第章电位器式传感器
《传感器与检测技术》高教(4版) 第六章

差动变压器位移计
当铁芯处于中间位置时,输出电压: UU 21 U 220
当铁芯向右移动时,则输出电压: UU 21 U 220
当铁芯向左移动时,则输出电压: UU 21 U 220
输出电压的方向反映了铁芯的运动方向,大小反映了铁 芯的位移大小。
差动变压器位移计
输出特性如图所示。
差动变压器位移计
角度的精密测量。 光栅的基本结构
1、光栅:光栅是在透明的玻璃上刻有大量平行等宽等 距的刻线构成的,结构如图。
设其中透光的缝宽为a,不透光的缝宽为b,
一般情况下,光栅的透光缝宽等于不透光
的缝宽,即a = b。图中d = a + b 称为光
栅栅距(也称光栅节距或称光栅常数)。
光栅位移测试
2、光栅的分类
1、激光的特性
(1)方向性强
(2)单色性好
(3) 亮度高
(4) 相干性好
2、激光器
按激光器的工作物质可分为以下几类: (1)固体激光器:常用的有红宝石激光器、钕玻 璃激光器等。
(2)气体激光器:常用的为氦氖激光器、二氧化 碳激光器、一氧化碳激光器等。
激光式传感器
(3) 液体激光器:液体激光器分为无机液体激光器 和有机液体激光器等。
数小,对铜的热电势应尽可能小,常用材料有: 铜镍合金类、铜锰合金类、镍铬丝等。 2、骨架:
对骨架材料要求形状稳定表面绝缘电阻高, 有较好的散热能力。常用的有陶瓷、酚醛树脂 和工程塑料等。 3、电刷:
电刷与电阻丝材料应配合恰当、接触电势 小,并有一定的接触压力。这能使噪声降低。
电位器传感器
电位计式位移传感器
6.2.2 差动变压器位移计结构
1-测头; 2-轴套; 3-测杆; 4-铁芯;5-线圈架; 6-导线; 7-屏蔽筒;8-圆片弹簧;9-弹簧; 10-防尘罩
电位式传感器的原理和应用

电位式传感器的原理和应用1. 电位式传感器的原理电位式传感器是一种常见的测量和检测物理量的传感器,它基于电压的变化来感应被测量的物理量。
以下是电位式传感器的原理:1.电阻分压原理:电位式传感器通常由一个可变电阻和一个参考电阻组成。
可变电阻的阻值会随着被测量物理量的变化而发生变化,从而改变电位器的输出电压。
根据电阻的分压规律,通过测量电位器的输出电压变化,可以间接测量物理量的变化。
2.电容变化原理:某些电位式传感器采用电容作为敏感元件。
当被测量物理量导致电容发生变化时,电位器的电荷量也会相应变化,从而改变电位器的输出电压。
通过测量电位器输出电压的变化,可以获得物理量的变化信息。
3.霍尔效应原理:还有一些电位式传感器基于霍尔效应原理进行工作。
霍尔效应是当通过具有磁场的材料时,会产生横向电势差。
电位式传感器利用霍尔元件感应磁场产生的电势差,进而测量磁场强度或位置相关的物理量。
2. 电位式传感器的应用电位式传感器广泛应用于各种领域,下面列举了几个常见的应用领域:2.1 汽车工业•节气门位置传感器:用于监测发动机的加速踏板位置,以调整发动机的进气量。
•转向角度传感器:用于测量车轮的转向角度,以提供车辆稳定性控制和方向盘辅助。
2.2 工业自动化•位置传感器:用于测量机械臂、运输系统等设备的位置,以实现精确控制和定位。
•压力传感器:用于测量压力变化,监控工业设备的状态,如液体水位、气体流量等。
2.3 医疗健康•血压传感器:用于测量患者的血压,提供医生对患者心血管状况的信息。
•呼吸监测传感器:用于监测患者的呼吸频率和深度,辅助医生判断患者的呼吸系统健康状况。
2.4 环境监测•温度传感器:用于测量环境温度,供暖、通风和空调系统进行自动控制。
•湿度传感器:用于测量环境湿度,可应用于农业控制、仓储和气象观测等领域。
2.5 其他领域•机器人技术:电位式传感器用于机器人的位置检测、姿态控制和环境感知。
•游戏设备:电位式传感器用于游戏手柄的位置和动作检测,提供沉浸感和交互性。
电位器式传感器原理

电位器式传感器原理
电位器式传感器是一种常见的传感器技术,其原理基于电位器的工作原理。
电位器是由一个可调节的电阻器组成的,通过调节电位器的移动部分,可以改变电阻器的阻值。
当外部引入变量作用于电位器上时,移动部分的位置将发生改变,从而改变电阻器的阻值。
