三角函数、解三角形中的实际应用问题

合集下载

如何应用三角函数解决实际问题

如何应用三角函数解决实际问题

如何应用三角函数解决实际问题三角函数是数学中的重要概念,广泛应用于解决实际问题中。

本文将介绍如何应用三角函数解决实际问题,并提供相关的例子进行说明。

一、三角函数简介三角函数包括正弦函数、余弦函数和正切函数,分别用sin、cos和tan表示。

这些函数可以描述直角三角形中各个角的关系。

例如,在一个直角三角形中,对于一个给定的角度Θ,sinΘ等于对边与斜边的比值,cosΘ等于临边与斜边的比值,tanΘ等于对边与临边的比值。

二、应用实例:测量高楼高度假设我们想要测量一座高楼的高度,但我们无法直接得到高楼的实际高度。

这时,我们可以利用三角函数来解决这个问题。

首先,在离高楼一定距离的地方A站立,测量与地平线之间的角度α。

然后,远离高楼一段距离B站立,再次测量与地平线之间的角度β。

由于我们可以测得AB之间的距离,我们可以根据三角函数的性质得到高楼的高度H。

首先,我们可以推导出以下公式:tanα = H/ABtanβ = H/(AB+d)其中,H表示高楼的高度,AB表示A点到高楼的距离,d表示A点到B点的距离。

将上述两式联立解方程,可以得到高楼的高度H:H = AB*(tanβ - tanα)/(1 + tanα*tanβ)通过测量角度α和β以及距离AB和d,我们可以应用这个公式计算高楼的高度H。

三、应用实例:测量不可达距离三角函数还可以用来解决测量不可达距离的问题。

假设我们要测量两座高楼之间的距离,但由于某些原因,我们无法直接测量这个距离。

这时,我们可以利用三角函数来解决这个问题。

假设我们站在第一座高楼的顶部A点,测量与水平线的角度α。

然后移动到第二座高楼的顶部B点,测量与水平线的角度β。

由于我们可以测得AB之间的水平距离d,以及A点到底部的垂直高度h1和B点到底部的垂直高度h2,我们可以根据三角函数的性质得到两座高楼之间的距离D。

首先,我们可以推导出以下公式:tanα = h1/dtanβ = h2/d将上述两式联立解方程,可以得到两座高楼之间的距离D:D = (h1-h2)/((1+tanα*tanβ)/tanα-tanβ)通过测量角度α和β以及距离d和垂直高度h1、h2,我们可以应用这个公式计算两座高楼之间的距离D。

