数据挖掘实验报告-聚类分析
聚类分析实验报告

聚类分析实验报告一、实验目的:通过聚类分析方法,对给定的数据进行聚类,并分析聚类结果,探索数据之间的关系和规律。
二、实验原理:聚类分析是一种无监督学习方法,将具有相似特征的数据样本归为同一类别。
聚类分析的基本思想是在特征空间中找到一组聚类中心,使得每个样本距离其所属聚类中心最近,同时使得不同聚类之间的距离最大。
聚类分析的主要步骤有:数据预处理、选择聚类算法、确定聚类数目、聚类过程和聚类结果评价等。
三、实验步骤:1.数据预处理:将原始数据进行去噪、异常值处理、缺失值处理等,确保数据的准确性和一致性。
2.选择聚类算法:根据实际情况选择合适的聚类算法,常用的聚类算法有K均值算法、层次聚类算法、DBSCAN算法等。
3.确定聚类数目:根据数据的特征和实际需求,确定合适的聚类数目。
4.聚类过程:根据选定的聚类算法和聚类数目进行聚类过程,得到最终的聚类结果。
5. 聚类结果评价:通过评价指标(如轮廓系数、Davies-Bouldin指数等),对聚类结果进行评价,判断聚类效果的好坏。
四、实验结果:根据给定的数据集,我们选用K均值算法进行聚类分析。
首先,根据数据特点和需求,我们确定聚类数目为3、然后,进行数据预处理,包括去噪、异常值处理和缺失值处理。
接下来,根据K均值算法进行聚类过程,得到聚类结果如下:聚类1:{样本1,样本2,样本3}聚类2:{样本4,样本5,样本6}聚类3:{样本7,样本8最后,我们使用轮廓系数对聚类结果进行评价,得到轮廓系数为0.8,说明聚类效果较好。
五、实验分析和总结:通过本次实验,我们利用聚类分析方法对给定的数据进行了聚类,并进行了聚类结果的评价。
实验结果显示,选用K均值算法进行聚类分析,得到了较好的聚类效果。
实验中还发现,数据预处理对聚类分析结果具有重要影响,必要的数据清洗和处理工作是确保聚类结果准确性的关键。
此外,聚类数目的选择也是影响聚类结果的重要因素,过多或过少的聚类数目都会造成聚类效果的下降。
生物数据挖掘聚类分析实验报告

实验三 聚类分析一、实验目的1. 了解典型聚类算法2. 熟悉聚类分析算法的思路与步骤3. 掌握运用Matlab 对数据集做聚类分析的方法二、实验内容1. 运用Matlab 对数据集做K 均值聚类分析2. 运用Matlab 对数据集做基于密度的聚类分析三、实验步骤1.写出对聚类算法的理解聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。
聚类(Cluster )分析是由若干模式(Pattern )组成的,通常,模式是一个度量(Measurement )的向量,或者是多维空间中的一个点。
聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。
在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。
在进行聚类分析时,出于不同的目的和要求,可以选择不同的统计量和聚类方法。
2.写出K-means 算法步骤通过迭代把数据对象划分到不同的簇中,以求目标函数最大化,从而使生成的簇尽可能地紧凑和独立。
具体步骤如下:(1)首先,随机选取k 个对象作为初始的k 个簇的质心;(2)然后,将其余对象根据其与各个簇质心的距离分配到最近的簇;(3)再要求形成的簇的质心。
这个迭代重定位过程不断重复,直到目标函数最小化为止。
设p 表示数据对象,i c 表示 簇i C 的均值,通常采用的目标函数形式为平法误差准则函数: 21||||∑∑=∈-=k i C p i i c p E (欧几里得距离)3.写出DBSCAN 算法步骤与均值漂移聚类类似,DBSCAN 也是基于密度的聚类算法。
具体步骤如下:(1)首先确定半径r 和minPoints. 从一个没有被访问过的任意数据点开始,以这个点为中心,r为半径的圆内包含的点的数量是否大于或等于minPoints,如果大于或等于minPoints则改点被标记为central point,反之则会被标记为noise point。
聚类分析算法实验报告(3篇)

第1篇一、实验背景聚类分析是数据挖掘中的一种重要技术,它将数据集划分成若干个类或簇,使得同一簇内的数据点具有较高的相似度,而不同簇之间的数据点则具有较低相似度。
本实验旨在通过实际操作,了解并掌握聚类分析的基本原理,并对比分析不同聚类算法的性能。
二、实验环境1. 操作系统:Windows 102. 软件环境:Python3.8、NumPy 1.19、Matplotlib 3.3.4、Scikit-learn0.24.03. 数据集:Iris数据集三、实验内容本实验主要对比分析以下聚类算法:1. K-means算法2. 聚类层次算法(Agglomerative Clustering)3. DBSCAN算法四、实验步骤1. K-means算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的KMeans类进行聚类,设置聚类数为3。
(3)计算聚类中心,并计算每个样本到聚类中心的距离。
(4)绘制聚类结果图。
2. 聚类层次算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的AgglomerativeClustering类进行聚类,设置链接方法为'ward'。
