三轴试验与应力路径

合集下载

不同应力路径下砂岩真三轴试验及数值模拟

不同应力路径下砂岩真三轴试验及数值模拟

第52卷第3期2021年3月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.52No.3Mar.2021不同应力路径下砂岩真三轴试验及数值模拟李江腾,刘双飞,赵远,郭群(中南大学资源与安全工程学院,湖南长沙,410083)摘要:利用TRW-3000室内真三轴试验系统开展不同应力路径下的真三轴加载、卸载试验,研究其相应的力学特性,在此基础上开展PFC 3D 数值模拟对比试验,探讨细观裂纹演化规律。

研究结果表明:岩石最大、最小主应力差(σ1−σ3)与中间主应力σ2呈线性相关;基于Drucker −Prager 准则拟合不同应力路径下岩石强度效果良好;与加载相比,卸载条件下岩石黏聚力c 、内摩擦角φ均有所降低;PFC 3D 数值模拟试验破坏模式与室内试验破坏模式基本吻合;在不同应力路径下,数值模型剪切裂纹数与拉伸裂纹数均随ε1增大而增大,剪切裂纹比例曲线ε1随变化趋势呈“И”型,且当主应变ε1相同时,随着中间主应力σ2增大,各类裂纹数量减少;与加载相比,卸载时各类裂纹数量快速增加,剪切裂纹数占比降低,曲线由加载的“上凸”型转变为卸载的“下凹”型。

关键词:中间主应力;应力路径;数值模拟;裂纹演化中图分类号:TU43文献标志码:A开放科学(资源服务)标识码(OSID)文章编号:1672-7207(2021)03-0693-08True triaxial test and numerical simulation of sandstone indifferent stress pathsLI Jiangteng,LIU Shuangfei,ZHAO Yuan,GUO Qun(School of Resources and Safety Engineering,Central South University,Changsha,410083,China)Abstract:TRW-3000indoor true triaxial test system was used to carry out true triaxial loading and unloading tests in different stress paths to study the corresponding mechanical characteristics of the sandstone.On this basis,PFC 3D numerical simulation comparison test was carried out to explore the evolution law of microscopic cracks.The results show that the difference (σ1−σ3)between the maximum and the minimum principal stress of the rock is linearly related to the intermediate principal stress σ2.The Drucker-Prager criterion has good effect in fitting rock strength in different stress pared to load path,the cohesion c and the internal friction angle φof the rock are reduced under unloading conditions.The results of PFC 3D numerical simulation experiment are consistent with those of laboratory experiment.In different stress paths,the numbers of shear cracks and tensile cracks of theDOI:10.11817/j.issn.1672-7207.2021.03.004收稿日期:2020−04−10;修回日期:2020−06−12基金项目(Foundation item):国家自然科学基金资助项目(51979293,51774322);湖南省水利厅科技项目(2015131-5)(Projects(51979293,51774322)supported by the National Natural Science Foundation of China;Project(2015131-5)supported by the Science and Technology Program of Water Resources Department of Hunan Province)通信作者:郭群,高级实验师,从事岩石力学研究;E-mail:****************引用格式:李江腾,刘双飞,赵远,等.不同应力路径下砂岩真三轴试验及数值模拟[J].中南大学学报(自然科学版),2021,52(3):693−700.Citation:LI Jiangteng,LIU Shuangfei,ZHAO Yuan,et al.True triaxial test and numerical simulation of sandstone in different stress paths[J].Journal of Central South University(Science and Technology),2021,52(3):693−700.第52卷中南大学学报(自然科学版)numerical model increase with the increase of the maximum principal strainε1.Shear crack ratio curve with themaximum principal strainε1trends show"И"type.Under the same maximum principal strainε1,with the increaseof the intermediate principal stressσ2,the numbers of all kinds of cracks pared with loading,the number of various cracks increases rapidly and the proportion of shear cracks decreases.The curve changes from "upward convex"type under loading to"downward concave"type under unloading.Key words:intermediate principal stress;stress path;numerical simulation;crack evolution隧道、边坡、矿山等施工导致围岩应力状态发生变化,多表现为沿开挖工作面的应力降低,在此过程中,岩石表现出的力学性质直接影响工程的安全。

试验六三轴试验

试验六三轴试验

试验六三轴试验实验六:三轴试验⼀、基本原理三轴剪切试验是⽤来测定试件在某⼀固定周围压⼒下的抗剪强度,然后根据三个以上试件,在不同周围压⼒下测得的抗剪强度,利⽤莫尔-库仑破坏准则确定⼟的抗剪强度参数。