三角函数应用题

三角函数应用题

三角函数应用题在数学中,三角函数是一类描述角和三角形之间关系的函数。

它们在几何、物理、工程等领域中都有广泛的应用。

今天我们就来看几个关于三角函数的实际应用题。

题目一:船长测量船到岸边的距离某船长在海上航行,他利用望远镜测量船到岸边的距离为450米,角度为30°。

请帮助船长计算船实际距离岸边的距离。

解题思路:根据三角函数中正弦函数的定义,正弦函数是对边与斜边的比值。

设实际距离为x,则sin30°=450/x,解得x=450/sin30°≈900米。

题目二:高楼顶部的钢丝张力某座高楼的屋顶有一根斜着的钢丝,已知钢丝与地面的夹角为60°,钢丝的长度为200米。

求钢丝的张力。

解题思路:根据三角函数中余弦函数的定义,余弦函数是邻边与斜边的比值。

设钢丝张力为T,则cos60°=邻边/200,解得邻边=200cos60°≈100米。

再根据正弦函数的定义,sin60°=钢丝张力/200,解得钢丝张力=200sin60°≈173.21牛顿。

题目三:天文测距天文学家利用角度差测量两颗星星间的距离,已知两颗星星的距离为400光年,夹角为20°。

根据此信息,求两颗星星间的实际距离。

解题思路:根据正切函数的定义,切线函数是对边与邻边的比值。

设实际距离为d,则tan20°=400/d,解得d=400/tan20°≈1152.32光年。

通过以上几个实际应用题,我们可以看到三角函数在解决各种实际问题中的重要性和实用性。

希望大家在学习三角函数的过程中能够灵活运用,将数学知识与实际应用相结合,更好地理解和掌握相关知识。

三角函数不仅仅是一堆抽象的公式,更是与我们的生活息息相关的数学工具。

愿大家在学习中取得更好的成绩!。

应用三角函数解决实际问题

应用三角函数解决实际问题

应用三角函数解决实际问题三角函数是数学中重要的概念之一,它与三角形的边长和角度之间的关系密切相关。

在实际生活中,我们可以利用三角函数解决各种实际问题,例如测量高楼的高度、计算船只与灯塔之间的距离等。

本文将通过几个具体的例子,详细介绍如何应用三角函数解决实际问题。

一、测量高楼的高度假设我们想要测量一座高楼的高度,但是无法直接测量。

此时,我们可以利用三角函数中的正切函数来解决这个问题。

我们可以站在离这座高楼较远的地方,仰望其顶部,并找到一个合适的角度。

然后,通过测量自己所站位置与地面的距离,以及仰望高楼时的角度,利用正切函数可以计算出高楼的高度。

例如,假设我们站在离高楼的位置为100米的地方,仰望高楼的角度为30度。

我们可以利用三角函数中的正切函数,根据公式tan(角度) = 高楼高度 / 100,计算出高楼的高度为100 * tan(30度) = 57.74米。

因此,高楼的高度约为57.74米。

二、计算船只与灯塔之间的距离假设我们在海上驾驶一艘船,远处有一座灯塔,我们想要知道船只与灯塔的距离。

此时,我们可以利用三角函数中的正弦函数来解决这个问题。

我们可以站在船只上,观察灯塔并记录下观察的角度。

然后,通过测量船只与海平面的高度,以及观察灯塔时的角度,利用正弦函数可以计算出船只与灯塔的距离。

例如,假设船只与海平面的高度为10米,我们观察灯塔的角度为45度。

我们可以利用三角函数中的正弦函数,根据公式sin(角度) = 灯塔的高度 / 距离,计算出船只与灯塔的距离为10 / sin(45度) = 14.14米。

因此,船只与灯塔的距离约为14.14米。

三、求解三角形的边长在一些实际问题中,给定三角形的某些角度和边长,我们需要求解其他未知边长。

这时,可以利用三角函数中的正弦、余弦、正切等函数来解决。

例如,已知一个直角三角形的直角边长分别为3和4,我们需要求解斜边的长度。

根据勾股定理,我们知道斜边的长度可以通过勾股定理计算得出:斜边的平方等于两个直角边平方和。

三角函数如何利用三角函数解决实际问题

三角函数如何利用三角函数解决实际问题

三角函数如何利用三角函数解决实际问题三角函数是数学中重要的概念,它在解决实际问题中起着重要的作用。

本文将介绍三角函数如何利用三角函数解决实际问题,包括三角函数的定义、常见的三角函数及其应用以及如何使用三角函数解决实际问题等方面。

一、三角函数概述三角函数用于描述三角形中角与边之间的关系,常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)以及它们的倒数函数。

这些函数在解决实际问题中具有广泛的应用。

二、三角函数的定义1. 正弦函数(sin):在直角三角形中,正弦函数定义为对边与斜边之比。

即sinθ = 对边/斜边。

2. 余弦函数(cos):在直角三角形中,余弦函数定义为邻边与斜边之比。

即cosθ = 邻边/斜边。

3. 正切函数(tan):在直角三角形中,正切函数定义为对边与邻边之比。

即tanθ = 对边/邻边。

三、常见三角函数的应用1. 几何应用:三角函数常用于解决与角度有关的几何问题,如计算三角形的边长、面积等。

通过利用三角函数的定义,可以快速求解出未知的几何信息。

2. 物理应用:三角函数在物理学中也有广泛的应用,例如在力学中,可以通过正弦函数和余弦函数来描述物体的运动状态和受力情况。

3. 工程应用:三角函数在工程领域中也有重要的应用,如测量高楼的高度、计算斜面的倾斜角度等。

工程师可以利用三角函数进行测量和设计,提高工程的准确性和效率。

四、如何使用三角函数解决实际问题1. 问题分析:首先,需要清楚地了解实际问题的背景和要求,明确所求解的未知量是什么,然后将问题转化为三角形中的几何关系。

2. 寻找已知量:根据问题描述,确定已知的相关量,包括已知的边长、角度等。

3. 应用三角函数:根据已知和未知的关系,选择适当的三角函数进行计算。

根据问题的特点选用正弦、余弦或正切函数来求解未知量。

4. 计算求解:根据三角函数的定义,将已知量代入公式中,解方程计算出未知量的数值解。

5. 检验答案:求解出未知量后,可以通过几何关系重新计算已知量,检验答案是否合理。

浅谈生活中三角函数的应用

浅谈生活中三角函数的应用

浅谈生活中三角函数的应用三角函数是高中数学中的一个重要内容,它的应用范围十分广泛。

在生活中,我们可以通过三角函数解决很多实际问题。

本文将从生活中的实际问题出发,探讨一些三角函数的应用。

一、直角三角形中的应用在我们的日常生活中,我们常常会遇到一些直角三角形的问题,这时候运用三角函数就可以很好地解决这些问题。

例如,在测量一幢建筑物的高度时,我们可以站在建筑物的脚下,用一个角度计算器或手动计算,利用正切函数求出建筑物的高度。

此外,在导航和地图制作中也需要使用三角函数,计算一个地点的方向和距离。

二、正弦函数和余弦函数在单摆和波浪问题中的应用单摆和波浪问题都是涉及周期性运动的问题。

单摆就是一个质量挂在一根不可伸缩细线上的系统(一般为一个球、钩、挂钩、网)的系统。

当摆动时,其振幅和周期都与线的长度和重力有关。

正弦函数和余弦函数可以描述单摆的运动,这些函数可以计算出时间、挥动的幅度、运动的速度、周期和频率等信息。

同样的,波浪问题也涉及到周期性运动。

在物理学、电子工程等领域中都有波浪的应用。

正弦函数和余弦函数可以描述波浪的运动。

例如,我们可以用正弦函数描述海浪的形状、大小、行程和速度等。

三角函数在工程学中有广泛的应用,尤其是在机械工程和电气工程中。

在机械工程中,三角函数可以描述某些运动的曲线。

例如,在一个滑轮系统中,我们可以用正弦函数计算曲线的形状和弧度。

在电气工程中,三角函数可以用于计算交流电压和电流的频率、幅度和相位等信息。

四、三角函数在金融学和计量经济学中的应用金融学和计量经济学中有很多统计分析技术,而其中很多方法都涉及到三角函数的应用。

例如,利用正弦函数和余弦函数可以描述经济周期的波动,用它们可以统计股票和商品价格的变化。

此外,金融学和计量经济学也可以用三角函数来解决一些风险分析问题和预测市场行为的问题。

综上所述,三角函数在生活中的应用是非常广泛的。

它们可以被应用于很多领域,从机械工程到金融学、从物理学到导航、甚至于日常生活中的建筑测量和旅游规划等。

三角函数与解三角形的综合应用(解析版)

 三角函数与解三角形的综合应用(解析版)

