离心泵工作原理及叶轮的作用

合集下载

离心泵的工作原理

离心泵的工作原理

1、离心泵的工作原理离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。

由于作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸入口液体池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。

2、容积泵的工作原理(回转式)动力通过轴传给齿轮,一对同步齿轮带动泵叶作同步反向旋转运动,使进口区产生真口,降介质吸入,随泵叶的转动,将介质送往出口,继续转动,出口腔容积变小,产生压力(出口高压区)将介质输出。

由于容积泵转数较低、自吸能力较强、流动性能较差的高粘介质,有充分时间和速度充满空穴,所以,该类型泵适用于高粘介质。

泵内部密封面。

内泻较小,所以泵的效率较高,可达 70 %以上,同时可以达到高压输送介质,并且对粘度较小的介质也有良好的适应性。

3、离心泵的分类及各自的特点离心泵按其结构形式分为:立式泵和卧式泵,立式泵的特点为:占地面积少,建筑投入小,安装方便,缺点为:重心高,不适合无固定底脚场合运行。

卧式泵特点:适用场合广泛,重心低,稳定性好,缺点为:占地面积大,建筑投入大,体积大,重量重。

4、容积泵的分类及特点容积式泵分为往复式和回转式二大类,回转式容积泵与往复式容积泵相比,回转式泵没有吸、排液阀,不会向往复泵那样,因高粘度液体对阀门的正常工作有影响,泵效随粘度提高而快速降低。

而且在输送液体粘度提高时,泵转数的下降比往复泵小,因而,在输送高粘度液体或液体粘度变化较大时,采用回转式溶剂泵比采用往复式容积泵更为适宜。

回转式容积泵分:齿轮泵、旋转活塞泵、螺杆泵、和滑片泵等几类。

具有转数低、效率高、自吸能力强、运转平稳、部分泵可预热等特点,广泛用于高粘介质的输送。

缺点:占地面积大,建筑投入大,体积大,重量重。

5、泵的流量以及与重量的换算泵在单位时间内,实际输送液体的体积称为泵的流量,流量用Q 表示,计量单位:立方米 / 小时(m3/h),升 / 秒(l/s), L/s= 3.6 m3 /h= 0.06 m3 /min= 60L /min G=QρG 为重量ρ为液体比重例:某台泵流量80m3/h ,介质的比重ρ为780 公斤/ 立方米。

离心泵的工作原理

离心泵的工作原理

离心泵的工作原理
离心泵是一种常见的动力机械设备,广泛应用于工业生产和民用领域。

它通过
旋转叶轮产生离心力,将液体从低压区域输送到高压区域。

离心泵的工作原理可以分为以下几个步骤:
1. 叶轮旋转:离心泵的核心部件是叶轮,它通常由多个叶片组成。

当泵的电机
启动时,叶轮开始旋转。

2. 离心力产生:由于叶轮的旋转,液体在叶轮的作用下形成离心力。

离心力使
得液体向叶轮的外围方向移动。

3. 增压过程:随着液体向叶轮外围移动,液体的动能逐渐增加,静压也随之增加。

这样,液体的压力从低压区域逐渐增加到高压区域。

4. 出口流量:当液体通过叶轮的离心作用达到一定压力时,它将通过泵的出口
流出。

出口流量取决于泵的设计和工作条件。

需要注意的是,离心泵的工作原理是基于离心力的。

离心力是由旋转叶轮产生的,它能够将液体从低压区域输送到高压区域。

离心泵的性能受到多种因素的影响,例如叶轮的形状、叶片数量、转速和泵的设计参数等。

根据实际需求,可以选择不同类型和规格的离心泵来满足不同的工程要求。

离心泵广泛应用于工业领域,例如供水、给排水、农田灌溉、石油化工、化肥
生产等。

在民用领域,离心泵常用于楼宇供水、消防系统、暖通空调等。

通过合理选择和使用离心泵,可以提高工作效率、节约能源和降低运行成本。

总结起来,离心泵的工作原理是通过旋转叶轮产生离心力,将液体从低压区域
输送到高压区域。

离心泵的应用广泛,可以满足不同领域的工程需求。

在实际使用中,需要根据具体情况选择适合的离心泵类型和规格,以达到最佳的工作效果。

离心泵的工作原理有哪些 离心泵工作原理

离心泵的工作原理有哪些 离心泵工作原理

离心泵的工作原理有哪些离心泵工作原理离心泵的工作原理:离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。