三轴剪切试验可分为不固结不排⽔试验(UU )、固结不排⽔试验(CU )以及固结排⽔剪试验(CD )。

1、不固结不排⽔试验:试件在周围压⼒和轴向压⼒下直⾄破坏的全过程中均不允许排⽔,⼟样从开始加载⾄试样剪坏,⼟中的含⽔率始终保持不变,可测得总抗剪强度指标U C 和U φ;2、固结不排⽔试验:试样先在周围压⼒下让⼟体排⽔固结,待固结稳定后,再在不排⽔条件下施加轴向压⼒直⾄破坏,可同时测定总抗剪强度指标CU C 和CU φ或有效抗剪强度指标C ′和φ′及孔隙⽔压⼒系数;3、固结排⽔剪试验:试样先在周围压⼒下排⽔固结,然后允许在充分排⽔的条件下增加轴向压⼒直⾄破坏,可测得总抗剪强度指标d C 和d φ。

⼆、试验⽬的1、了解三轴剪切试验的基本原理;2、掌握三轴剪切试验的基本操作⽅法;3、了解三轴剪切试验不同排⽔条件的控制⽅法和孔隙压⼒的测量原理;4、进⼀步巩固抗剪强度的基本理论。

三、试验设备1、三轴剪⼒仪(分为应⼒控制式和应变控制式两种)。

(1)三轴压⼒室:压⼒室是三轴仪的主要组成部分,它是由⼀个⾦属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压⼒室底座通常有3个⼩孔分别与围压系统以及体积变形和孔隙⽔压⼒量测系统相连。

(2)轴向加荷传动系统:采⽤电动机带动多级变速的齿轮箱,或者采⽤可控硅⽆级调速,根据⼟样性质及试验⽅法确定加荷速率,通过传动系统使⼟样压⼒室⾃下⽽上的移动,使试件承受轴向压⼒。

(3)轴向压⼒测量系统:通常的试验中,轴向压⼒由测⼒计(测⼒环或称应变圈等等)来反映⼟体的轴向荷重,测⼒计为线性和重复性较好的⾦属弹性体组成,测⼒计的受压变形由百分表测读。

轴向压⼒系统也可由荷重传感器来代替。

(4)周围压⼒稳压系统:采⽤调压阀控制,调压阀当控制到某⼀固定压⼒后,它将压⼒室的压⼒进⾏⾃动补偿⽽达到周围压⼒的稳定。

三轴试验相关理论知识

三轴试验相关理论知识

三轴试验相关理论知识一、基本概念 1.常用术语法向力——垂直于滑动面上的应力,也叫正应力σ。

σ=N/A (N :作用于滑动面的力;A :滑动面的面积)剪应力——与法向力垂直的切向应力τ。

τ=F/A (F :与法向力相垂直的摩擦力) 主平面——没有剪应力的平面。

主应力——主平面上的法向应力(正应力)。

在相互垂直的立方体上(图1)又分成:大主应力(σ1)——轴向应力; 小主应力(σ3)——径向应力;中主应力(σ2)——界于大、小主应力之间的径向应力。

(常规三轴试验的试样呈圆柱形,中、小主应力相等,即σ2=σ3,谓之轴对称条件下的试验。

)偏应力——轴向应力与径向应力(或大、小主应力)之差,即(σ1-σ3)。

摩檫角——剪应力达到极限(土体开始滑动)时的剪破角Φ,此时Φ=α(tan Φ为摩檫系数) 图1 主应力与主应力面抗剪强度——随着剪应力的增加,剪阻力亦相应增加。

而剪阻力达到一定限度就不再增大这个强度称为土的抗剪强度。

2.摩尔圆摩尔圆源自材料力学之应力圆,由于是科学家摩尔首先提出的,故叫摩尔圆。

(图2)通过土体内某微小单元的任一平面,一般都作用着一个合应力,并可分解为法向应力(σ)和剪应力(τ)两个分量。

如图3,沿圆柱体轴线取一个垂直面作应力分析,可得如下的关系式:将两式平方后相加,整理后得出 图2 摩尔应力园上式的几何意义是,在σ-τ坐标系里以(σ1+σ3)/ 2,0为圆心、(σ1-σ3)/ 2为半径的圆。