专题05 三角函数与解三角形的综合应用【例1】(三种三角函数间的综合)已知函数()sin()4f x x π=π+和函数()cos()4g x x π=π+在区间57[,]44-上的图象交于A ,B ,C 三点,则△ABC 的面积是A B C D 【答案】C 由已知,得sin()cos()44x x πππ+=π+,即tan()14x ππ+=,所以44x k πππ+=π+,即x k =(Z k ∈),又57[,]44x ∈-,所以1x =-,0,1.于是两函数图象的交点为(1,A -,B ,(1,2C -,则△ABC 的面积为12(222⨯⨯+=【例2】(三角函数性质的综合)已知函数f (x )=sin⁡(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,f (x )的图象向左平移π3个单位后所得图象对应的函数为偶函数,则f (x +π12)+f (x −π6)的最大值为 A .√2 B .√3 C .1D .2【答案】A 因为函数f (x )=sin⁡(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,所以ω=2,f (x )=sin⁡(2x +φ),且其图象向左平移π3个单位后得到的f (x )=sin⁡(2x +2π3+φ)为偶函数,则2π3+φ=π2+kπ,k ∈Z ,又因为|φ|<π2,所以φ=−π6,f (x )=sin⁡(2x −π6),则f (x +π12)+f (x −π6)=sin2x +sin (2x −π2)=sin2x −cos2x =√2sin⁡(2x −π4)≤√2.故选A . 【例3】(三角函数型图象问题)函数cos ()2([π,π])xf x x =∈-的图象大致为A .B .C .D .【答案】C []cos()cos π,π,()22()()x x x f x f x f x -∈--===∴,为偶函数,则图象关于y 轴对称,排除A 、D ,把πx =代入得1(π)20.5f -==,故图象过点(π0.5),,C 选项适合,故选C . 【例4】(三角函数与平面几何的综合)已知函数()cos (0)f x x x ωωω=+>. (1)若2ω=,把函数()f x 的图象的横坐标伸长到原来的2倍,纵坐标不变,再向右平移π3个单位后得到函数()g x 的图象,求()g x 在区间ππ[,]22-上的值域; (2)若函数()f x 的图象上有如图所示的,,A B C 三点,且满足AB BC ⊥,求ω的值.【解析】()cos f x x x ωω=+1cos )22x x ωω=+π2sin()6x ω=+. (1)若2ω=,则π()2sin(2)6f x x =+,把函数()f x 的图象的横坐标伸长到原来的2倍,纵坐标不变,得到函数π2sin()6y x =+的图象,再向右平移π3个单位后得到函数π()2sin()6g x x =-的图象.由ππ22x -≤≤,得2πππ363x -≤-≤,所以π1sin()6x -≤-≤所以π22sin()6x -≤-≤()g x 在区间ππ[,]22-上的值域为[-. (2)由图知点B 是函数()f x 图象的最高点,设0(,2)B x ,函数()f x 的最小正周期为, 则003(,0),(,0)44T T A x C x -+,所以(,2)4T AB =,3(,2)4T BC =-,因为AB BC ⊥, 所以234016T AB BC ⋅=-=,解得264,3T T ==2π2π8T ω===.【例5】(三角函数与解三角形的综合)已知2()cos 2cos 1f x x x x =-+. (1)求函数()f x 的单调递增区间;T(2)ABC △中,角,,A B C 的对边分别为,,a b c ,若()2f A =,且3b =,ABC △的面积S =,求a .【解析】(1)2()cos 2cos 1f x x x x =-+2cos 2x x =-2(sin 2cos sin cos 2)66x x ππ=- 2sin(2)6x π=-. 由222262k x k ππππ-≤-≤π+(k ∈Z ),解得63k x k πππ-≤≤π+(k ∈Z ).故函数()f x 的单调递增区间为[,]63k k πππ-π+(k ∈Z ).(2)由()2f A =,即2sin(2)26A π-=,得sin(2)16A π-=. 所以2262A k ππ-=π+(k ∈Z ),解得3A k π=π+(k ∈Z ). 因为(0,)A ∈π,所以3A π=.由已知ABC △的面积11sin 3sin 603322S bc A c ==⨯⨯⨯=4c =.由余弦定理可得2222cos a b c bc A =+-2234234cos60=+-⨯⨯13=. 所以a =【例6】(三角恒等变换与解三角形的综合)已知ABC △中,,,a b c 分别为角,,A B C 所对的边,且4a =,5b c +=B ,则ABC △的面积为A B C D 【答案】C 根据两角和的正切公式有()()tan tan tan 1tan tan A B A B A B +=+-,依题意有()tan A B +=故2ππ,33A B C +==.由余弦定理得222π2cos 3c a b ab =+-,即22164c b b =+-,联立5b c +=,解得32b =,故面积为13π4sin 223⋅⋅⋅=. 【例7】(解三角形与向量的综合)已知在ABC △中,角,,A B C 的对边分别为,,a b c ,向量()cos ,cos C C =-n ,且12⋅=-m n .(1)求角C 的大小; (2,求ABC △的面积.【解析】(1)由已知得21cos cos 2C C C =-,由倍角公式和降幂公式得1cos 212,sin 21226C C C +π⎛⎫=-∴-= ⎪⎝⎭. ()0,,C ∈π2,62C C πππ∴-=∴=.(2解得b =或b =当b =时,11sin 322ABC S ab C ==⨯⨯=△当b =时,11sin 22ABC S ab C ==⨯⨯=△.综上所述,3ABC S =△或ABC S =△.【例8】(三角函数与向量、函数与方程的综合)已知向量2,1),(cos ,cos 1)x x x ωωω==+m n ,设函数()f x b =⋅+m n .(1)若函数()f x 的图象关于直线6x π=对称,且[0,3]ω∈时,求函数()f x 的单调增区间; (2)在(1)的条件下,当[0,]12x 7π∈时,函数()f x 有且只有一个零点,求实数b 的取值范围.【解析】2()cos cos 1f x b x x x b ωωω=⋅+=+++m n1332cos 2sin(2)2262x x b x b ωωωπ=+++=+++. (1)∵函数()f x 的图象关于直线6x π=对称, ∴2,662k k ωπππ⋅+=π+∈Z ,解得31,k k ω=+∈Z , ∵[0,3]ω∈, ∴1ω=,∴3()sin(2)62f x x b π=+++,由222,262k x k k ππππ-≤+≤π+∈Z ,得2,366k x k k ππππ-≤+≤π+∈Z ,所以函数()f x 的单调增区间为[,],36k k k πππ-π+∈Z .(2)由(1)知3()sin(2)62f x x b π=+++,∵[0,]12x 7π∈,∴2[,]663x ππ4π+∈,∴2[,]662x πππ+∈,即[0,]6x π∈时,函数()f x 单调递增; 2[,]623x ππ4π+∈,即[,]612x π7π∈时,函数()f x 单调递减.又(0)()3f f π=,∴当()0()312f f π7π>≥或()06f π=时()f x 有且只有一个零点.即32022b b +>≥-++或3102b ++=,所以满足条件的5({}2b ∈--.备考指南(1)在解决已知三角函数()sin()f x A x ωϕ=+的图象关于某条直线0x x =(或某点0(,0)x )对称的问题时,常用的解决方法是将横坐标代入原式中,让其等于正弦函数的对称轴(或对称中心),即0ππ2x k ωϕ+=+(或0πx k ωϕ+=),k ∈Z ,再解出参数即可;(2)在解决已知函数()()f x g x b =+的零点个数求参数,或者讨论函数的零点个数问题时,常用分离参数的方法,将问题转化为()g x b =-,画出()g x 的图象,通过对直线y b =-进行上下平移,从而得到参数b 的取值范围或零点个数的不同情况.【例9】(三角函数与导数的综合)已知函数()y f x =对任意的ππ(,)22x ∈-满足()cos ()sin f x x f x x '+0>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是A ππ()()34f -<-B ππ()()34f <C .π(0)2()3f f >D .π(0)()4f >【答案】A 【解析】令()()()()()()()()22cos cos cos sin ,cos cos cos f x f x x f x x f x x f x x g x g xxx x'''-+'===则,由对任意的ππ(,)22x ∈-满足()cos ()sin 0f x x f x x '+>可得()0g x '>,所以函数()x g 在ππ,22⎛⎫- ⎪⎝⎭上为增函数,所以ππ34g g ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,即ππ34ππcos cos 34f f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ππ34f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,故选A .