠问题的起源和发展2.数学折叠问题在实际生活中的应用二、数学折叠问题的基本概念和原理1.什么是数学折叠问题2.数学折叠问题的研究对象和范围3.数学折叠问题的解决方法三、数学折叠问题在初中的教学和应用1.初中数学折叠问题的教学内容和要求2.初中数学折叠问题的解题技巧和方法3.数学折叠问题在初中数学竞赛中的应用四、数学折叠问题的挑战和未来展望1.数学折叠问题的研究现状和进展2.数学折叠问题的难点和挑战3.数学折叠问题的未来研究方向和应用前景正文:数学折叠问题作为初中数学的一个重要知识点,具有极高的理论价值和实际应用价值。

本文将围绕数学折叠问题的背景和意义、基本概念和原理、在初中的教学和应用以及挑战和未来展望等方面进行详细阐述。

数学折叠问题起源于古代数学家对几何图形折叠的研究,经过几千年的发展,已经成为数学领域中一个具有广泛应用的研究方向。

数学折叠问题涉及到图形的折叠、展开和变换等概念,对于理解和解决实际生活中的许多问题具有重要意义。

例如,在包装设计、建筑结构和艺术创作等领域,都需要运用数学折叠问题的相关原理和方法。

数学折叠问题的基本概念和原理包括折叠线的定义、性质和分类,以及各种折叠问题的解决方法。

其中,最重要的是掌握折叠问题的分类和解决方法,这对于解决实际问题具有指导意义。

在初中阶段,数学折叠问题作为几何知识的一部分,被广泛应用于教学和解题。

教师在教学过程中,不仅要让学生掌握折叠问题的基本概念和原理,还要培养他们运用这些知识解决实际问题的能力。

此外,数学折叠问题在初中数学竞赛中也占有重要地位,许多竞赛题目都涉及到折叠问题的解题技巧和方法。

尽管数学折叠问题在初中阶段的教学和应用取得了显著成果,但仍然面临着许多挑战和问题。

首先,折叠问题的研究现状和进展仍然有限,许多基本问题尚未得到解决。

其次,折叠问题的难点和挑战在于其高度的抽象性和复杂性,这给研究和解决这些问题带来了巨大困难。

完整版初中数学专题折叠问题

完整版初中数学专题折叠问题

专题八折叠问题学习要点与方法点拨:出题位置:选择、填空压轴题或压轴题倒数第二题折叠问题中,常出现的知识时轴对称。

折叠对象有三角形、矩形、正方形、梯形等;-----判断线段之间关系等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、轴对称性质折线,是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。

基本图形:中,将△ABF沿FBE,可得何结论?BE折叠至△在矩形ABCD2)垂直。

结论:(1)全等;()基本图形练习:(1A上,折痕为AD,展开纸片;再次折叠,使得沿过点如图,将三角形纸片ABCA的直线折叠,使得AC落在AB 是等腰三角形,对吗?则△和D点重合,折痕为EF,展开纸片后得到△AEF,AEF)折叠中角的考法与做法:(2的直线);再沿过点E1FAABCD 将矩形纸片沿过点B的直线折叠,使得落在BC边上的点处,折痕为BE(图的大小。

再展开纸片,求图(,3)中角a)(图',折痕为边上的点落在折叠,使点DBEDEG21专题精讲〗讲8第〖九年级.)折叠中边的考法与做法:(3D落在AB边中点E处,如图,将边长为 6cm的正方形ABCD折叠,使点 EBG的周长是多少?交于点G,则△落在折痕为FH,点CQ处,EQ与BC★解题步骤:第一步:将已知条件标在图上第二步:设未知数,将未知数标在图上;第三步:列方程,多数情况可通过勾股定理解决。