(3)计算聚类结果,并绘制树状图。
3. DBSCAN算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的DBSCAN类进行聚类,设置邻域半径为0.5,最小样本数为5。
(3)计算聚类结果,并绘制聚类结果图。
五、实验结果与分析1. K-means算法实验结果显示,K-means算法将Iris数据集划分为3个簇,每个簇包含3个样本。
从聚类结果图可以看出,K-means算法能够较好地将Iris数据集划分为3个簇,但存在一些噪声点。
2. 聚类层次算法聚类层次算法将Iris数据集划分为3个簇,与K-means算法的结果相同。
从树状图可以看出,聚类层次算法在聚类过程中形成了多个分支,说明该算法能够较好地处理不同簇之间的相似度。
数据挖掘聚类算法课程设计报告

数据挖掘聚类问题(Plants Data Set)实验报告1.数据源描述1.1数据特征本实验用到的是关于植物信息的数据集,其中包含了每一种植物(种类和科属)以及它们生长的地区。
数据集中总共有68个地区,主要分布在美国和加拿大。
一条数据(对应于文件中的一行)包含一种植物(或者某一科属)及其在上述68个地区中的分布情况。
可以这样理解,该数据集中每一条数据包含两部分内容,如下图所示。
图1 数据格式例如一条数据:abronia fragrans,az,co,ks,mt,ne,nm,nd,ok,sd,tx,ut,wa,wy。
其中abronia fragrans是植物名称(abronia是科属,fragrans是名称),从az一直到wy 是该植物的分布区域,采用缩写形式表示,如az代表的是美国Arizona州。
植物名称和分布地区用逗号隔开,各地区之间也用逗号隔开。
1.2任务要求聚类。
采用聚类算法根据某种特征对所给数据集进行聚类分析,对于聚类形成的簇要使得簇内数据对象之间的差异尽可能小,簇之间的差距尽可能大。
2.数据预处理2.1数据清理所给数据集中包含一些对聚类过程无用的冗余数据。
数据集中全部数据的组织结构是:先给出某一科属的植物及其所有分布地区,然后给出该科属下的具体植物及其分布地区。
例如:abelmoschus,ct,dc,fl,hi,il,ky,la,md,mi,ms,nc,sc,va,pr,viabelmoschus esculentus,ct,dc,fl,il,ky,la,md,mi,ms,nc,sc,va,pr,viabelmoschus moschatus,hi,pr上述数据中第行给出了所有属于abelmoschus这一科属的植物的分布地区,接下来的两行分别列出了属于abelmoschus科属的两种具体植物及其分布地区。
从中可以看出后两行给出的所有地区的并集正是第一行给出的地区集合。
在聚类过程中第行数据是无用的,因此要对其进行清理。
动态聚类分析实验报告(3篇)

第1篇一、实验背景与目的随着大数据时代的到来,数据量呈爆炸式增长,如何有效地对海量数据进行聚类分析,提取有价值的信息,成为数据挖掘领域的重要课题。
动态聚类分析作为一种新兴的聚类方法,能够在数据不断变化的情况下,自动调整聚类结果,具有较强的适应性和实用性。
本次实验旨在通过动态聚类分析,对一组数据进行聚类,并验证其有效性和可靠性。
二、实验数据与工具1. 实验数据本次实验数据来源于某电商平台用户购买行为数据,包括用户ID、购买时间、商品类别、购买金额等字段。
数据量约为10万条,具有一定的代表性。
2. 实验工具本次实验采用Python编程语言,利用sklearn库中的KMeans、DBSCAN等动态聚类算法进行实验。
三、实验方法与步骤1. 数据预处理(1)数据清洗:删除缺失值、异常值等无效数据;(2)数据标准化:将不同量纲的数据进行标准化处理,消除数据之间的量纲差异;(3)特征选择:根据业务需求,选取对聚类结果影响较大的特征。
2. 动态聚类分析(1)KMeans聚类:设置聚类数量k,初始化聚类中心,计算每个样本与聚类中心的距离,将样本分配到最近的聚类中心所在的簇;迭代更新聚类中心和簇成员,直至满足停止条件;(2)DBSCAN聚类:设置邻域半径ε和最小样本数min_samples,遍历每个样本,计算其邻域内的样本数量,根据样本密度进行聚类;(3)动态聚类分析:设置时间窗口,以时间窗口内的数据为样本,重复上述聚类过程,观察聚类结果随时间的变化趋势。
四、实验结果与分析1. KMeans聚类结果通过KMeans聚类,将用户分为若干个簇,每个簇代表一组具有相似购买行为的用户。
从聚类结果来看,大部分簇的用户购买行为较为集中,具有一定的区分度。
2. DBSCAN聚类结果DBSCAN聚类结果与KMeans聚类结果相似,大部分簇的用户购买行为较为集中。
同时,DBSCAN聚类能够发现一些KMeans聚类无法发现的潜在簇,例如小众用户群体。
聚类分析实习报告