在电位器式传感器中,外部引入的变量可以是温度、压力、光强等物理量。
以温度传感器为例,传感器中的电阻器受到温度的影响,电阻值随着温度的变化而发生变化。
为了测量电位器的阻值变化,通常会将一个电压加到电位器的两端,并使用一个电压分压电路来测量电位器上的电压。
电压分压电路可以将电位器上的电压转换为与电位器阻值成比例的电压输出。
通过测量电位器上的电压输出,可以推导出外部引入变量的数值。
例如,在温度传感器中,通过校准和电阻值-温度曲线的
关系,可以得出温度的数值。
总结来说,电位器式传感器的原理是基于电位器的电阻值随外部引入变量的改变而变化,通过测量电位器上的电压输出来推导出外部变量的数值。
这种传感器原理广泛应用于测量和控制领域。
传感器技术第9章电位器式传感器

x Rx xmax Rmax
(9.1)
第9章 电位器式传感器
图9.1 电位器式位移传感器原理图
第9章 电位器式传感器
若把它作为分压器使用,且假定加在电位器A、B之
间的电压为Umax,则输出电压为
Ux
x xmax
Umax
(9.2)
图9.2所示为电位器式角度传感器。作变阻器使用,
则电阻与角度的关系为
U U max
(9.7)
n
第9章 电位器式传感器
图9.4 局部剖面和阶梯特性
第9章 电位器式传感器
实际上,当电刷从j匝移到(j+1)匝的过程中,必定会使 这两匝短路,于是电位器的总匝数从n匝减小到(n-1) 匝,这样总阻值的变化就使得在每个电压阶跃中还产生 一个小阶跃。这个小电压阶跃亦即次要分辨脉冲为
Ra
a amax
Rmax
作为分压器使用,则有
Ua
x xmax
Umax
(9.3) (9.4)
第9章 电位器式传感器
图9.2 电位器式角度传感器原理图
第9章 电位器式传感器
线性线绕电位器理想的输出、输入关系遵循上述
四个公式。因此对如图9.3所示的位移传感器来说,因为
Rmax
A
2(b
h)n
xmax nt
X Rx x Rmax xmax
第9章 电位器式传感器
电位器的负载系数为
m R max Rf
在未接入负载时,电位器的输出电压Ux为
Ux XUmax
接入负载Rf后的输出电压Uxf为
Uxf Umax1mXX(1X)
电位器在接入负载电阻Rf后的负载误差为
电位式传感器

一、概述
1. 传感器定义
传感器是借助检测元件将一种形式的信息转 换成另一种信息的装置。
物理量
ห้องสมุดไป่ตู้
电量
目前,传感器转换后的信号大多为电信号。因而从狭义 上讲,传感器是把外界输入的非电信号转换成电信号的 装置。
2. 传感器的构成
传感器由敏感器件与辅助器件组成。敏感器件 的作用是感受被测物理量,并对信号进行转换输出。 辅助器件则是对敏感器件输出的电信号进行放大、 阻抗匹配,以便于后续仪表接入。
按测量类型:
单圈电位器 多圈电位器 直线滑动式电位器
按制作方式: 线绕电位器
导电塑料电位器 导电材料粉
普通塑料基底
变阻器式传感器产品
案例:重量的自动检测--配料设备
原材料
原理:弹簧->力->位移 ->电位器->电阻
比较
重量设定
案例:煤气包储量检测 (汽车燃油表)
钢丝
煤气包
原理:钢丝->收线圈数
->电位器
->电阻
案例:玩具机器人(广州中鸣数码 )
原理:电机->转角 ->电位器 ->电阻
d
V
二、电位器式传感器
• 电位器式传感器是把被测量转换为电阻变化的一 种传感器,
•1 变阻器式传感器
• 2.等效电路分析:
•L-变阻器总长; •x-电刷移动量. •R-总电阻; •RL电刷电阻;
E
x L
R=K*l
l=R/K
L x
=R
R1
=
E E1
E1 x=L*E1 / E
2.2 电阻式传感器
x=L*E1 / E = K*E1
传感器论文

第2章电阻式传感器电阻式传感器的基本原理是将被测物理量的变化转换成电阻值的变化,再经相应的测量电路和装置显示或记录被测量值的变化。
按其工作原理可分为电位器式、应变式和固态压阻式传感器三种。
2.1电位器式传感器电位器是一种人们熟知的机电元件,广泛用于各种电气和电子设备中。
在仪表与传感器中,它主要是作为一种把机械位移输入转换为与它成一定函数关系的电阻或电压输出的传感元件来使用的。