模块精讲1.例点处.落在的一条边AD=8,将矩形ABCD折叠,使得顶点BCD边上的P 扬州)已知矩形(2014?ABCDO,连结.、OAAP、OP1()如图1,已知折痕与边BC交于点PDA;△①求证:OCP∽△的长;:4,求边ABOCP②若△与△PDA的面积比为1 边的中点,求∠OAB的度数;中的点(2)若图1P恰好是CD不重P、AMMOP,(3)如图2,擦去折痕AO、线段,连结BP.动点在线段AP上(点与点在移动MN交PBM、N.试问当点⊥,作于点FMEBP于点E,连结的延长线上,且在线段合),动点NABBN=PM EF过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段的长度.2专题精讲〗讲8第〖九年级.2.例在矩F沿AE折叠后得到△AFE,且点2013?(苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADEk的代数式表示)..若=,则=用含于点形ABCD内部.将AF延长交边BCG三CA、B、BC=12cm,点E、F、G分别从,(例3、2013?苏州)如图,点O为矩形ABCD的对称中心,AB=10cm的运动G的运动速度为3cm/s,点E点同时出发,沿矩形的边按逆时针方向匀速运动,点的运动速度为1cm/s,点F关于直线重合)时,三个点随之停止运动.在运动过程中,△EBF(即点F到达点CF与点C速度为1.5cm/s,当点s).、FG运动的时间为t(单位:EF的对称图形是△EB′F.设点E、为正方形;s时,四边形EBFB′(1)当t=为顶点的三角形相似,求t的值;FF为顶点的三角形与以点,C,GB2()若以点E、、的值;若不存在,请说明理由.OB′与点重合?若存在,求出tt(3)是否存在实数,使得点3专题精讲〗讲8第〖九年级.CD分别与AB,上的点如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CDE 重合,折痕FG例4、 O.交于点交于点G,F,AE与FG F四点围成的四边形是菱形;(1)如图1,求证:A,G,E,的中点;,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC(2)如图2 (3)如图2,在(2)的条件下,求折痕FG的长.F对称,点E与点EE⊥AD,点,点F分别在射线AD,射线BC上.若点与点B关于ACABAD 例5、已知∥BC,G关于BD对称,AC与BD相交于点,则()22BC=5CF . B .A1+tan∠ADB=6 AGB= D.4cos∠∠.∠CAEB+22°=DEF4专题精讲〗讲8第〖九年级.课堂练习、1,展开后再折叠一次,2CD重合,折痕为EF.如图对折,使2、(2014连云港)如图1,将正方形纸片ABCDAB与.ANE=_________EM交AB于N,则tan∠B使点C 与点E重合,折痕为GH,点的对应点为点M,4 图图3处,折痕B,折叠该纸片,使点A落在点,∠3、(2014?徐州)如图3,在等腰三角形纸片ABC 中,AB=ACA=50°._________°为DE,则∠CBE=、处,若A沿△ABCDE折叠,使点A落在边BC上的点F,4、(2014?扬州)如图4△ABC的中位线DE=5cm,把2 ABC,则△的面积为_________cm.F两点间的距离是8cm上的一动点,,BC=m,P为线段BC,,在梯形5、(2013?扬州)如图1ABCD中,AB∥CD,∠B=90°AB=2,CD=1 ,CE=y.CD,过P作PE⊥PA交所在直线于E.设BP=xPAB且和、C不重合,连接x的函数关系式;(1)求y与EBC上运动时,点总在线段CD上,求m的取值范围;P(2)若点在线段长.BPPEG沿m=4)如图2,若,将△PECPE翻折至△位置,∠BAG=90°,求3(5专题精讲〗讲8第〖九年级.课后巩固习题重合,展开后折痕D△ABC折叠,使点A与点平分∠1、(2014?淮安)如图,在三角形纸片ABC 中,ADBAC,将是菱形.、DF.求证:四边形AEDF、分别交AB、AC于点EF,连接DEBC出发沿从点B,且AB=10,BC=6,CD=2.点E中,2、(2013?宿迁)如图,在梯形ABCDAB ∥DC,∠B=90°AD分别交△GEF,直线FG、EGEF交边方向运动,过点E作EF∥ADAB于点F.将△BEF沿所在的直线折叠得到ABCD的重叠部分的面积为y.GEF过点,当EGD时,点E即停止运动.设BE=x,△与梯形、于点MN 是等腰三角形;△AMF1()证明x的值;)当2EG过点D时(如图(3)),求(的函数,并求y表示成xy的最大值.)将(36专题精讲〗讲8第〖九年级.C'DG,E,F,分别是落在C'处,BC交AD于点C,AB=6,BC=8,3、如图,在矩形ABCD中把△BCD沿着对角线BD折叠,使点. 重合,点D'恰好与点AD'于点H,把△FDE沿着EF折叠,使点D落在处EFBD和上的点,线段交ADC'DG ≌△)求证:三角形ABG(1 ∠ABG的值;(2)求tan )求EF的长。

