上转换发光基本知识资料讲解
上转换发光过程

上转换发光过程上转换发光过程一、引言上转换发光是一种基于荧光材料的发光技术,具有高效、可靠、稳定等特点,在LED照明、显示技术等领域得到广泛应用。
本文将详细介绍上转换发光的基本原理、材料选择和制备方法。
二、基本原理上转换发光是通过荧光材料将短波长的激发能量转化为长波长的可见光能量。
其基本原理如下:1. 荧光材料吸收能量:荧光材料吸收外部能量,如紫外线或蓝色LED 等,使其处于激发态。
2. 能量传递:激发态的荧光分子通过与周围分子碰撞而失去部分能量,并将这些能量传递给其他分子,直到最终传递到某个分子,使其达到激发态。
3. 上转换:当这个分子从激发态回到基态时,它会释放出一个比吸收时更长波长的光子,即进行了上转换。
4. 发射:释放出来的可见光经过进一步处理后形成人眼可以看到的彩色光。
三、材料选择荧光材料是实现上转换发光的关键因素。
选择合适的荧光材料可以提高发光效率、改善颜色均匀性、减少能量损失等。
常见的荧光材料有以下几种:1. 稀土离子:稀土离子是目前最常用的上转换发光材料之一,其具有较高的量子产率和较窄的发射带宽,可以实现高效率、纯净度高的发光效果。
2. 有机分子:有机分子荧光材料具有较宽的吸收带宽和调制性能,可以实现广泛的颜色选择和调节。
3. 无机晶体:无机晶体荧光材料具有较高的热稳定性和抗氧化性能,可以应用于高温环境下的照明等领域。
四、制备方法1. 溶液法:溶液法是一种简单易行且成本低廉的制备方法。
通常采用水热法或油相法将荧光物质与基质混合制备出上转换发光粒子。
2. 气相沉积法:气相沉积法是一种基于物理气相沉积技术的制备方法,通过控制反应条件和材料选择,可以实现高质量、高纯度的上转换发光材料。
3. 溅射法:溅射法是一种常用的制备薄膜的技术,通过在基底上溅射荧光材料形成薄膜,可以实现高效率、均匀性好的上转换发光薄膜。
五、结论上转换发光技术是一种高效、可靠、稳定的发光技术,在LED照明、显示技术等领域有着广泛应用。
上转换材料及其发光机理

无辐射弛豫达到发光能级,由此跃迁到基态放出一可见
光子,
发光要求 为了有效实现双光子或多光子效应,发光中心的
亚稳态需要有较长的能级寿命,稀土离子能级之间的跃迁属 于禁戒的f-f 跃迁,因此有长寿命,符合此条件,
能级3-2之间能量差与能级2-1之间的能量差相等,若某一辐射的 能量与上述能量差一致,则会发生激发,离子会从1激发到2,如果 能级2的寿命不是太短,则离子从2激发到3.最后就发生了从3到1 的发射,
1、样品制备与光谱测试
NaOH吸收SiF4
11
2、激发机理
Er3+的绿色发射,由基态经由4I11/2到4F7/2能记得 两步激发,随后无辐射衰减到2I11/2和4S3/2能级, 最后辐射跃迁回基态,发出绿光
Er3+的红色发射: A、由4S3/2能级经无辐射衰减到红色发射的 4F9/2能级 B、 Er3+接受Yb 3+传递来的三个光量子,由 4S3/2能级激发至2G7将多余能量逆传递给 Yb 3+ C、 Er3+在第一步激发后,从4I11/2无辐射衰减到 4I13/2,再激发到红色发射的4F9/2能级
4
实际的上转换过程
能量传 递机理, 离子A 将能量 传递给 离子B, 从而能 够从更 高能级 发射
两步 吸收 机理, 仅由 一个 离子 完成
协同敏 化机理, 两个A离 子将能 量传递 给C离子, 由C的激 发产生 发射
协同发光 机理,将两 个A离子 的激发能 量结合,形 成一个产 生发射的 光量子
上转换材料及其发光机理
主要内容
1
上转换机理
2
上转换材料
3
实例分析
2
一、上转换机理
上转换材料 是一种红外光激发下能发出可见光的发光材
上转换发光材料