ασστασσσσσ2sin )(212cos )(21)(21313131-=-++=2312231)2()2(σστσσσ-=++-在三轴试验轴对称时的平面上,当试样给定σ1和σ3,如果已知试样上的大、小主应力面的方向,就可以从摩尔圆上确定试样内任一斜面上的剪应力τ和法向应力σ。

摩尔圆在σ-τ坐标系里的应力关系如图4所示。

图的右边为一三轴试样,左边为相应的摩尔圆。

过圆的D 点(σ1)作平行于试样大主应力面AB 线,交圆上Op 点;过圆E 点(σ3)作平行于小主应 力面AC 线,必通过Op 点(∵AB 与AC 正交,∠DEOp 是半圆的圆周角)。

粘性土三轴剪切试验的实质应力和破坏条件分析

粘性土三轴剪切试验的实质应力和破坏条件分析

粘性土三轴剪切试验的实质应力和破坏条件分析摘要:粘性土具有压缩强度大、拉锁强度小的突出特征。

作为粘性土实质特性研究的重要方式,三轴剪切实验能过实现其实质应力和破坏条件的有效分析。

本文在阐述三轴剪切实验应用原理的基础上,从总应力表示和实质应力表示两个角度对三轴剪切实验的应力路径的进行分析;以期有利于人们对粘性土实质应力和破坏条件把握水平的提升,进而推动相关工程建设的规范发展。

关键词:粘性土;三轴剪切实验;实质应力;破坏条件粘性土是工程建设的常见土体材料之一,其在压硬性和剪胀性等方面的力学特征尤为突出。

然天然沉积的粘性土在应力状态上处于不等压固结状态,一旦受到外部作用,其必然在初始应力各向异性的影响下,产生一定的强度改变和变形破坏,对工程的建设造成影响。

基于此,进行粘性土实质应力和破坏条件的分析已成为粘性土基础工程建的重要问题。

目前,三轴剪切试验是实现这些特性分析的有效手段,本文就此展开分析。

一、三轴剪切实验的应用原理作为一种抗剪强度实验,三轴剪切实验以三轴仪为基础,通过对某一固定试样增加轴向压力,探究其实质应力强度和破坏条件的实践过程中。

实践过程中,人们也将其称为三轴压缩实验,其中摩尔-库伦强度理论是其实验设计的重要支撑。

具体而言,在三轴剪切实验中,其假定某一土体试样处于平衡状态,则其必然存在三种相互垂直的应力δ1、δ2和δ3,且其受力方向分别为x、y和z,同时与三个主应力垂直垂直的作用面分别称为大主应力面、中主应力面和小主应力面。

此时,在试样上进行轴向主应力δ1的增强,再不改变其它应力的状况下,使得土样的剪应力不断增大,直至破坏;由此,破坏时刻的应力值为土块试样的最大抗剪强度值,同时,实验人员也实现了试样破坏条件的具体把握。

二、通过总应力进行三轴实验应力路径表达初始应力状态标准下,重塑土和原状土试样的三轴剪切试验是三轴实验的两种基本形态[1]。

相比而言,原始场地转移和初始应力状态缺失是重塑土的基本特征;而原状土试样的三轴剪切实验以原始场地为基本载体,即其处于不等压固结状态,静止侧压力的系数K0不等于1。

不同应力路径下上海软黏土三轴不排水剪切孔压的对比

不同应力路径下上海软黏土三轴不排水剪切孔压的对比

上海国土资源doi:10.3969/j.issn.2095-1329.2023.03.005不同应力路径下上海软黏土三轴不排水剪切孔压的对比高彦斌,晁 浩(同济大学土木工程学院,上海 200092 )摘 要:软黏土不排水剪切过程中的孔隙水压力分析是软土工程的一个重要研究方向。

三轴试验是研究软黏土不排水剪切孔压及孔压系数的传统方法,而孔压以及孔压系数的大小与应力路径以及剪应变的大小有关。

利用 GDS 应力路径三轴仪,对上海软黏土原状土样与重塑土样进行了三轴ICUC (等压固结压缩剪切),三轴ACUC (K 0固结压缩剪切)和三轴ACUE (K 0固结拉伸剪切)三种应力路径的不排水剪切试验,对比这三种试验的剪切孔压及孔压系数的大小及变化规律,给出结构性以及各向异性对剪切孔压的影响规律。