七年级折叠问题知识点总结

七年级折叠问题知识点总结

七年级折叠问题知识点总结折叠问题是初中数学中一个相对难度不高但却高频出现的考点,对于七年级学生来说,掌握折叠问题的知识点是非常重要的。

下面将就这一考点进行全面总结。

一、定义折叠问题是指在一个平面图形上通过把它按照一定的方式、方向折叠,最终使得不同的部分重叠在一起或被盖住,要求求出被盖住部分的面积或者所剩下的形状等问题。

其涉及的图形种类繁多,但基本操作类似,具有很高的抽象性和富有思维性,是一种综合运用几何知识的问题。

二、关键思维折叠问题的解题关键在于灵活运用图形之间的等价性质,相关的思维方法主要包括以下几点:1. 分析图形的对称性:折叠通常涉及到“翻折”、“对称”等概念,因此,我们在解题中首先需要分析图形的对称性质,找出各对称轴,这样才能找到正确的折叠方式,避免漏解或者重解。

2. 利用图形不变性:在进行折叠的过程中,需要注意图形的一些不变性质,如面积、周长、角度、比例等,这些特征是可以被运用的,例如,在解决一道求面积的问题时,可能只需找到一个图形特征,便能够得出答案。

3. 选择适当的剖法:在有些情况下,通过简单的折叠很难求解,因此需要选择适当的剖法,如通过切割、旋转、投影等方法,将图形分割成子图形或更容易操作的形状,这样可以更方便地分析和计算。

三、常见的折叠问题1. 棱镜类问题棱镜折叠问题是指给定一个长方形,将其沿着边界折叠成一个四面体,求四面体的表面积或者体积等问题。

这种情况下需要考虑对称和镜像点等概念,利用图形不变性求解。

2. 圆柱类问题圆柱折叠问题是指给定一个长方形或者正方形,将其围绕着一定的轴旋转,并折叠起来,求形成的圆柱的表面积或者体积等问题。

这种情况下需要运用如旋转、映射等数学方法,求解时同样需要考虑对称、面积不变等特征。

3. 复杂图形问题复杂图形折叠问题是指给定一个复杂的图形(如饼干、卡片、飞机等),将其沿着特定的折叠线折叠后,求被覆盖部分的面积,或者被剖开后所得到的不同的图形等问题。