1966年, 法国科学家Auzel在研究钨酸镱 钠玻璃时,意外发现,当基质材料中掺入 Yb3+ 离子时,Er 3+、 Ho3+和 Tm3+离子 在红外光激发时,可见发光几乎提高了两 个数量级,由此正式提出了“上转换发光” 的概念
发展 历程
1968年,制出第一个有实用价值的上 转换材料LaF3,一时间Yb,Er 成为研 究热点; 20世纪 90年代初: 在低温下(液氮温 度)在掺Er3+:CaF2晶体中上转换发光 效率高达25%
• 其中就上转换发光效率而言,一般认为氯化物>氟化物> 氧化物,这是单纯从材料的声子能量方面来考虑的,这个 顺序恰与材料的结构稳定性顺序相反。
• NaYF4是目前上转换发光效率最高的基质材料
发展历程
1959年,Bloeberge用960nm的红外 光激发多晶ZnS ,观察到 525nm的 绿色发光。 1962年,此种现象又在硒化物中得 到了进一步的证实。
分类
• 根据掺杂离子分类可将上转换材料可分为单掺和双掺两种
• 单掺材料利用稀土离子f-f禁戒跃迁,效率不高。 • 双掺稀土离子则是以高浓度掺入一个敏化离子,其激发态
高于激活离子激发亚稳态,因此可将吸收的红外光子能量 传递给这些激活离子,发生双光子或多光子加和,从而实 现上转换过程。
分类
• 根据基质材料可分为5类,包括氟化物、氧化物、氟氧化 物、卤化物和含硫化合物。
上转换发光材料的应用(一)
• 基ቤተ መጻሕፍቲ ባይዱ上转换发光的活体成像技术
上转换发光材料的应用(一)
• 上转化纳米材料料在 肿瘤靶向成像中的应用
上转换发光材料的应用
• 生物成像 • 防伪技术 • 红外探测 • 显示技术
第8讲_上转换发光材料

第8讲_上转换发光材料上转换发光材料(Upconversion Luminescent Materials)上转换发光材料是一种在低能量激发下可以产生高能量发光的材料。
其发光机制与传统的下转换发光材料,如荧光粉和半导体量子点等有所不同。
下转换发光材料在受到外界激发后,会先吸收光子并将其转换为较低能量的光子发出。
而上转换发光材料则能够在较低能量的激发光下,将吸收的能量进行级联转换,最终发射出高能量光。
上转换发光材料主要有两种类型:硅基和非硅基的上转换材料。
硅基上转换材料已经取得了长足的进展,并在光伏领域中受到广泛关注。
硅基上转换材料主要的特点是其上转换效率高,可以将低能量的光激发转换为高能量的发射。
这种材料对于提高太阳能电池的转换效率有很大的潜力。
非硅基的上转换材料则具有更多的选择性,并且在通过适配光源和非线性光学过程实现上转换发光方面具有更大的优势。
上转换发光材料的发光机制可以通过光功率图谱和物质能级示意图进行解释。
光功率图谱可以揭示材料在不同波长下的发光强度,从而分析材料的上转换效率。
物质能级示意图则可以通过表示材料的能量级别来解释能量的转换过程。
上转换发光材料的能级示意图中通常会包含两个部分:上转换激发态和上转换发射态。
在受到激发光的作用下,材料的电子会从基态跃迁到激发态,并且会经过一个或多个中间态的跃迁,最终发射出高能量的光子。
另外,上转换发光材料还有一些其他的应用领域。
其中最显著的是生物医学领域。
由于上转换发光材料具有可调控的发光特性,可以在多种情况下应用于生物成像和药物传递等领域。
例如,上转换发光材料可以通过发光技术提供可见光对于红外光的扩展,从而实现更深度的生物组织成像。
此外,上转换发光材料还可以用于生产发出可见光的LED灯和激光等。
总之,上转换发光材料是一种具有广泛应用前景的新型材料。
其通过将低能量的光激发转换为高能量的发射,具有很高的上转换效率和可调控的发光特性。
上转换发光材料在太阳能电池、生物医学和光电器件等领域的应用前景广阔,将在未来的科研和产业中发挥重要作用。
序言-上转换发光概述

第1章序言1.1上转换发光概述众所周知,稀土元素掺杂的氟化物、氧化物、硫氧化物等材料不仅表现出下转换发光(Stokes类型),而且表现出高效率的上转换发光(反Stokes类型)[1][2][3][4][5]。
上转换发光涉及到非线性光学过程,其特征为通过中间长寿命的能级状态连续吸收两个或更多的泵浦光子,发射出一个波长更短的光子的输出辐射。
自1960年开始,人们便开始了围绕上述现象的研究[6]。
但最初只是针对一些特定光学设备,例如红外量子计数探测器[7][8][9],温度传感器[10][11][12],和固态激光器[13][14][15][16]。
在之后的30多年间,有关上转换发光的利用主要集中在大体积的玻璃或者晶体材料上[17][18][19][20][21][22]。
直到90年代末期,纳米科学和纳米技术经历了快速的发展[23][24][25][26][27][28][29][30]。
由于上转换纳米粒子(UCNP)的尺寸较小(这个尺寸很小可以让许多生物寄主例如细胞质,细胞核等通过)和独特的光学特性,例如高化学稳定性,低细胞毒素特性,高信号噪音比,使得UCNPs 在分析化验和生物图像的上的应用或得了相当大的认可[31][32][33][34][35]。
最近关于UCNPs在生物和其他方面的进步已经产生了相当大的反响[36][37][38][39][40][41][42][43]。
从90年代末期开始,UCNPs经历了一次重要的发展,它在纳米科学领域已经成为了一个非常活跃的研究方向。
在很多的研究机构里,对于它的研究正经历着快速的发展。
在过去的20多年里关于UCNPs 大量的学术论文的发表可以清晰的证明这一点。
而在后期,学术论文的发表数量是以指数形式在增长。
然而,UCNPs的低上转换效率仍是其迅猛发展的最大障碍。
人们仍然需要去寻找将上转换光学性质最优化的改进方法。
广泛的研究证实,在基底材料中掺杂镧系离子可实现良好的上转换发光特性。
第8讲上转换发光材料