由于作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到加添,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸入口液体池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。

离心泵是利用叶轮旋转而使水发生离心运动来工作的。

水泵在启动前,必需使泵壳和吸水管内充分水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水发生离心运动,被甩向叶轮外缘,经蜗形泵壳的流道流入水泵的压水管路。

当泵内充分液体时,叶轮在驱动机的带动下高速旋转,叶片驱使液体旋转,产生离心力。

在离心力的作用下,液体沿叶片流道从中心向四周甩出,经过蜗壳送入排出管。

叶轮在旋转过程中,一面不断吸入液体,一面又不断将吸入的液体排出,如此连续工作,液体在压力能与速度能的作用下,被输送到工作地点。

离心泵运行管理方法1、每台水泵机组投入运行后应适时填写运行日报表上有关记录项目。

计算机管理的,应将各台泵每日的运转情况数据输入计算机的存储系统。

2、注意机组有无不正常的响声和振动。

水泵在正常运行时,机组应当安静,声音应当正常连续而不间断。

往往不正常的响声和振动是水泵故障发生的前兆,遇此情况,应立刻停机检查。

3、注意机组轴承温度及油量的检查。

轴承升温,一般不得超过环境温度30℃~40℃,最高不超过75℃。

在无温度计时,也可用手摸,凭阅历判定,如感到很烫手时,应停机检查。

4、新机组使用润滑脂的滚珠轴承,第一次换油时间在机组运行80h~100h之后,以后约每隔2400h换油一次(使用二硫化钼润滑剂,时间可延长一倍)。

凡接受机械油润滑的轴承,每240h换油一次,并应随时注意油面应在油标尺的两刻度之间,不足时应随时加注。

5、填料盒正常滴水程度,一般只要掌控到能分滴而下,不连续成线即可,即每分钟20~150滴。

离心泵的主要工作原理

离心泵的主要工作原理

离心泵的主要工作原理(1)叶轮被泵轴带动旋转,对位于叶片间的流体做功,流体受离心力的作用,由叶轮中心被抛向外围。

当流体到达叶轮外周时,流速非常高。

(2)泵壳汇集从各叶片间被抛出的液体,这些液体在壳内顺着蜗壳形通道逐渐扩大的方向流动,使流体的动能转化为静压能,减小能量损失。

所以泵壳的作用不仅在于汇集液体,它更是一个能量转换装置。

(3)液体吸上原理:依靠叶轮高速旋转,迫使叶轮中心的液体以很高的速度被抛开,从而在叶轮中心形成低压,低位槽中的液体因此被源源不断地吸上。

气缚现象气缚现象:如果离心泵在启动前壳内充满的是气体,则启动后叶轮中心气体被抛时不能在该处形成足够大的真空度,这样槽内液体便不能被吸上。

这一现象称为气缚。

为防止气缚现象的发生,离心泵启动前要用外来的液体将泵壳内空间灌满。

这一步操作称为灌泵。

为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵。

(4)叶轮外周安装导轮,使泵内液体能量转换效率高。

导轮是位于叶轮外周的固定的带叶片的环。

这些叶片的弯曲方向与叶轮叶片的弯曲方向相反,其弯曲角度正好与液体从叶轮流出的方向相适应,引导液体在泵壳通道内平稳地改变方向,使能量损耗最小,动压能转换为静压能的效率高。