初中数学折叠题教案

初中数学折叠题教案教学目标:1. 理解折叠问题的概念和特点;2. 学会解决折叠问题的方法和技巧;3. 能够应用折叠问题解决实际生活中的问题。

教学重点:1. 折叠问题的概念和特点;2. 解决折叠问题的方法和技巧。

教学难点:1. 理解折叠问题的转化思想;2. 应用折叠问题解决实际生活中的问题。

教学准备:1. 教学课件或黑板;2. 练习题和答案。

教学过程:一、导入(5分钟)1. 引入折叠问题的概念,展示一些实际的折叠问题;2. 引导学生思考折叠问题的特点和解决方法。

二、新课讲解(15分钟)1. 讲解折叠问题的概念和特点;2. 讲解解决折叠问题的方法和技巧;3. 通过示例演示如何解决折叠问题。

三、练习巩固(15分钟)1. 让学生独立完成练习题,巩固对折叠问题的理解和解决方法;2. 针对学生的疑问进行解答和指导。

四、拓展应用(15分钟)1. 引导学生思考如何将折叠问题应用到实际生活中;2. 让学生举例说明如何应用折叠问题解决实际问题。

五、总结和反思(5分钟)1. 让学生总结本节课所学的内容和解决折叠问题的方法;2. 引导学生反思如何在日常生活中发现和解决折叠问题。

教学评价:1. 学生对折叠问题的概念和特点的理解程度;2. 学生解决折叠问题的能力和技巧的应用情况;3. 学生对折叠问题在实际生活中的应用的认识和举例的合理性。

教学反思:本节课通过讲解和练习,让学生了解了折叠问题的概念和特点,学习了解决折叠问题的方法和技巧。

在教学过程中,要注意引导学生思考折叠问题的转化思想,并能够应用到实际生活中。

通过练习和拓展应用,巩固了学生对折叠问题的理解和解决方法,提高了学生的解决问题的能力。

在教学过程中,要注意关注学生的学习情况,及时解答和指导学生的疑问。

总体来说,本节课达到了预期的教学目标,学生对折叠问题的理解和解决能力有所提高。

初中数学由折叠问题引出的思考课件

动手试一试
将一张长为70cm的长方形纸片ABCD沿对称轴EF折 叠成如图所示的形状,若折叠后AB与CD间的距离为 60cm,则原纸片的宽AB是_____cm.
A
E
D
B
F
C
CD
E GF
60c
m
G
BA
由折叠问题引 发的思考
动手试一试
将一张长方形纸片翻折,则重叠部分的图形形状是什 么?
我们研究的问题——重叠部分的图 形为三角形.
参考网站:
作业布置
2 方法
折叠问题 转化
等腰三角形 直角三角形
作业布置
1.如图1,把长方形纸片ABCD沿EF折叠,使点 B落在边AD上的点B′处,点A落在点A′处 (1)求证:B′E=BF; (2)设AE=a,AB=b,BF=c,试猜想a,b ,c之间的一种关系,并给予证明.
图1
作业布置
变式:在长方形ABCD中,AB=6,BC=8.
(1)将长方形纸片ABCD沿BD折叠,使点A落在点 E处(如图2-①),设DE与BC相交于点F,则BF的
长是______.
(2)将长方形纸片按如图2—②折叠,使点B与点D 重合,折痕为GH,求GH的长.
图2
上网查阅
1. 你能借助于长 方形纸片,折 出30o,60o 及正三角形吗?
2. 如何用正方形 纸片折出正多 边形.
AE
D
B
C
动笔做一做 如图,将长方形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点 P处,已知∠MPN=90°,PM=3,PN=4. (1)求HG、BC的长; (2)求长方形ABCD的面积.
反思小结
通过本节课的学习,谈谈你的收获……
1 知识

七年级折叠问题知识点梳理

七年级折叠问题知识点梳理折叠问题是数学中的一种经典问题,也是考察对数学知识的理解和实际应用能力的重要领域。

在初中数学中,折叠问题也是一个重要的知识点,需要深入理解和掌握。

本文将对七年级折叠问题知识点进行梳理和整理,以帮助同学们更好地掌握这一知识点,从而在考试中取得更好的成绩。

一、基本概念折叠问题是指在平面图形上切割一条或数条线,然后将剩余部分按照指定的顺序进行折叠,并寻求可能出现的图形形态。

常出现的几何图形包括三角形、正方形、长方形等。

二、折叠的基本操作1. 折叠轴:指在平面图形上折叠的参考线,通常为直线。

2. 对称轴:指原图形和折叠后图形的对称轴,它们的交点处是折叠轴。

3. 折线:指从折叠轴起到图形边缘的折叠线段。

4. 折叠方向:指折叠时图形所向的方向,可以是向上、向下、向左或向右。

5. 折痕:指在图形上产生的折叠痕迹。

三、折叠问题的解题方法在解决折叠问题时,首先要对给定图形和折叠过程进行分析,然后选择合适的方法进行求解,一般有以下几种方法:1. 利用对称性:可以利用图形对称性进行折叠,其中对称轴可以作为折叠轴,而对称轴两侧的部分可以通过折叠得到图形的其他部分。

2. 利用折线的特性:根据折线的特性可以确定图形的边长和角度,从而得到图形的面积和形状。

3. 综合使用多种方法:在解决较为复杂的折叠问题时,可以综合使用多种方法,包括对称性、折线特性、面积等多个方面,灵活应用不同的方法。

四、折叠问题的实际应用折叠问题在实际生活中也有广泛的应用,例如在制作纸质建筑模型时,需要根据图纸进行折叠,从而得到复杂的建筑结构;在设计3D打印模型时,需要将平面图形折叠成三维立体模型,从而进行后续加工等。