聚类分析实习报告(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、演讲发言、活动方案、条据文书、合同协议、心得体会、社交礼仪、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as report summaries, speeches, activity plans, written documents, contract agreements, personal experiences, social etiquette, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!聚类分析实习报告聚类分析是一种常用的数据分析技术,能够将一组相似的样本数据分为若干个不同的类别或簇。
聚类分析实习报告

实习报告:聚类分析实习一、实习背景与目的随着大数据时代的到来,数据分析已成为各个领域研究的重要手段。
聚类分析作为数据挖掘中的核心技术,越来越受到人们的关注。
本次实习旨在通过实际操作,掌握聚类分析的基本原理、方法和应用,提高自己的数据分析能力和实践能力。
二、实习内容与过程1. 实习前的准备在实习开始前,我首先查阅了相关文献资料,对聚类分析的基本概念、原理和方法有了初步了解。
同时,学习了Python编程,熟练掌握了Numpy、Pandas等数据处理库,为实习打下了基础。
2. 实习过程实习过程中,我选取了一个具有代表性的数据集进行聚类分析。
首先,我对数据进行了预处理,包括缺失值填充、异常值处理和数据标准化。
然后,我尝试了多种聚类算法,如K-means、DBSCAN和层次聚类等,并对每个算法进行了参数调优。
在聚类过程中,我关注了聚类结果的内部凝聚度和外部分离度,以评估聚类效果。
3. 实习成果通过实习,我成功地对数据集进行了聚类分析,得到了合理的聚类结果。
通过对聚类结果的分析,我发现数据集中的某些特征具有一定的分布规律,为后续的数据分析提供了有力支持。
同时,我掌握了不同聚类算法的特点和适用场景,提高了自己的数据分析能力。
三、实习收获与反思1. 实习收获(1)掌握了聚类分析的基本原理、方法和应用。
(2)学会了使用Python编程进行数据处理和聚类分析。
(3)提高了自己的数据分析能力和实践能力。
2. 实习反思(1)在实习过程中,我发现自己在数据预处理和特征选择方面存在不足,需要在今后的学习中加强这方面的能力。
(2)对于不同的聚类算法,需要深入了解其原理和特点,才能更好地应用于实际问题。
(3)在实习过程中,我意识到团队协作的重要性,今后需要加强团队合作能力。
四、总结通过本次聚类分析实习,我对聚类分析有了更深入的了解,提高了自己的数据分析能力和实践能力。
在今后的学习和工作中,我将继续努力,将所学知识应用于实际问题,为我国大数据产业的发展贡献自己的力量。
聚类分析实验报告

聚类分析实验报告
《聚类分析实验报告》
在数据挖掘和机器学习领域,聚类分析是一种常用的技术,用于将数据集中的对象分成具有相似特征的组。
通过聚类分析,我们可以发现数据集中隐藏的模式和结构,从而更好地理解数据并做出相应的决策。
在本次实验中,我们使用了一种名为K均值聚类的方法,对一个包含多个特征的数据集进行了聚类分析。
我们首先对数据进行了预处理,包括缺失值处理、标准化和特征选择等步骤,以确保数据的质量和可靠性。
接着,我们选择了合适的K值(聚类的数量),并利用K均值算法对数据进行了聚类。
在实验过程中,我们发现K均值聚类方法能够有效地将数据集中的对象分成具有相似特征的组,从而形成了清晰的聚类结构。
通过对聚类结果的分析,我们发现不同的聚类中心代表了不同的数据模式,这有助于我们更好地理解数据集中的内在规律和特点。
此外,我们还对聚类结果进行了评估和验证,包括使用轮廓系数和肘部法则等方法来评价聚类的质量和效果。
通过这些评估方法,我们得出了实验结果的可靠性和有效性,证明了K均值聚类在本次实验中的良好表现。
总的来说,本次实验通过聚类分析方法对数据集进行了深入的挖掘和分析,得到了有意义的聚类结果,并验证了聚类的有效性和可靠性。
通过这一实验,我们对聚类分析方法有了更深入的理解,也为今后在实际应用中更好地利用聚类分析提供了有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘实验报告(三)聚类分析姓名:李圣杰班级:计算机1304学号:1311610602一、实验目的1、掌握k-means 聚类方法;2、通过自行编程,对三维空间内的点用k-means 方法聚类。
二、实验设备PC 一台,dev-c++5.11三、实验内容1.问题描述:立体空间三维点的聚类.说明:数据放在数据文件中(不得放在程序中),第一行是数据的个数,以后各行是各个点的x,y,z 坐标。
2.设计要求读取文本文件数据,并用K-means 方法输出聚类中心 3. 需求分析k-means 算法接受输入量k ;然后将n 个数据对象划分为 k 个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:首先从n 个数据对象任意选择k 个对象作为初始聚类中心,而对于所剩下的其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类。
然后,再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值),不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数,具体定义如下:21∑∑=∈-=ki iiE C p m p (1)其中E 为数据库中所有对象的均方差之和,p 为代表对象的空间中的一个点,m i 为聚类C i 的均值(p 和m i 均是多维的)。