利用电位器作为传感元件可制成各种电位器式传感器,用以测定线位移或角位移,以及一切可能转换为位移的其他被测物理量参数,如压力、加速度等。
此外,在伺服式仪表中,它还可用作反馈元件及解算元件,制成各种伺服式仪表。
电位器的优点是结构简单、尺寸小、重量轻、输出特性精度高(可达0.1%或更高)且稳定性好,可以实现线性及任意函数特性;受环境因素(温度、湿度、电磁干涉、放射性)影响较小;输出信号较大,一般不需放大。
因此,它是最早获得工业应用的传感器之一。
伹它也存在一些缺点,主要是存在摩擦和磨损。
由于有摩擦,因而要求敏感元件有较大的输出功率,否则会降低传感器的精度,又由于有滑动触点及磨损,则使电位器的可靠性和寿命受到影响。
另外线绕电位器分辨力较低也是一个主要缺点。
目前电位器围绕着减小或消除摩擦、提高使用寿命和可靠性、提高精度和分辨力等而不断得到发展。
目前电位器虽然在不少应用场合已被更可靠的无接触式的传感元件所代替,但其某些独特的性能仍然不能被完全取代,在同类传感元件中仍然占有一定的地位。
电位器的种类极其繁多。
按其结构形式不同,可分为绕线式、薄膜式、光电式、磁敏式等。
在绕线电位器中,又可分为单圈式和多圈式两种。
按其特性曲线不同,还可分为线性电位器和非线性(函数)电位器两种。
如图2-1所示为常用电位器式传感器。
图2-1 电位器传感器2.1.1线性电位器1. 电位器的理想特性、灵敏度图 2-2所示为电位器式位移传感器原理图。
如果把它作为变阻器使用,且假定全长为max x 的电位器其总电阻为max R ,电阻沿长度的分布是均匀的,则当滑臂由A 向B 移动x 后,A 到滑臂间的阻值为max max x xR R x =若把它作为分压器使用,且假定加在电位器A 、B 之间的电压为max U ,则输出电压为max max x xU U x =图2-3所示为电位器式角度传感器。
传感器技术及应用 教学大纲

传感器技术及应用——教学大纲一、课程基本信息课程编号:17z8315课程名称:传感器技术及应用Sensor Technology and Application学分/学时:3/42先修课程:主要有:物理、材料力学(工程力学)、电工基础、电子技术基础、自动控制元件、自动控制理论。
二、课程教学目的本课程是仪器科学与光电工程学院测控技术与仪器专业本科生的专业课。
其目标是:提供了解、使用、分析和初步设计常用传感器的敏感元件及系统的理论与实践基础,为后续其他专业课打下较坚实的基础。
三、课程教学任务通过本课程的学习,让学生了解传感器技术的发展现状、特点,在信息技术中的重要地位、作用;掌握信息获取范畴的广义理解;掌握常用传感器的基本工作原理,实现方式与结构;了解传感器技术在国防工业和一般工业领域中的典型应用;同时使学生能够在自动化系统、智能化系统中正确应用常用的传感器技术。
四、教学内容及基本要求本课程理论与实践紧密结合。
主要讲授传感器的性能评估,目前在工业领域中常用的几种典型的、有代表性的传感器的敏感元件的物理效应、变换原理、工作特性、主要结构、信号转换电路、误差及其补偿、合理应用等。
同时本课程也重视对新型传感器技术及应用的介绍。
传感器结构设计、工艺及所用材料只作一般介绍。
本课程主要内容可以分为三部分。
第一部分是关于传感器技术的基础理论与知识,共15个学时;第二部分是关于典型传感器的讨论,这是课程的重点,共21个学时;第三部分是关于近年来出现的新型传感器、应用示例的讨论,共6个学时。
教学的基本知识模块顺序及对应的单元教学任务。
五、教学安排及方式第1章绪论(6学时,基本掌握,讲授为主)1.1 传感器的作用与功能1.2 传感器的分类1.3 传感器技术的特点1.4 传感器技术的发展1.5 与传感器技术相关的一些基本概念1.6 本教材的特点及主要内容第2章传感器的特性(5学时,掌握,讲授为主,讨论为辅)2.1 传感器静态特性的一般描述2.2 传感器的静态标定2.3 传感器的主要静态性能指标及其计算第3章基本弹性敏感元件的力学特性(4学时,掌握,讲授为主)3.1 概述3.2 弹性敏感元件的基本特性3.3 基本弹性敏感元件的力学特性3.4 弹性敏感元件的材料第4章电位器式传感器(1学时,掌握,讨论为主,讲授为辅)4.1 概述4.2 线绕式电位器的特性4.3 