总之,折叠问题是数学中非常重要的一个知识点,需要同学们用心理解和掌握,善于运用不同的方法解决问题,在实际应用中也能够得心应手。

希望本文对七年级学生们的学习有所帮助,祝愿大家在数学学习中取得更好的成绩。

初中数学几何图形中的折叠问题解题思路

初中数学几何图形中的折叠问题解题思路折叠问题中的背景图形通常有,三角形、正方形、矩形、梯形等,解决这类问题的关键是一定要灵活运用轴对称和背景图形的性质。

轴对称性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

典型例题:例题1、如图,在Rt△ABC 中,∠ACB=90°,AB=10,AC=8,E、F 分别为AB、BC 上的点,沿线段EF 将∠B 折叠,使点B 恰好落在AC 上的点D 处,试问当△ADE 恰好为直角三角形时,此时BE 的长度为多少?解题思路:△ADE 为直角三角形分两种情况:①∠ADE = 90°,②∠AED = 90°,此题需要分类讨论,结合三角形的相似、折叠的性质,来求折叠中线段的长度,关键是能画出折叠后的图形。

解答过程:当∠ADE = 90°时,如下图所示:证明:先来证明四边形DEBF 为棱形:∵在Rt△ABC 中,∠ACB=90°,∠ADE =∴DE∥BC ,∴∠DEF = ∠EFB ,又∵沿线段EF 将∠B 折叠,∴DE = BE ,DF = BF ,∠DFE = ∠BFE ,∴∠DEF = ∠DFE ,DE = DF = BF ,∴四边形DEBF 为棱形。

(一组对边平行且相等的四边形是平行四边形,邻边相等的平行四边形是棱形)。

再来证明Rt△ADE ∽ Rt△ACB (相似三角形判断图形中的“A”字型)∵在三角形ACB 中,DE∥BC ,∴Rt△ADE ∽ Rt△ACB ,设棱形DEBF 的边长为x ,则有DE = x ,AE = 10 - x ,在Rt△ACB 中,AB = 10 ,AC = 8 ,由勾股定理得:BC = 6 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.3.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,得折痕DG,求AG的长.根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD沿BE折叠,使得BA边与BC重合,然后再沿着BF折叠,使得折痕BE也与BC边重合,展开后如图所示,则∠DFB等于()注意折叠前后角的对应关系5.如图,沿矩形ABCD的对角线BD折叠,点C落在点E的位置,已知BC=8cm,AB=6cm,求折叠后重合部分的面积.重合部分是以折痕为底边的等腰三角形321FEDCBAGA'CA BD6.将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D重合.MN 为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.54132GD‘FC‘DB CAE二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm的长方形纸条成如图所示的形状,那么折痕PQ的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()图c图b图aCDG FEACGDFEAFDB CA EB Ba2130°BEFACD本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG 15.将一张长为70 cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是()16.一根30cm、宽3cm的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,求MA的长三、三角形中的折叠17.如图,把Rt△ABC(∠C=90°),使A,B两点重合,得到折痕ED,再沿BE折叠,C点恰好与D点重合,则CE:AE=18.在△ABC中,已知AB=2a,∠A=30°,CD是AB边的中线,若将△ABC沿CD对折起来,折叠后两个小△ACD与△BCD重叠部分的面积恰好等于折叠前△ABC的面积的14.(1)当中线CD等于a时,重叠部分的面积等于;GEFDAEFDB CABC60cm(2)有如下结论(不在“CD等于a”的限制条件下):①AC边的长可以等于a;②折叠前的△ABC的面积可以等于32a2;③折叠后,以A、B为端点的线段AB与中线CD平行且相等.其中,结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和;(2)如图(2)把△CDE沿DE折叠覆盖∠A,则求∠1+∠2的和;(3)如图(3)把△CDE沿DE斜向上折叠,探求∠1、∠2、∠C的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE,∠2=180°-2∠CED,再根据三角形内角和定理比可求出答案;(2)连接DG,将∠ADG+∠AGD作为一个整体,根据三角形内角和定理来求;(3)将∠2看作180°-2∠CED,∠1看作2∠CDE-180°,再根据三角形内角和定理来求.B'CDA B231EB'CD BA21图(1)C'AC BDE12C'ACDE21GC'ABCDE由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