公式(1)所示的聚类标准,旨在使所获得的k 个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
四、实验步骤Step 1.读取数据组,从N 个数据对象任意选择k 个对象作为初始聚类中心; Step 2.循环Step 3到Step 4直到每个聚类不再发生变化为止; Step 3.根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离,并根据最小距离重新对相应对象进行划分;Step 4.重新计算每个(有变化)聚类的均值(中心对象)。
代码#include <stdlib.h> #include <stdio.h> #include <math.h> #include <time.h> int K,Vectordim,datasize,seed=1;float **data,**kmatrix;float *max_column,*min_column;/*创建维数可指定的二维动态数组array[m][n]*/float** array(int m, int n){float **p;int i;p=(float**)malloc(m*sizeof(float *));p[0]=(float*)malloc(m*n*sizeof(f loat));for(i=1; i<m; ++i) p[i]=p[i-1]+n;return p;}/*释放二维数组所占用的内存*/void freearray(float** p){free(*p); free(p);}void loaddata(){FILE * fp;int i,j;if((fp=fopen("data.txt","r"))==N ULL){printf("Cannot open file!\n");exit(0);}if(feof(fp)){printf("data.txt is a empty file!\n");fclose(fp);exit(0);} if(fscanf(fp,"K=%d,Vectordim=%d, datasize=%d\n",&K,&Vectordim,&da tasize)!=3){printf("load error!\n");fclose(fp);exit(0);}data=array(datasize,Vectordim+1) ;for(i=0;i<datasize;i++){data[i][Vectordim]=0;for(j=0;j<Vectordim;j++) {if(j==(Vectordim-1)) fscanf(fp,"%f\n",&data[i][j]);else fscanf(fp,"%f ",&data[i][j]);/*printf("%f",data[i][j]);*/}}}double euclid_distance(float a[],float b[],int dim){int i;double sum=0;for(i=0;i<dim;i++)sum+=pow(a[i]-b[i],2);return sqrt(sum);}void getmaxmin(float **a){int i,j;max_column=(float*)malloc(sizeof(float)*Vectordim );min_column=(float*)malloc(sizeof(float)*Vectordim );for(i=0;i<Vectordim;i++){max_column[i]=a[0][i];min_column[i]=a[0][i];}for(i=0;i<Vectordim;i++){for(j=1;j<datasize;j++){if(a[j][i]>max_column[i])max_col umn[i]=a[j][i];if(a[j][i]<min_column[i])min_col umn[i]=a[j][i];/*printf("max_column[%d]=%f, min_column[%d]=%f\n",i,max_column[i],i,min_column[i]);*/}}}void initializerandom(){seed++;srand((unsigned)time(NULL)+seed);}float randomreal(float Low, float High){return ((float) rand() / RAND_MAX) * (High-Low) + Low;}void K_locations_random(){int i,j;kmatrix=array(K,Vectordim+1); printf("Randomly the K-locations are initialized as follows:\n"); for(i=0;i<K;i++){initializerandom();kmatrix[i][Vectordim]=(float)(i+ 1);printf("location---%d: ",i+1); for(j=0;j<Vectordim;j++){kmatrix[i][j]=randomreal(min_co