考点三 平面几何中的解三角形问题【例10】△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin 2sin cos A C B C +=. (1)求B 的大小;(2)若3a =,且AC边上的中线长为2,求△ABC 的面积. 【解析】(1)由△ABC 中πA B C ++=可得()sin sin A B C =+, 因为2sin sin 2sin cos A C B C +=,所以()2sin 2sin cos sin 0B C B C C +-+=,即2cos sin sin 0B C C +=,即()sin 2cos 10C B +=, 因为0π,sin 0C C <<≠, 所以2cos 10B +=,12πcos ,23B B =-=. (2)由2π3B =得, ,① 在△ABC 中,取中点,连接.所以在△CBD 中,222cos 2BC CD BD C BC CD+-=⋅=221944b a ab+-, ② 把①代入②,化简得,解得,或(舍去), 所以.所以△ABC 的面积112πsin 35sin 223S ac B ==⨯⨯⨯=. 222239b a c ac c c =++=++AC D BD 23100c c --=5c =2c =-5c =备考指南几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.考点四 三角函数的应用问题【例11】(解三角形的应用)某观察站C 与两灯塔A ,B 的距离分别为a 米和b 米,测得灯塔A 在观察站C 北偏西60︒,灯塔B 在观察站C 北偏东60︒,则两灯塔A ,B 间的距离为AB 米CD【答案】C【解析】依题意,作出示意图(图略),因为6060120ACB ∠=︒+︒=︒,AC a =,BC b =,所以由余弦C .【例12】(三角函数、解三角形的应用)如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中π,,2AB a B BC =∠==.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道MN ,且两边是两个关于走道MN 对称的三角形(AMN △和A MN '△).现考虑绿地最大化原则,要求点M 与点,A B 均不重合,A '落在边BC 上且不与端点,B C 重合,设AMN θ∠=.(1)若π3θ=,求此时公共绿地的面积; (2)为方便小区居民的行走,设计时要求,AN A N '的长度最短,求此时绿地公共走道MN 的长度. 【解析】(1)由图得:ππ23BMA θ∠=-=', ∴1122BM A M AM ='=, 又BM AM a AB +==,∴32AM a =, ∴23AM a =,∴公共绿地的面积2221π422sin 239AMN S S AM a ==⋅⋅⋅==△. (2)由图得:()cos π2AM A M AB a θ+-=='且AM A M =', ∴()21cos π21cos 22sin a a a AM A M θθθ====+--',在AMN △中,由正弦定理可得:πsin sin π3AN AMθθ=⎛⎫-- ⎪⎝⎭,∴sin 2π2πsin 2sin sin 33AM aAN θθθθ==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭, 记2π2π2π2sin sin 2sin sin cos cos sin 333t θθθθθ⎛⎫⎛⎫=-=⋅-⎪ ⎪⎝⎭⎝⎭21cos 2π1cos sin sin 2sin 22262θθθθθθ-⎛⎫=+=+=-+ ⎪⎝⎭, 又ππ,42θ⎛⎫∈ ⎪⎝⎭, ∴ππ262θ-=, ∴π3θ=时,t 取最大,AN 最短,则此时23MN AM a ==.能力突破1.已知命题p :函数()sin f x x x =图象的一条对称轴是7π6x =;命题(): cos cos cos q αβαβαβ∀∈-≥-R ,,,则下列命题中的真命题为 A .()p q ⌝∧ B .()p q ∧⌝ C .()p q ⌝∨D .()p q ⌝∨【答案】B【解析】7π7π7π7ππ:sin2sin 266663p f ⎛⎫⎛⎫==+=- ⎪ ⎪⎝⎭⎝⎭,∴p 为真命题. :q 当2π,παβ==时,παβ-=,()cos 1αβ-=-,cos cos 2αβ-=,∴()cos cos cos αβαβ-<-,∴q 为假命题,∴()p q ∧⌝为真命题.故选B . 2.已知函数()log a f x x =(0a >且1a ≠)和函数π()sin 2g x x =,若()f x 与()g x 两图象只有3个交点,则a 的取值范围是A .19(,1)(1,)52 B .19(0,)(1,)72 C .11(,)(3,9)72D .11(,)(5,9)73【答案】D【解析】作出函数()f x 与()g x 的图象如图所示,当1a >时,()f x 与()g x 两图象只有3个交点,可得59a <<,当01a <<时,()f x 与()g x 两图象只有3个交点,可得1173a <<,所以a 的取值范围是11(,)(5,9)73,故选D .3.存在实数ϕ,使得圆面224x y +≤恰好覆盖函数πsin()y x kϕ=+图象的最高点或最低点共三个,则正数k 的取值范围是___________.【答案】 【解析】由题意,知函数πsin()y x k ϕ=+图象的最高点或最低一定在直线1y =±上,则由2214y x y =±⎧⎨+≤⎩,得x ≤≤2π2πT k k==,2T T ≤,解得正数k的取值范围为.4.在△ABC 中,角A , B , C 所对的边分别为a , b , c ,已知AB ⃗⃗⃗⃗⃗ ∙AC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ ,53sin =A . (1)求C sin 的值;(2)设D 为AC 的中点,若BD 的长为√1532,求△ABC 的面积.【解析】(1)由AB AC BA BC ⋅=⋅得()0AB AC BC ⋅+=, 即22()()||||0AC BC AC BC AC BC -⋅+=-=, 故|AC⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |, 从而A B =,A 与B 都是锐角, 则cosA =√1−sin 2A =45.sinC =sin (A +B )=sin2A =2sinAcosA =2425,即sinC =2425. (2)由(1),得cosC =cos (π−2A )=−cos2A =2sin 2A −1=−725, 设BC =AC =x ,在BCD △中,由余弦定理得BD 2=CD 2+BC 2−2CD ∙BC ∙cosC =x 24+x 2−2×x 22×(−725)=1534,解得x =5,则S ∆ABC =12×5×5×2425=12.5π. (1)求函数()f x 的解析式,并写出()f x 的最小正周期; (2,若在[]0,πx ∈内,方程2[12()]3()20a g x ag x -+-=有且仅有两解,求a 的取值范围.【解析】(1,∴πT =,∴2ω=.()f x 图象上,∴ππ2π32k ϕ+=+, π最小正周期πT =.(2 ∴原方程可化为()213sin 2sin 2a x x +-=,则0a ≠. ∵[]0,πx ∈,∴[]sin 0,1x ∈,213sin 2sin 0x x +->,∴2221732sin 3sin 12sin 84x x x a ⎛⎫=-++=-- ⎪⎝⎭,令sin t x =,则[]0,1t ∈,作出()2173284f t t ⎛⎫=-- ⎪⎝⎭及2y a =的图象,当21a ≤2<或2178a =时,两图象在[]0,1内有且仅有一解,即方程221732sin 84x a ⎛⎫=-- ⎪⎝⎭在[]0,π内有且仅有两解,此时a 的取值范围为16|12 17a a a ⎧⎫<≤=⎨⎬⎩⎭或. 高考通关1.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是A. 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B. 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C. 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ D. 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ 【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n ︒︒=⨯,每条边长为302sin n︒, 所以,单位圆的内接正6n 边形的周长为3012sin n n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A.