(5)后盖板上的平衡孔消除轴向推力。

离开叶轮周边的液体压力已经较高,有一部分会渗到叶轮后盖板后侧,而叶轮前侧液体入口处为低压,因而产生了将叶轮推向泵入口一侧的轴向推力。

这容易引起叶轮与泵壳接触处的磨损,严重时还会产生振动。

平衡孔使一部分高压液体泄露到低压区,减轻叶轮前后的压力差。

但由此也会引起泵效率的降低。

(6)轴封装置保证离心泵正常、高效运转。

离心泵在工作是泵轴旋转而壳不动,其间的环隙如果不加以密封或密封不好,则外界的空气会渗入叶轮中心的低压区,使泵的流量、效率下降。

严重时流量为零——气缚。

通常,可以采用机械密封或填料密封来实现轴与壳之间的密封。

离心泵的工作原理

离心泵的工作原理

离心泵的工作原理离心泵的工作原理是指通过离心力将液体从低压区域输送到高压区域的一种机械设备。

它是一种常见的流体输送设备,广泛应用于工业领域,如供水、石油化工、冶金、造纸等。

离心泵的工作原理可以简单概括为以下几个步骤:1. 吸入液体:离心泵通过进口处的吸入管道将液体从低压区域吸入泵内。

在此过程中,泵的叶轮通过旋转产生的离心力将液体拉入泵内。

2. 加速液体:液体进入泵内后,叶轮的旋转运动将液体加速。

叶轮的形状和叶片数量会影响液体的加速效果。

3. 离心力作用:加速后的液体在叶轮的作用下产生离心力。

离心力是指液体受到的向外的力,使液体沿着叶轮的径向方向挪移。

4. 压力增加:随着液体受到离心力的作用,压力逐渐增加。

液体被推向离心泵的出口处,准备进入高压区域。

5. 排出液体:当液体达到一定压力后,通过出口处的排出管道将液体排出泵外。

排出管道通常与管道系统相连,将液体输送到需要的地方。

需要注意的是,离心泵的工作原理是基于旋转运动和离心力的。

除了叶轮的形状和叶片数量,其他因素如泵的转速、液体的粘度、泵的尺寸等也会对离心泵的工作效果产生影响。

离心泵的工作原理的优点包括:1. 高效能:离心泵的工作原理使其能够快速、高效地输送液体,提高工作效率。

2. 适应性强:离心泵适合于不同种类的液体输送,如清水、污水、油类等。

3. 压力稳定:离心泵能够提供相对稳定的压力,确保液体在输送过程中不会波动。

4. 结构简单:离心泵的结构相对简单,易于安装和维护。

然而,离心泵也存在一些局限性:1. 不适合于高粘度液体:离心泵对高粘度液体的输送效果较差,可能会导致液体流动不畅。

2. 不能处理固体颗粒:离心泵在液体中存在固体颗粒时容易阻塞,需要额外的过滤装置。

3. 能耗较高:离心泵需要消耗较多的能量来产生旋转运动和离心力,可能会增加能源成本。

总结起来,离心泵的工作原理是通过叶轮的旋转运动产生离心力,将液体从低压区域输送到高压区域。

它具有高效能、适应性强、压力稳定和结构简单等优点,但也存在一些局限性。

离心泵的定义及工作原理

离心泵的定义及工作原理

离心泵的定义及工作原理离心泵是一种常见的流体机械设备,广泛应用于工业领域,用于输送各种液体或气体。

它的工作原理基于离心力的作用,通过旋转叶轮产生离心力,从而使流体被抽入泵内,并通过出口处排出。

离心泵主要由以下几个部分组成:进口、出口、叶轮、泵壳和驱动装置。

进口和出口是流体的进出口口,叶轮是离心泵的核心部件,泵壳则是容纳叶轮和流体的外壳。

驱动装置通常是电动机或发动机,用于提供动力。

离心泵的工作原理如下:1. 流体进入:当离心泵开始运转时,流体通过进口进入泵内。

进口通常与管道相连,通过负压或其他方式将流体引入泵内。

2. 叶轮旋转:进入泵内的流体被叶轮捕获,并随着叶轮的旋转产生离心力。