非线性电位器4.4 电位器的负载特性及负载误差4.5 非线绕式电位器4.6 典型的电位器式传感器第5章应变式传感器(5学时,掌握,讲授为主,讨论为辅)5.1 应变式变换原理5.2 金属应变片5.3 应变片的动态响应特性5.4 应变片的温度误差及其补偿5.5 电桥原理5.6 典型的应变式传感器第6章压阻式传感器(2.5学时,掌握,讲授为主)6.1 压阻式变换原理6.2 典型的压阻式传感器第7章热电式传感器(2.5学时,掌握,讲授为主,讨论为辅) 7.1 概述7.2 热电阻测温传感器7.3 热电偶测温7.4 半导体P-N结测温传感器7.5 其他测温系统第8章电容式传感器(1学时,掌握,讲授为主,讨论为辅)8.1 基本电容式敏感元件8.2 电容式敏感元件的主要特性8.3 电容式变换元件的信号转换电路8.4 典型的电容式传感器8.5 电容式传感器的结构及抗干扰问题第9章变磁路式传感器(2学时,掌握,讨论为主,讲授为辅)9.1 电感式变换原理9.2 差动变压器式变换元件9.3 电涡流式变换原理9.4 霍尔效应及元件9.5 典型的变磁路式传感器第10章压电式传感器(1学时,基本掌握,讲授为主)10.1 石英晶体10.2 压电陶瓷10.3 聚偏二氟乙烯10.4 压电换能元件的等效电路10.5 压电换能元件的信号转换电路10.6 压电式传感器的抗干扰问题10.7 典型的压电式传感器第11章谐振式传感器(6学时,基本掌握,讲授为主)11.1 谐振状态及其评估11.2 闭环自激系统的实现11.3 振动筒压力传感器11.4 谐振膜式压力传感器11.5 石英谐振梁式压力传感器11.6 谐振式科里奥利直接质量流量传感器第12章微机械与智能化传感器技术(5时,基本掌握,讲授为主,讨论为辅)12.1 概述12.2 几种典型的微硅机械传感器12.3 几种典型的智能化传感器12.4 若干新型传感器应用实例分析课程总结(1学时,讲授为主,讨论为辅)六、教学的基本思路“传感器技术及应用”教学以“一条主线、二个基础、三个重点、多个独立模块”的基本原则来进行。
2.1 电位器

2、摩托车汽油油位传感器
结构参数ρ、A、t不变, 只改变骨架宽度b或高度h
曲线上任取一小段,可视为直线,用图中折线逼近曲线 电刷位移为Δx,对应的电阻变化就是ΔR 线性电位器灵敏度公式仍然成立:
(1)骨架高度
只要骨架高度 满足左边式子, 即可实现线性 灵敏度要求。
(2)行程分辨率与阶梯误差 变骨架高度式电位器的绕线节距是不变的 ,因 此其行程分辨率与线性电位器计算式相同,则有
各段并联电阻的大小,可由下式求出:
r1 // R1 R1 R2 r2 // R2 R3 r3 // R3
(1)
两种方法求r1、r2、r3: 1、知各段电压变化 ΔU1 、 ΔU2 和ΔU3, 根据允许通过的电流确 定ΔR1、ΔR2和ΔR3; 2、让最大斜率段电阻为ΔR3(无并联电阻时)压降为ΔU3,则
tmin d (0.03 ~ 0.04)mm
(
) max
其中可取
用分路电阻实现变电阻
要实现曲线3所要求的特性:
线性电位器全行程分若干段,引出一些抽头, 对每一段并联适 当阻值,使得各段的斜率达到2所需的大小(每一段内,电压输出 是线性的),而电阻输出是非线性的,如曲线1.若能求出各段并联 电阻的大小,即可实现输出特性3所要求的函数关系。
(3)导电塑料电位器 导电塑料电位器又称实心电位 器,耐磨性很好,使用寿命较长,允许电刷的接触压力很大, 在振动、冲击等恶劣环境下仍能可靠地工作。此外,它的分 辨率较高,线性度较好,阻值范围大,能承受较大的功率。 导电塑料电位器的缺点是阻值易受湿度影响,故精度不易做 得很高。导电塑料电位器的标准阻值有1kΩ、2kΩ、5kΩ和 10kΩ,线性度为0.1%和0.2%。 (4)导电玻璃釉电位器 导电玻璃釉电位器又称金属陶 瓷电位器,它的耐高温性和耐磨性好,有较宽的阻值范围, 电阻湿度系数小且抗湿性强。导电玻璃釉电位器的缺点是 接触电阻变化大,噪声大,不易保证测量的高精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章电位器式传感器
基本题:
4.1电位器的主要用途是什么?