【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.2.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示. 3.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.4.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】D【解析】①若()f x 在[0,2π]上有5个零点,可画出大致图象,由图1可知,()f x 在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,()f x 在(0,2π)有且仅有2个或3个极小值点.故②错误;π所以结论正确的有①③④.故本题正确答案为D.【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 5.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值, 所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω, 因为0>ω,所以当0k =时,ω取最小值为23.【名师点睛】本题主要考查三角函数的图象和性质,考查考生的逻辑推理能力以及运算求解能力,考查的核心素养是逻辑推理、数学运算.6.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的图象与性质,考查数形结合思想和考生的运算求解能力,考查的核心素养是数学运算.7.(2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC的面积是______,cos ∠BDC =_______.【答案】24【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==∴1sin 22△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD cos BDC ∠=.8.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,AB =1AC =,由勾股定理得2BC ==,同理得BD =BF BD ∴==在ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos30132112CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF 中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-. 【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.9.(2017江苏)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan x =. 又x ∈[0,π], 所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为x ∈[0,π], 所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,f (x )取到最大值3;当π6x +=π,即5π6x =时,f (x )取到最小值-10.(2018新课标Ⅰ理)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =,求BC .【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以sin 5ADB ∠=.由题设知,90ADB ∠<︒,所以cos ADB ∠==(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.11.(2018北京理)在△ABC 中,a =7,b =8,cos B =–17. (1)求∠A ;(2)求AC 边上的高.【解析】(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B .由正弦定理得sin sin a b A B =⇒7sin A ,∴sin A . ∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,sin C =sin (A +B )=sin A cos B +sin B cos A 11()72-+.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7∴AC .12.(2018上海)设常数R a ∈,函数()2sin22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若π14f ⎛⎫= ⎪⎝⎭,求方程()1f x =[]ππ-,上的解.【答案】(1)0a =;(2)5π24x =-或19π24x =或13π11π2424x x 或==-.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a 的值,再根据三角形函数的性质即可求出.【详解】(1)∵()2sin22cos f x a x x =+,∴()2sin22cos f x a x x -=-+,∵()f x 为偶函数,∴()()f x f x -=,∴22sin22cos sin22cos a x x a x x -+=+,∴2sin20a x =,∴0a =;(2)∵π14f ⎛⎫= ⎪⎝⎭,∴2ππsin 2cos 1124a a ⎛⎫+=+= ⎪⎝⎭,∴a =∴()2π2cos cos212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,∵()1f x =∴π2sin 2116x ⎛⎫++= ⎪⎝⎭,∴πsin 262x ⎛⎫+=- ⎪⎝⎭, ∴ππ22π64x k +=-+,或π52π2πZ 64x k k +=+∈,, ∴5ππ24x k =-+,或13ππZ 24x k k =+∈,,∵[]ππx ∈-,, ∴5π24x =-或19π24x =或13π11π2424x x 或==-【点睛】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.13.【2020年高考全国II 卷理数】ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,② 由①,②得1cos 2A =-.因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin ACABBCB C A ===从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+14.【2020年高考浙江】在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .已知2sin 0b A =.(Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.【解析】(Ⅰ)由正弦定理得2sin sin B A A =,故sin B =, 由题意得π3B =. (Ⅰ)由πA BC ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-+得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.15.【2020年高考全国Ⅱ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形. 【解析】(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=. 所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -=.由(1)知23B C π+=,所以2sin sin()33B B ππ--=.即11sin 22B B =,1sin()32B π-=. 由于03B 2π<<,故2B π=.从而ABC △是直角三角形. 【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.16.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A C a b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2)(82. 【解析】(1)由题设及正弦定理得sin sin sin sin 2A C AB A +=. 因为sin A ≠0,所以sin sin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B =. 因为cos 02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,ABC S <<△. 因此,△ABC面积的取值范围是82⎛ ⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题.。