叶轮通常由多个叶片组成,其形状和数量可根据具体需求进行设计。

3. 离心力作用:叶轮的旋转产生的离心力使流体向外部推进,同时增加流体的动能。

离心力的大小取决于叶轮的转速和几何形状。

4. 流体排出:离心力将流体推向泵壳的出口处,流体通过出口离开泵。

出口通常与管道相连,将流体输送到需要的位置。

离心泵的工作原理可以通过以下公式进行描述:Q = H * η * ρ * g / (N * Φ)其中,Q表示流量,H表示扬程,η表示效率,ρ表示流体密度,g表示重力加速度,N表示转速,Φ表示叶轮流量系数。

这个公式表明,流量受到扬程、效率、流体密度、重力加速度、转速和叶轮流量系数的影响。

离心泵的应用广泛,常见于供水系统、冷却系统、化工工艺、石油化工、污水处理等行业。

它具有输送能力强、结构简单、维护方便等优点,适用于输送不同性质的液体和气体。

总结起来,离心泵是一种利用离心力将流体从进口抽入泵内,并通过出口排出的机械设备。

其工作原理基于叶轮旋转产生的离心力,通过流体的进入和排出实现输送功能。

离心泵广泛应用于各个行业,是流体输送领域中不可或缺的设备之一。

离心泵的工作原理

离心泵的工作原理

1、离心泵的工作原理离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。

由于作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸入口液体池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。

2、容积泵的工作原理(回转式)动力通过轴传给齿轮,一对同步齿轮带动泵叶作同步反向旋转运动,使进口区产生真口,降介质吸入,随泵叶的转动,将介质送往出口,继续转动,出口腔容积变小,产生压力(出口高压区)将介质输出。

由于容积泵转数较低、自吸能力较强、流动性能较差的高粘介质,有充分时间和速度充满空穴,所以,该类型泵适用于高粘介质。

泵内部密封面。

内泻较小,所以泵的效率较高,可达 70 %以上,同时可以达到高压输送介质,并且对粘度较小的介质也有良好的适应性。

3、离心泵的分类及各自的特点离心泵按其结构形式分为:立式泵和卧式泵,立式泵的特点为:占地面积少,建筑投入小,安装方便,缺点为:重心高,不适合无固定底脚场合运行。

卧式泵特点:适用场合广泛,重心低,稳定性好,缺点为:占地面积大,建筑投入大,体积大,重量重。

4、容积泵的分类及特点容积式泵分为往复式和回转式二大类,回转式容积泵与往复式容积泵相比,回转式泵没有吸、排液阀,不会向往复泵那样,因高粘度液体对阀门的正常工作有影响,泵效随粘度提高而快速降低。

而且在输送液体粘度提高时,泵转数的下降比往复泵小,因而,在输送高粘度液体或液体粘度变化较大时,采用回转式溶剂泵比采用往复式容积泵更为适宜。

回转式容积泵分:齿轮泵、旋转活塞泵、螺杆泵、和滑片泵等几类。

具有转数低、效率高、自吸能力强、运转平稳、部分泵可预热等特点,广泛用于高粘介质的输送。

缺点:占地面积大,建筑投入大,体积大,重量重。

5、泵的流量以及与重量的换算泵在单位时间内,实际输送液体的体积称为泵的流量,流量用 Q 表示,计量单位:立方米 / 小时(m3/h),升 / 秒(l/s), L/s= 3.6 m3 /h= 0.06 m3 /min= 60L /min G=Q ρG 为重量ρ为液体比重例:某台泵流量 80m3/h ,介质的比重ρ为 780 公斤 / 立方米。