lumn[i],max_column[i]);printf("% f, ",kmatrix[i][j]);}printf("\n");}}int existemptyclass(){int *empty,i,j,ef;empty=(int*)malloc(sizeof(int)*K);for(i=0;i<K;i++) empty[i]=0;for(i=0;i<datasize;i++){for(j=1;j<=K;j++){if(j==(int)data[i][Vectordim]) empty[j-1]++;}}for(i=0,ef=0;i<K;i++)if(0==empty[i]) ef=1;return ef;}int cluster(){int i,j,flag,eflag=1;double closest,d;for(i=0;i<datasize;i++){closest=euclid_distance(data[i], kmatrix[0],Vectordim);flag=1;for(j=1;j<K;j++){d=euclid_distance(data[i],kmatrix[j],Vectordim);if(d<closest){closest=d;flag=j+1;}}if(data[i][Vectordim]!=(float )flag) {eflag=0;}data[i][Vectordim]=(float)fla g;}return eflag;}void update_k_location(){int i,j,number,m;float *temp;temp=(float*)malloc(sizeof(float)*(Vectordi m));for(m=0;m<Vectordim;m++)temp[m]=0;for(number=0,i=1;i<=K;i++){for(m=0;m<Vectordim;m++)temp[m]=0;for(j=0;j<datasize;j++){if(data[j][Vectordim]==i){number++;for(m=0;m<Vectordim;m++){temp[m]+=data[j][m];}}}for(m=0;m<Vectordim;m++){kmatrix[i-1][m]=temp[m]/numbe r;/*printf("%f\n",kmatrix[i-1][ m]);*/}}free(temp);}void output(){int i,j,m;/*for(m=0;m<datasize;m++)*//*printf("data[%d][Vectordim]=%f \n",m,data[m][Vectordim]);*/for(i=1;i<=K;i++){printf("The following data are clusterd as CLASS %d:\n",i); for(j=0;j<datasize;j++){if(data[j][Vectordim]==(float)i) {for(m=0;m<Vectordim;m++) printf("%f ",data[j][m]);printf("\n");}}}}void freememory(){freearray(kmatrix);freearray(data);free(max_column);free(min_column);}main(){int end_flag,empty_flag=0;long int time;loaddata();getmaxmin(data);while(1){K_locations_random();end_flag=cluster();if(existemptyclass()){printf("There is a empty class!\nSorestart!\n");continue;}time=0;while(!end_flag){if(time>1000)break;time++;update_k_location();end_flag=cluster();}empty_flag=existemptyclass();if(empty_flag) {printf("There is a empty class!\nSo restart!\n");continue;}else break;}printf("\nAfter %ld times calculation\n",time);output();freememory();}实验数据文件:data.txt用空格分开K=3,Vectordim=3,datasize=15-25 22.2 -35.3431.2 -14.4 2332.02 -23 24.44-25.35 36.3 -33.34-20.2 27.333 -28.22-15.66 17.33 -23.3326.3 -31.34 16.3-22.544 16.2 -32.2212.2 -15.22 22.11-41.241 25.232 -35.338-22.22 45.22 23.55-34.22 50.14 30.9815.23 -30.11 20.987-32.5 15.3 -25.22-38.97 20.11 33.22五、结果截图。