第8讲上转换发光材料上转换发光材料是一种新型的发光材料,相比传统的下转换发光材料具有更高的照明效率和更广泛的应用范围。
本文将对上转换发光材料的原理、性能以及应用进行详细介绍。
上转换发光材料是通过将两个或多个低能量的光子转换成一个高能量的光子来实现发光的。
这种发光机制与传统的下转换发光材料不同,传统的下转换发光材料通过吸收高能量的光子后发出低能量的光子,而上转换发光材料则相反。
上转换发光材料可以将低能量的光直接转化为高能量的光,因此具有更高的发光效率。
上转换发光材料的原理主要包括以下几个方面:首先,需要有一个能够吸收低能量光子的发光体;其次,需要有一个能将吸收得到的能量转换为高能量光子的上转换剂。
当发光体吸收到低能量的光子后,会将能量传递给上转换剂,上转换剂再通过各种能量传递过程将能量聚集到一个特定的能级上,最后发出高能量的光子。
上转换发光材料的发光效率主要取决于上转换剂的吸收能力和能量传递效率。
上转换发光材料具有许多优点。
首先,上转换发光材料可以实现更高的发光效率。
由于上转换发光材料能够将低能量的光直接转换为高能量的光,因此可以提高发光效率,减少能源的消耗。
其次,上转换发光材料具有更广泛的应用范围。
传统的下转换发光材料主要用于照明和显示领域,而上转换发光材料还可以在光通信、生物医学和太阳能等领域得到应用。
上转换发光材料的应用前景十分广阔。
其中,光通信是上转换发光材料的一个重要应用领域。
由于上转换发光材料具有更高的发光效率和更低的损耗,因此可以有效提高光通信系统的传输速率和传输距离。
另外,上转换发光材料还可以应用于生物医学领域。
由于上转换发光材料具有更高的发射频率和更低的自发辐射强度,因此可以用于生物标记、光动力疗法和生物成像等应用。
此外,上转换发光材料还可以应用于太阳能领域。
太阳能电池是目前比较常见的太阳能转换设备,而使用上转换发光材料可以提高太阳能电池的光吸收效率和转换效率,从而提高太阳能发电效率。
上转换发光材料

上转换发光材料上转换发光的概念:上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。
本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。
斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。
比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。
但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。
上转换发光技术的发展:早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。
1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。
整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。
迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。
80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。
1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。
2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。
上转换发光