离心泵的工作原理

离心泵的工作原理

离心泵的工作原理离心泵是一种常见的动力机械设备,广泛应用于工业生产和民用领域。

它通过旋转叶轮产生离心力,将液体或气体从低压区域输送到高压区域。

离心泵的工作原理可以概括为以下几个步骤:1. 吸入阶段:当离心泵启动后,叶轮开始旋转。

叶轮的旋转产生了一个低压区域,使得液体或气体从进口管道流入泵内。

进口管道通常与一个吸入管道相连,通过这个管道将液体或气体引入泵内。

2. 离心力产生阶段:液体或气体进入泵内后,叶轮的旋转将其带到离心力的作用下。

离心力是由旋转叶轮产生的,它使得液体或气体在叶轮的周围形成一个旋涡。

离心力的大小取决于叶轮的转速和叶轮的几何形状。

3. 压力增加阶段:离心力将液体或气体推向离心泵的出口。

由于离心力的作用,液体或气体的动能被转化为压力能。

随着液体或气体被推向出口,压力逐渐增加。

4. 排出阶段:当液体或气体达到一定的压力后,它们将通过出口管道从离心泵中排出。

出口管道通常与一个排出管道相连,通过这个管道将液体或气体输送到需要的位置。

离心泵的工作原理基于牛顿第二定律和连续性方程。

牛顿第二定律指出,当一个物体受到外力作用时,它将产生加速度。

离心泵中,叶轮的旋转产生了一个向外的力,使得液体或气体产生加速度。

连续性方程则描述了在连续流动情况下,质量守恒的原理。

离心泵中,液体或气体在进口和出口之间形成一个流动,质量的流入必须等于质量的流出。

离心泵的工作原理使得它具有许多优点。

首先,离心泵的结构相对简单,维护和安装较为方便。

其次,离心泵能够提供较高的流量和较高的压力,适用于各种不同的工作条件。

此外,离心泵还具有较高的效率和较低的能耗,有利于节能和环保。

然而,离心泵也存在一些局限性。

例如,在液体或气体的温度较高或含有固体颗粒时,离心泵的性能可能受到影响。

此外,离心泵在处理高粘度液体时效果较差。

总结起来,离心泵的工作原理是通过旋转叶轮产生离心力,将液体或气体从低压区域输送到高压区域。

离心泵的工作原理基于牛顿第二定律和连续性方程,具有结构简单、维护方便、高效节能等优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵工作原理及叶轮的作用
当化工离心泵启动后,泵轴带动叶轮一起作高速旋转运动,迫使预先充灌在叶片间液体旋转,在惯性离心力的作用下,液体自叶轮中心向外周作径向运动。

当化工离心泵启动后,泵轴带动叶轮一起作高速旋转运动,迫使预先充灌在叶片间液体旋转,在惯性离心力的作用下,液体自叶轮中心向外周作径向运动。

液体在流经叶轮的运动过程获得了能量,静压能增高,流速增大。

当液体离开叶轮进入化工离心泵壳后,由于壳内流道逐渐扩大而减速,部分动能转化为静压能,最后沿切向流入排出管路。

所以蜗形泵壳不仅是汇集由叶轮流出液体的部件,而且又是一个转能装置。

当液体自叶轮中心甩向外周的同时,叶轮中心形成低压区,在贮槽液面与叶轮中心总势能差的作用下,致使液体被吸进叶轮中心。

依靠叶轮的不断运转,液体便连续地被吸入和排出。

液体在化工离心泵中获得的机械能量最终表现为静压能的提高。

叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。

1.叶轮
叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。

叶轮有开式、半闭式和闭式三种。

开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗
粒的物料,效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率高,适用于输送不含杂质的清洁液体。

一般的化工离心泵叶轮多为此类。

2.泵壳
作用是将叶轮封闭在一定的空间,以便由叶轮的作用吸入和压出液体。

化工离心泵壳多做成蜗壳形,故又称蜗壳。

由于流道截面积逐渐扩大,故从叶轮四周甩出的高速液体逐渐降低流速,使部分动能有效地转换为静压能。

泵壳不仅汇集由叶轮甩出的液体,同时又是一个能量转换装置。

相关文档
最新文档