最后根据试验结果给出了上海软黏土在变形较大情况下的剪切孔压—应变双曲线模型的参数,可供设计计算采用。

关键词:软黏土;孔隙水压力;不排水剪切;三轴剪切试验中图分类号:TU41;P642.11 文献标志码:A 文章编号:2095-1329(2023)03-0028-06在软黏土地基的稳定性分析中以及固结变形分析中,不排水加载下的孔隙水压力分析是其中一个重要内容,也是土力学中的一个重要研究方向。

孔压从力学机理上可分为两部分,球应力产生的孔压p u 和偏应力产生的剪切孔压q u [1],即:p q u u u =+ (1)对于饱和黏性土,一般认为p u p = ,其中p 为球应力增量。

因此,不排水剪切孔压确定的关键点在于剪切孔压q u 的确定。

孔压公式法是确定孔压的经典方法。

该方法通过总应力增量来预估孔压增量p u 和q u 。

最经典的孔压公式有适用于三轴应力状态(三轴压缩)的斯肯普顿公式[2]:()r a r u B AB σσσ=+− (2)和适用于普遍应力状态的亨克尔公式[3] :oct u p βατ=+ (3)式中:u —孔隙水压力增量(kPa );A 和B 为斯肯普顿孔压系数;α和β为亨克尔孔压系数;a σ 为轴向应力增量(kPa );r σ 为径向应力增量;p 和oct τ 分别为球应力增量和八面体剪应力增量。

GDS常见问题整理

GDS常见问题整理

GDS常见问题汇总1. Q:什么是三轴试验(Triaxial Testing)?A:在三维坐标系XYZ中,沿三个轴向分别有三个主应力σ1σ2 σ3 如果在σ1>σ2=σ3的条件下进行试验,一般称为三轴试验。

三轴试验也叫三轴压缩试验,所使用的仪器是三轴压缩仪(也称三轴剪切仪或三轴仪)。

2. Q:什么是真三轴试验(True Triaxial Testing)?A:在三维坐标系XYZ中,沿三个轴向分别有三个主应力σ1σ2 σ3 如果在σ1>σ2>σ3的条件下进行试验,一般称为真三轴试验。

3. Q:什么是动三轴试验?A:σ1主应力按照一定的频率和振幅对试验施加动荷载的试验,一般称单向振动三轴;σ1主应力和围压σ3按照一定的频率和振幅对试验施加动荷载的试验,一般称双向振动三轴。

4. Q:什么是围压?A:土试样在取样前是受到周围土对它施加的约束力,一般称作围压σ3。

5. Q:什么是承载比(CBR)试验?A:美国加州公路局首先提出该试验方案,主要是公路系统对该项目试验感兴趣。

简单地讲就是测量贯入杆的贯入深度。

6. Q:什么是回弹模量试验?A:试样在卸载回弹时,应力与应变的比值就是回弹模量。

适用于不同含水率和不同密度的细粒土。

7. Q:什么是渗透试验?A:渗透试验一般测量流体在试样内的渗透系数,实际上就是渗透速度。

按照介质类型分为气的渗透试验,水的渗透试验;按照加载方式分为常压力(水头)试验和常流量试验。

如果介质为水,应采用纯水。

水温应为20℃。

8. Q:什么是固结试验?A:简单讲就是饱和土在荷载作用下排水和超孔隙水压力消散的过程。

可以研究沉降率和固结系数。

9. Q:固结系数有哪几种确定方法?A:时间平方根法和时间对数法。

10. Q:什么是UU、CU、CD试验?A:它们是英文缩写的简称,即UU(unconsolidation undrain)不固结不排水,CU(consolidation undrain)固结不排水,CD(consolidation drain)固结排水。

三轴 应力路径 平均主应力 广义剪应力

三轴 应力路径 平均主应力 广义剪应力

在地球科学和地质工程领域中,岩石和土壤的力学行为一直是研究的重点。

本文将围绕三轴试验、应力路径、平均主应力和广义剪应力展开深入探讨。

一、三轴试验1. 三轴试验的定义和意义三轴试验是岩土力学领域中常用的一种试验方法,通过对岩土样本施加不同的压力和剪切力,来模拟不同应力状态下岩土体的力学特性,从而研究岩土的变形和破坏规律,为工程实践提供依据。