三角函数的应用解三角形

三角函数的应用解三角形

三角函数的应用解三角形三角函数是数学中的一个重要概念,广泛应用于解决各种与三角形相关的问题。

通过运用三角函数的知识,我们可以准确地计算并解决各类三角形相关的数学题。

本文将介绍三角函数的应用,并举例说明如何利用三角函数来解决三角形问题。

1. 正弦函数的应用正弦函数是三角函数中最常用的函数之一,它在解决三角形问题中具有重要作用。

我们知道,在一个任意三角形ABC中,正弦函数的定义为:sinA = 边BC/边AC,sinB = 边AC/边BC,sinC = 边AB/边AC。

根据这个定义,我们可以通过已知的边长和角度来求解未知的边长或角度。

举个例子,假设我们已知三角形ABC中的角A和边BC的长度,我们需要求解边AC和角B的值。

根据正弦函数的定义,我们可以列出以下方程:sinA = 边BC/边AC通过移项和替换公式,我们可以得到:边AC = 边BC/sinA角B = 180° - 角A - 角C通过以上公式,我们可以根据已知条件计算出边AC和角B的值,从而解决三角形问题。

2. 余弦函数的应用余弦函数也是三角函数中常用的函数之一,它在解决三角形问题中同样具有重要作用。

在一个任意三角形ABC中,余弦函数的定义为:cosA = 边BC/边AC,cosB = 边AC/边BC,cosC = 边AB/边AC。

同样地,我们可以通过已知的边长和角度来求解未知的边长或角度。

举个例子,假设我们已知三角形ABC中的角A和边AC的长度,我们需要求解边BC和角C的值。

根据余弦函数的定义,我们可以列出以下方程:cosA = 边BC/边AC通过移项和替换公式,我们可以得到:边BC = 边AC * cosA角C = 180° - 角A - 角B通过以上公式,我们可以根据已知条件计算出边BC和角C的值,从而解决三角形问题。