要抓住折叠前后图形之间的对应关系(2)将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.在矩形中的折叠问题,通常会出现“角平分线+平行线”的基本结构,即以折痕为底边的等腰三角形21.直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、点F.探究:如果折叠后的△CDF与△BDE均为等腰三角形,那么纸片中∠B的度数是多少?写出你的计算过程,并画出符合条件的后的图形.先确定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可22.下列图案给出了折叠一个直角边长为2的等腰直角三角形纸片(图1)的全过程:首先对折,如图2,折痕CD交AB于点D;打开后,过点D任意折叠,使折痕DE交BC于点E,如图3;打开后,如图4;再沿AE折叠,如图5;打开后,折痕如图6.则折痕DE和AE长度的和的最小值是()本题经过了三次折叠,注意理清折叠过程中的对称关系,求两条线段的和的最小值问题可以参见文章23.小华将一条1(如图1),沿它对称轴折叠1次后得到(如图),再将图沿它对称轴折叠后得到(如图3),则图3中一条腰长;同上操作,若小华连续将图1折叠n次后所得到(如图n+1)一条腰长为多少?本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.24.如图,矩形纸片ABCD中,AB= 6 ,BC=10 .第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法,第n次折叠后的折痕与BD交于点O n,则BO1= ,BO n=问题中涉及到的折叠从有限到无限,要明白每一次折叠中的变与不变,充分展示运算的详细过程。

在找规律时要把最终的结果写成一样的形式,观察其中的变与不变,特别是变化的数据与折叠次数之间的关系25.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n-1D n-2的中点为D n-1,第n次纸片折叠,使A与点D n-1重合,折痕与AD交于点P n(n>2),则AP6长()此题考查了翻折变换的知识,解答本题关键是写出前面几个有关线段长度的表达式,从而得出一般规律,注意培养自己的归纳总结能力26.阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC 的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次,∠BAC是不是△ABC的好角?(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.∠B = n∠C应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.图1…B3B n+1B nA2B2A1B1ABCA n图2B CDA图3B2A1B1AB C注意折叠过程中的对应角和三角形的一个外角等于和它不相邻的两个外角的和的运用,理解三角形中如果有一个角是好角之后,另两个角之间的关系,通过这样的问题培养归纳总结能力27.我们知道:任意的三角形纸片可通过如图①所示的方法折叠得到一个矩形.(1)实践:将图②中的正方形纸片通过适当的方法折叠成一个矩形(在图②中画图说明).(2)探究:任意的四边形纸片是否都能通过适当的方法折叠成一个矩形?若能,直接在图③中画图说明;若不能,则四边形至少应具备什么条件才行?并画图说明.(要求:画图应体现折叠过程,用虚线表示折痕,用箭头表示方向,后图形中既无缝隙又无重叠部分)折叠即对称28.如图,双曲线y =6x(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是多少?明白折叠中的对应边就行29.已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)若折叠后使点B与点A重合,求点C的坐标;(2)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(3)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.xyB'A BDOCxyCDABOxyC DABO B'xy123DCABO B''四、圆中的折叠30.如图,正方形ABCD的边长为2,⊙O的直径为AD,将正方形的BC边沿EC折叠,点B落在圆上的F点,求BE的长用对称关系构造勾股定理,再用勾股定理列方程求解是在折叠问题中求线段长度的常用方法31.如图,将半径为8的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()注意折叠过程中形成的对应边,利用勾股定理求解32.如图,将弧BC沿弦BC折叠交直径AB于点D,若AD=5,DB=7,则BC的长是多少?此题考查的是对称的性质、圆周角定理、以及相似三角形的判定和性质;能够根据圆周角定理来判断出△CAD是等腰三角形,是解答此题的关键33.已知如图:⊙O的半径为8cm,把弧AmB沿AB折叠使弧AmB经过圆心O,再把弧AOB 沿CD折叠,使弧COD经过AB的中点E,则折线CD的长为(47 )作CD关于C’D’的对称线段C’D’,连接OE并延长交CD于点F,交C′D′于点F′,交弧AmB 于点G,根据对称的性质得出OF′=6,再由勾股定理得出C’F’ = 27 .DCBOA EDCBOA。

相关文档
最新文档