2. 三轴试验的基本原理在三轴试验中,岩土样本会受到三个轴向的应力作用:径向应力、周向应力和轴向应力。

通过改变这三个应力的大小和方向,可以实现不同的应力路径,从而模拟岩土体在不同地质条件下的受力状态。

二、应力路径1. 应力路径的概念应力路径是指岩土体在受力过程中,应力状态随时间的变化轨迹。

不同的应力路径会导致岩土体不同的变形和破坏特性,因此对岩土工程而言,应力路径的选择和控制至关重要。

2. 应力路径的分类一般来说,应力路径可以分为固定应力路径和变动应力路径两种。

固定应力路径是指在试验或工程过程中,应力状态沿着固定的轨迹变化,而变动应力路径则是指应力状态随时间或其他因素而变化的轨迹。

三、平均主应力1. 平均主应力的定义在三轴试验中,平均主应力是指在三轴应力状态下,样本中心处受到的平均应力。

平均主应力的大小和方向对岩土体的变形和破坏具有重要影响,因此平均主应力的确定是岩土力学研究的重点之一。

2. 平均主应力对岩土体性质的影响平均主应力的大小和变化会直接影响岩土体的强度、变形和破坏特性。

对于不同类型的岩土体,其受到的平均主应力的承受能力和变形特性也各不相同,因此在岩土工程设计中需要充分考虑平均主应力的影响。

四、广义剪应力1. 广义剪应力的概念广义剪应力是指岩土体在三轴应力状态下受到的主应力和剪应力之间的复合应力状态。

广义剪应力的存在使得岩土体的变形和破坏行为更加复杂,因此在岩土力学研究和工程实践中备受关注。

2. 广义剪应力与变形行为的关系广义剪应力对岩土体的变形和破坏过程有着重要影响,特别是在复杂应力状态下,广义剪应力的作用更加显著。

土的三轴试验研究及土的应力路径.

土的三轴试验研究及土的应力路径.

3 稳定土三轴剪切试验研究
对掺入不同稳定剂的粉土进行了UU 和CU 试验,以研究在 变掺量、变龄期条件下土体的强度和变形特性。试样的制备 采用击实制样,掺稳定剂的粉土分别进行7,14,28 d 标准 养护[3,4]。为方便与前面试验结果的对比,同时也为合理地 选择稳定剂提供更充分的依据,分别选用了不同种类的稳定 剂: 4 %石灰、2 %水泥+2 %石灰、4 %SEU-2 型固化剂、 8 %SEU-2 型固化剂。
引言
稳定土[2]是采用一定的物理化学方法及其相应的技术措施使土 的物理力学性能得到改善以适应工程技术的需要。稳定土的方 法有多种,但目前国内外仍以无机结合料稳定为主,改善土性 质的产品主要有石灰、水泥、粉煤灰或这些材料的混合物,在 几十年的发展过程中,已形成了比较成熟的无机结合料稳定方 法,但从实践效果来看,不同的结合料,其稳定的效果有着明 显的差异。针对江苏地区粉土的特殊性,从提高粉土体系本身 的强度着手,同时考虑水稳定性、抗收缩性等性能进行研究。 使掺入到粉土中的固化材料不仅起到胶凝和填充的作用,最好 能激发粉土自身的活性,或者与土粒发生相互作用,基于这样 的研究思路,提出粉土固化材料的可能组分,研制成功SEU-2 型固化剂,并将其应用到高速公路的路基填筑中[5]。本文一方 面借鉴以往的研究成果,采用传统的无机结合料(石灰、水泥 +石灰)的方法;另一方面采用SEU-2 型固化剂的稳定方法, 从力学性能的角度出发,研究粉土作为路基填料的可行性。
3.1 掺4 %石灰的粉土三轴剪切试验结果
3.1 掺4 %石灰的粉土三轴剪切试验结果
3.2 掺2 %水泥+2 %石灰的粉土三轴剪切试验结果
经验表明,用水泥固化稳定土体能有效增加土体的内摩擦角和凝聚力,用 一部分水泥代替石灰也能起比单纯掺石灰更好的固化稳定效果,这在稳定 粉土的直剪试验和无侧限强度试验中已有所体现,三轴剪切的结果进一步 说明了这一点。图7 和图8分别是掺2 %水泥+2 %石灰的UU 和CU 试验结 果,试样干密度1.72 g/cm3,标准养护7 d, u c =114.75 kPa,u φ =29°; cu c =91.1 kPa, cu φ =29°。CU 试验土样在围压下固结的效 果在总应力指标上未体现出来,可由有效强度指标体现c′ =77.3 kPa,φ ′ =31°。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档