3. 正切函数的应用正切函数是三角函数中另一个常用的函数,它同样可以应用于解决三角形问题。

在一个任意三角形ABC中,正切函数的定义为:tanA = 边BC/边AC,tanB = 边AC/边BC,tanC = 边AB/边AC。

解直角三角形在实际生活中的应用

解直角三角形在实际生活中的应用

解直角三角形在实际生活中的应用山东 李浩明在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.下面举例说明,供大家参考.一、航空问题例1.(2008年桂林市)汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图1).求A 、B1.414 1.732==)分析:要求A 、B 两个村庄间的距离,由题意知AB =PB ,在Rt △PBC 中,可求得60PBC ∠=︒,又因为PC =450,所以可通过解直角三角形求得PB.解:根据题意得:30A ∠=︒,60PBC ∠=︒,所以6030APB ∠=︒-︒,所以A P B A ∠=∠,所以AB =PB .在Rt BCP ∆中,90,60C PBC ∠=︒∠=︒,PC =450,所以PB=450sin 60==︒.所以520AB PB ==≈(米) 答:A 、B 两个村庄间的距离为520米. 二、测量问题例2.(2008年湛江市)如图2所示,课外活动中,小明在离旗杆AB 10米的C 处,QB CP A 45060︒30︒图1用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .分析:要求AB 的高,由题意知可知CD=BE ,先在Rt △ADE 中求出AE 的长,再利用AB=BE +AE 求出AB 的长.解:在Rt △ADE 中,tan ∠ADE =DEAE. ∵DE =10,∠ADE =40︒.∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4. ∴AB =AE +EB =AE +DC =8.4 1.59.9+=.答:旗杆AB 的高为9.9米. 三、建桥问题例4.(2008年河南)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.一直BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据: 1.412≈,sin37°≈0.60,cos37°≈0.80). 分析:要求现在比原来少走多少路程,就需要计算两条路线路程之差,如图构造平行四边形DCBG ,将两条路线路程之差转化为AD DG AG +-,作高线DH ,将△ADG 转化为两个直角三角形,先在在Rt DGH △中求DH 、GH ,再在Rt ADH △中求AD 、AH,此题即可得解.解:如图,过点D 作DH AB ⊥于H ,DG CB ∥交AB 于G .DC AB ∥,∴四边形DCBG 为平行四边形.∴DC GB =,11GD BC ==.∴两条路线路程之差为AD DG AG +-. 在Rt DGH △中,sin37110.60 6.60DH DG =⋅≈⨯=, cos37110.808.80GH DG =⋅⨯≈≈.在Rt ADH △中,1.41 6.609.31AD =⨯≈≈.6.60AH DH =≈.∴(9.3111)(6.608.80)AD DG AG +-=+-+≈即现在从A 地到B 地可比原来少走约4.9km . 四、图案设计问题例4.(2008年上海市)“创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图4所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.分析:要求圆O 的半径r 的值,需在直角三角形ODH 中来解决,而已知的条件太少,需要先在直角三角形CEH 中,根据条件5CE =、坡面CE 的坡度1:0.75i =求出EH 、CH ,然后在直角三角形ODH 中利用勾股定理列出方程,从而求出r 的值.解:由已知OCDE ⊥,垂足为点H ,则90CHE ∠=.图41:0.75i =,43CH EH ∴=. 在Rt HEC △中,222EH CH EC +=.设4CH k =,3(0)EH k k =>,又5CE =,得222(3)(4)5k k +=,解得1k =.∴3EH =,4CH =.∴7DH DE EH =+=,7OD OA AD r =+=+,4OH OC CH r =+=+. 在Rt ODH △中,222OH DH OD +=,∴222(4)7(7)r r ++=+. 解得83r =.航海中的安全问题船只在海上航行,特别要注意安全问题,这就需要运用数学知识进行有关的计算,以确保船只航行的安全性.请看下面两例.例1 (深圳市)如图1,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.分析:问题的关键是弄清方位角的概念,过点C 作CD ⊥AB 于D ,然后通过解直角三角形求出CD 的长,通过列方程解决几何问题也是一种常用方法.解:由已知,得AB=24×21=12,∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,所以∠C=30°,所以∠C=∠CAB ,所以CB=AB=12.在Rt △CBD 中,sin ∠CBD=CB CD ,所以CD=CB ·sin ∠CBD=12×3623=.∵936> 所以货船继续向正东方向行驶无触礁危险.例2 如图2,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向上,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?分析:先将实际问题转化为解直角三角形的问题.可有如下两种方法求解. 解法一:如图3,过点B 作BM ⊥AH 于M ,则BM//AF.所以∠ABM=∠BAF=30°. 在Rt △BAM 中,AM=21AB=5,BM=35. 过点C 作CN ⊥AH 于点N ,交BD 于K. 在Rt △BCK 中,∠CBK=90°-60°=30°. 设CK=x ,则BK=3x.在Rt △CAN 中,因为∠CAN=90°-45°=45°,所以AN=NC.所以AM+MN=CK+KN. 又NM=BK ,BM=KN ,所以x+35=5+3x.解得x=5. 因为5>4.8,所以渔船没有进入养殖场的危险.解法二:如图4,过点C 作CE ⊥BD 于E.所以CE//GB//FA. 所以∠BCE=∠GBC=60°,∠BCA=∠FAC=45°. 所以∠BCA=∠BCE-∠ACE=60°-45°=15°. 又∠BAC=∠FAC-∠FAB=45°-30°=15°,D图2图3图4所以∠BCA=∠BAC.所以BC=AB=10.在Rt △BCE 中,CE=BC ·cos ∠BCE=BC ·cos60°=10×21=5. 也5>4.8,所以渔船没有进入养殖场的危险.实际中的仰角和俯角问题在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.计算原理:视线、水平线、物体的高构成直角三角形,已知仰角、俯角和另一边,利用解直角的知识就可以求出物体的高度.梳理总结:⑴仰角和俯角是指视线相对于水平线而言的,不同位置的仰角和俯角是不同的;可巧记为“上仰下俯”.在测量物体的高度时,要善于将实际问题抽象为数学问题.⑵在测量山的高度时,要用“化曲为直”的原则把曲的山坡“化整为零地分成一些小段,把每一小段山坡长近似地看作直的,测出仰角求出每一小段山坡对应的高,再把每部分高加起来,就得到这座山的高度.例1 (成都)如图2,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角α为30︒,测得乙楼底部B 点的俯角β为60︒,求甲乙两栋高楼各有多高?(计算过程和结果都不取近似值.分析:过点C 作CE ⊥AB 于点E, 在Rt △BCE 和Rt △ACE 中, BE 和AE 可用含CE(即为水平距离)的式子表示出来,从而求得两楼的高.解:作CE ⊥AB 于点E,∵CE ∥DB,CD ∥AB,且∠CDB=090,∴四边形BECD 是矩形. ∴CD=BE,CE=BD.图 1 E图2在Rt △BCE 中, ∠β=060,CE=BD=90米. ∵,tan CEBE=β∴BE=CE 39060tan 90tan 0=⨯=⋅β(米). ∴CD=BE=390(米).在Rt △ACE 中, ∠α=030,CE=90米. ∵ ,tan CEAE=α∴AE=CE 330339030tan 90tan 0=⨯=⨯=⋅α(米). ∴AB=AE+BE=3120390330=+(米). 答:甲楼高为390米,乙楼高为3120米.反思:仰角和俯角问题是解直角三角形中的常见题型,作辅助线构造直角三角形(一般同时得到两个直角三角形)并解之是解决这类问题的常用方法.例2 (乐山)如图3,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB .要求:⑴画出测量示意图;⑵写出测量步骤(测量数据用字母表示); ⑶根据(2)中的数据计算AB .分析:要测量底步不能到达的物体的高度,要转化为双直角三角形问题,测量方案如图2,计算的关键是求 AE,可设AE=x,则在Rt △AGF 和 Rt △AEF 中, 利用三角函数可得αtan x HE =,βtan x EF = ,再根据HE-FE=CD=m 建立方程即可. 解:(1)测量图案(示意图)如图4所示(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角AHE α=∠;第二步:沿CB 前进到点D ,用皮尺量出C D ,之间的距离CD m =;AB图3AE F H CDB图4第三步:在点D 安装测角仪,测得此时树尖A 的仰角AFE β=∠; 第四步:用皮尺测出测角仪的高h . (3)计算: 令AE=x,则,tan HE x =α得αtan x HE =,又,tan EF x =β得βtan xEF =, ∵HE-FE=HF=CD=m, ∴,tan tan m xx =-βα 解得αββαtan tan tan tan -⋅=m x ,∴AB=.tan tan tan tan h m +-⋅αββα反思:在多个直角三角形中一定要认真分析各条线段之间的关系(包括三角函数关系、相等关系),运用方程求解,有时可起到事半功倍之效.快乐套餐:1.(泰安)如图5,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示)2.(安徽)如图6,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(1.73,计算结果保留整数)ABCD图5第19题图EDCB A450600图6参考答案:1. (300 .2. ∵AB=8,BE=15,∴AE=23,在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan60°=CD=CE-DE=23≈2.95≈3.即这块广告牌的高度约为3米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微点突破 三角函数、解三角形中的实际应用问题
【例 】 (2013·江苏卷)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游
客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35. (1)求索道AB 的长;
(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
解 (1)在△ABC 中,因为cos A =1213,cos C =3
5,
所以sin A =513,sin C =4
5.
从而sin B =sin[π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C =513×
35+1213×45=63
65. 由正弦定理AB sin C =AC
sin B ,得
AB =AC sin B ·sin C =1 2606365×
45=1 040(m). 所以索道AB 的长为1 040 m.
(2)设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得
d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×
12
13 =200(37t 2-70t +50),
因0≤t ≤1 040
130,即0≤t ≤8,
故当t =35
37(min)时,甲、乙两游客距离最短
.
(3)由正弦定理BC sin A =AC
sin B ,
得BC =AC sin B ·sin A =1 2606365
×
5
13=500(m).
乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设乙步行的速度为v m/min ,
由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,
所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎢⎡⎦
⎥⎤
1 25043,62514(单位:m/min)范围内. 探究提高 与解三角形有关的应用题常见两种情形:一是实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;二是实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需要作出这些三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.
【训练1】 如图,现有一个以∠AOB 为圆心角、湖岸OA 与OB 为半径的扇形湖面AOB .现欲在AB ︵上取不同于A ,B 的点C ,用渔网沿着AC ︵(AC ︵
在扇形AOB 的AB ︵
上)、半径OC 和线段CD (其中CD ∥OA )在该扇形湖面内隔出两个养殖区域——养殖区域Ⅰ和养殖区域Ⅱ.若OA =1 km ,∠AOB =π
3,∠AOC =θ
.
(1)用θ表示CD 的长度;
(2)求所需渔网长度(即图中AC ︵
、半径OC 和线段CD 长度之和)的取值范围. 解 (1)由CD ∥OA ,∠AOB =π
3,∠AOC =θ, 得∠OCD =θ,∠ODC =2π3,∠COD =π
3-θ. 在△OCD 中,由正弦定理, 得CD =233sin ⎝ ⎛⎭⎪⎫π3-θ,θ∈⎝ ⎛