4.2电位器的特点是什么?
4.3什么是电位器的阶梯特性?在实际使用时,它会给电位器带来什么问题?
4.4研究非线性电位器的出发点是什么?如何实现非线性电位器?
4.5什么是电位器的负载特性和负载误差?如何减小电位器的负载误差?
4.6证明图4.4.5指出的“所设计的非线性特性3为原线性电位器负载特性2关于线性特性1的镜像”。
4.7一骨架截面为圆形的电位器,半径为a 。
现用直径为d 、电阻率为ρ的导线绕制,共紧密地绕了W 匝。
试导出该线绕式电位器的灵敏度表达式(注意:导线直径d 不可忽略)。
4.8试设计一电位器的电阻特性。
它能在带负载情况下给出X Y =的线性特性,如图
4.1所示。
给定电位器的总电阻Ω=1000R ,负载电阻f R 分别为Ω50和Ω500。
计算时取X 的间距为0.1。
X 和Y 分别为相对输入和相对输出。
图4.1带负载的电位器
4.9试设计一分流电阻式非线性电位器的电路及其参数。
要求特性如图4.2所示,所用线性电位器的总电阻为1000Ω,输出为空载。
图4.2非线性电位器的输出特性
4.10图 4.3为一带负载的线性电位器。
试用解析和数值方法(可把整个行程分成10段),求(a),(b)两种电路情况下的端基线性度。
图4.3带负载的电位器
4.11有一非线性电位器R x (),x 为行程,其范围为L x ≥≥0,且x L =时阻值为R 0。
当负载电阻为R f 时,其电压的输出特性为行程x 的线性函数。
试设计R x ()。
若R x ()是骨架截面积为圆形的线绕式电位器,试讨论其实现的可能方式,并用简图示意出最佳方案。
4.12图4.4给出了某位移传感器的检测电路。
in U =12V ,k Ω100=R ,AB 为线性电位器,总长度为150mm ,总电阻为30Ωk ,C 点为电刷位置。
问
(1)输出电压out U =0V 时,位移x =?
(2)当位移x 的变化范围为10~140mm 时,输出电压out U 的范围为多少?
图4.4电位器式位移传感器检测电路
4.13某线绕式电位器的骨架直径0D =10mm ,总长0L =100mm ,导线直径d =0.1mm ,电阻率6106.0-⨯=ρm ⋅Ω,总匝数W=1000。
试计算该电位器的空载电阻灵敏度
4.14某线绕式非线性电位器的骨架宽度b =8mm ,高度x x h 02.010)(+=mm ,x 为电位器的工作位移,导线的截面积S=0.032mm ,电阻率m 1072.06⋅Ω⨯=-ρ,绕线节距1.0=t mm ,当该电位器工作位移范围为0~100mm 时,试计算出其电阻灵敏度的范围。
4.15给出一种电位器式压力传感器的结构原理图,并说明其工作过程与特点。
提高题:
4.16针对图4.7.1所示的电位器式加速度传感器的结构示意图,试建立描述其动态测量过程的输入/输出关系(可用传递函数描述)。
4.17基于电位器的工作机理,设计一角位移传感器的基本原理结构,并讨论其可能的测量误差以及改善措施。
R,总工作行4.18某位移测量装置采用了两个相同的线性电位器。
电位器的总电阻为
0 L。
当被测位移变化时,带动这两个电位器一起滑动(如图4.5所示,虚线表示电程为
U。
刷的机械臂)。
如果采用电桥检测方式,电桥的激励电压为
in
(1)设计电桥的连接方式;
L时,电桥的输出电压范围是多少?
(2)被测位移的测量范围为0~
图4.5电位器式位移传感器结构图
注:题中的图形和公式见教材《传感器技术及应用》(樊尚春编著,北京航空航天大学出版社,2004)。