上转换技术的应用进展
上转换发光材料在诸领域有着潜在的应 用前景。目前国际国内研究工作主要是 围绕在上转换激光器、三维立体显示、 生物荧光标记等方面进行。
(一)上转换激光器
能量转移 ( ET)
光子雪崩过程( PA)
1979 年Chivian等研 究Pr 3 + 离子在 LaCl 3 晶体中的上转换发光 时首次提出。 “光 子雪崩”是 ESA 和 ET 相结合的过程
上转换发光分类
上转换发光优点
降低光致电离作用引起基质材料的衰退 ; 不需要严格的相位匹配, 对激发波长的稳
定性要求不高; 输出波长具有一定的可调谐性。
掺杂Er3+的材料
通过两步或者更多步 的光子吸收实现上转 换过程。单掺Er3+的 材料,吸收 800 nm 的辐射,跃迁至可产 生绿色发射的4S3/2能 级。
图 800nm条件下 Er 3+ 离子的上转换发光机制
Bi2 WO6 ∶Er 3+
范等利用用水热法合成了花状 Bi2 WO6 ∶Er 3+球 型样品具有纯绿色上转换荧光, Er 3+ 离子的掺 杂提高了罗丹明 B 的吸附量以及 Bi2 WO6光催化 活性。
The end Thank you!
上转换材料的发展前景
节能环保是当今世界的主流, 扩大上转 换材料的应用范围自然也要以此为出发 点, 因此以上转换材料作为白光LED的荧 光物质是个不错的选择。目前, 市场上 的白光LED都是以紫外光激发的下转换材 料为荧光物质, 存在专利垄断、荧光物 质性能要求高、价格昂贵等问题。如果 能够研制出白光LED用上转换荧光物质, 将填补红外激发白光LED的空白, 市场前 景巨大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上转换发光分类
上转换材料的合成
上转换合成的方法: 1.高温固相法合成法 2.水热合成法 3.溶胶-凝胶法 4.共沉淀法
上转换材料的合成
(一)高温固相法合成法
利用所需氧化物高纯粉料,按化学计量比配料 混合均匀, 经高温煅烧后形成具有一定粒度的上转 换发光粉料[16]。是目前合成上转换材料的主要方 法之一。
1966年,Auzel在研究钨酸镱钠玻璃时, 发现当基质材料中掺入Yb3+离子时,在 红外光激发下Er3+、Ho3+和Tm3+离子的可 见发光提高了两个数量级,由此正式提 出了“上转换发光”的观点。
上转换发光的概念
上转换发光又称为反-斯托克斯发光(AntiStokes),斯托克斯定律认为材料只能受到 高能量波长短的光激发,发出低能量长波 长的光。而上转换发光认为长波长光激发 下,可持续发射波长比激发波长短的光。
上转换材料的合成
(三)溶胶-凝胶法 用含高化学活性组分的化合物前驱体, 在液相下
将这些原料均匀混合, 并进行水解、缩合反应, 在溶液中 形成稳定的透明溶胶体系。溶胶经陈化胶粒间缓慢聚合, 形成三维网络结构的凝胶, 凝胶经干燥、烧结得到所需产 品[17]。是一种湿化学合成法。
分类:水溶液溶胶-凝胶法、醇盐溶液-凝胶法
上转换过程形式
(四)共沉淀法 又称“化学沉积法”,以水溶性物质为原料,通
过液相化学反应,生成难溶物质前驱化合物从水溶液中沉 淀出来,经过洗涤、过滤、煅烧热分解而制得超细粉体发 光材料。
影响因素:溶液组成、浓度、温度、时间等。
上转换过程形式
优点:操作简单、流程短、能直接得到化学成分均一的粉体 材
料,可精确控制粒子的成核和长大,得到粒度可控、 分
上转换发光机理及其应用
Up Conversion Photoluminescence Mechanism and Its Applications
姓名:
背景
1959年,Bloemberge在Physical Review Letter上发表文章提出,用960nm的红外 光激发多晶ZnS,观察到了525nm绿色发 光。
散性较好的粉体材料 缺点:影响因素多、形成分散粒子的条件苛刻、沉淀剂容易 作
为杂质混入沉淀物、各成分分离困难、沉淀剂不溶于 水、
对多组分制备有一定的局限性等。
上转换过程形式
应用: a、以氨水为沉淀剂,制备出性能良好的Er3+:Y2O3上转
换发光纳米粉。 b、以EDTA为螯合剂,合成纳米级Ho3+、Yb3+共掺杂的
NaYF4上转换荧光材料。 c、以分子束外延法,在CaF2的基片上形成掺有Er3+的
LaF3薄膜。
上转换材料的合成
(二)水热合成法
在水热条件下,反应物以各种配合物的形式进 行溶解。
优点:所需温度低、生成过程容易控制、合成材料晶相 好,物相均匀,产率高。
应用:合成了多种上转换材料:NaYF4:Ho3+、Tm3+、 Yb3+,YLiF4:Er3+、Tm3+、Yb3+,KZnF3:Er3+、Yb3+等
影响因素:温度、压力、反应时间、添加剂
上转换材料的合成
优点:微晶的晶体质量优良,表面缺陷少,发光效率高,操 作简便,工艺成熟,便于进行工业化。
缺点:需要较高的温度,材料容易被氧化,合成的粉体烧 结
性能不理想。 应用:合成众多的上转换发光材料,如:碲酸盐玻璃、 ZBLAN
玻璃、铋酸盐玻璃、硼酸盐玻璃、氧氯铋锗酸盐玻 璃等
根据基质材料可分为5类,包括氟化物、氧化物、氟氧化物、 卤化物和含硫化合物。 其中就上转换发光效率而言,一般认为氯化物>氟化物>氧化 物,这是单纯从材料的声子能量方面来考虑的,这个顺序恰与 材料的结构稳定性顺序相反。
NaYF4是目前上转换发光效率最高的基质材料
机理
可以把上转换过程归结为三种形式:激发态吸收、 能量传递及光子雪崩
激发态吸收过程( ESA)
1959 年 Bloembergen 等人提出的 ,其原理是 同一个离子从基态能级 通过连续的多光子吸收 到达能量较高的激发态 能级的一个过程。
能量转移 ( ET)
光子雪崩过程( PA)
1979 年Chivian等研 究Pr 3 + 离子在 LaCl 3 晶体中的上转换发光 时首次提出。 “光 子雪崩”是 ESA 和 ET 相结合的过程