⎪⎫0,π3.
(2)设渔网的长度为f (θ).
由(1)可知,f (θ)=θ+1+233sin ⎝ ⎛⎭
⎪⎫
π3-θ,
所以f ′(θ)=1-233cos ⎝ ⎛⎭
⎪⎫
π3-θ,
因为θ∈⎝ ⎛⎭⎪⎫0,π3,所以π3-θ∈⎝ ⎛

⎪⎫0,π3.
令f ′(θ)=0,得cos ⎝ ⎛⎭
⎪⎫
π3-θ=32,
所以π3-θ=π6,即θ=π6. 列表如下:
且f (0)=2,f ⎝ ⎛⎭⎪⎫π6=π+6+236,f
⎝ ⎛⎭⎪⎫π3=π
3+1, 所以f (θ)∈⎝ ⎛⎦
⎥⎤2,
π+6+236. 故所需渔网长度的取值范围是⎝ ⎛⎦
⎥⎤
2,
π+6+236(单位:km). 【训练2】 (2017·徐、宿、连、淮摸底)某城市有一直角梯形绿地ABCD ,其中∠ABC =∠BAD =90°,AD =DC =2 km ,BC =1 km.现过边界CD 上的点E 处铺设一条直的灌溉水管EF ,将绿地分成面积相等的两部分.
(1)如图1,若E 为CD 的中点,F 在边界AB 上,求灌溉水管EF 的长度; (2)如图2,若F 在边界AD 上,求灌溉水管EF 的最短长度. 解 (1)因为AD =DC =2,BC =1,∠ABC =∠BAD =90°,
所以AB = 3.
如图1,取AB 的中点G ,连接EG ,则EG =3
2,
则四边形BCEF 的面积为
1
2S 梯形ABCD =S 梯形BCEG +S △EFG ,
即12×12×3×(1+2)=12×32×⎝ ⎛⎭⎪⎫1+32+12×GF ×32,解得GF =
36, 所以EF =EG 2
+GF 2
=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭
⎪⎫362 =21
3(km).
答:灌溉水管EF 的长度为21
3 km. (2)如图2,连接AC ,设DE =a ,DF =b ,
图2
在△ABC 中,CA =12+(3)2=2,所以在△ADC 中, AD =DC =CA =2, 所以∠ADC =60°, 所以△DEF 的面积为S △DEF =12ab sin 60°=3
4ab ,
又S 梯形ABCD =12×3×(1+2)=33
2,
所以S△DEF=1
2S梯形ABCD,即
3
4ab=
33
4,即ab=3.
在△DEF中,由余弦定理,
得EF=a2+b2-ab≥ab=3,
当且仅当a=b=3时,取等号.
故灌溉水管EF的最短长度为 3 km. 答:灌溉水管EF的最短长度为 3 km.。

相关文档
最新文档